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In this paper, we investigate a Leslie-type predator–prey model that incorporates
prey harvesting and group defense, leading to a modified functional response.
Our analysis focuses on the existence and stability of the system’s equilibria,
which are essential for the coexistence of predator and prey populations and the
maintenance of ecological balance. We identify the maximum sustainable yield, a
critical factor for achieving this balance. Through a thorough examination of
positive equilibrium stability, we determine the conditions and initial values that
promote the survival of both species. We delve into the system’s dynamics by
analyzing saddle-node andHopf bifurcations, which are crucial for understanding
the system transitions between various states. To evaluate the stability of the Hopf
bifurcation, we calculate the first Lyapunov exponent and offer a quantitative
assessment of the system’s stability. Furthermore, we explore the
Bogdanov–Takens (BT) bifurcation, a co-dimension 2 scenario, by employing
a universal unfolding technique near the cusp point. This method simplifies the
complex dynamics and reveals the conditions that trigger such bifurcations. To
substantiate our theoretical findings, we conduct numerical simulations, which
serve as a practical validation of the model predictions. These simulations not
only confirm the theoretical results but also showcase the potential of the model
for predicting real-world ecological scenarios. This in-depth analysis contributes
to a nuanced understanding of the dynamics within predator–prey interactions
and advances the field of ecological modeling.
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1 Introduction

Since the pioneering work of Lotka and Volterra, who introduced a pair of differential
equations to describe predator–prey dynamics, predator–prey models have attracted
considerable interest from both mathematicians and biologists due to their widespread
applicability [1]. Predominantly, predator–prey models have been developed around two
main scenarios: (i) the growth function of the predator is directly proportional to its
predation function, capturing the functional response of predators to prey availability, and
(ii) the growth function of the predator is decoupled from its predation function, suggesting
a more intricate relationship between the predator and prey.

Moreover, the growth term of the predator in these models is often portrayed as a
function that depends not only on prey density but also on the predator-to-prey ratio,
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adding another dimension of complexity to the interactions. Among
these diverse models, the Leslie-type model has emerged as a
particularly influential paradigm. Its sophisticated treatment of
predator–prey interactions has solidified its role as a fundamental
framework in ecological studies, aiding in the comprehension of the
delicate equilibrium within ecosystems.

[2] proposed a Leslie-type model to describe the relationship
between predators and their prey:

dx
dt

� rx 1 − x

K
( ) − yf x( ),

dy
dt

� qy 1 − y

px
( ),

where x and y denote the population densities of the prey and predators,
respectively. In the absence of predators, the growth of prey populations
is commonlymodeled using a logistic growth function, characterized by
an intrinsic growth rate r and an environmental carrying capacity K.
Thismodel assumes that population growth is limited by the availability
of resources as the population size approaches the carrying capacity.
The functional response, represented by f(x), describes how the rate of
prey consumption by predators varies with the density of the prey
population. In contrast, the growth rate of the predator is a Leslie-type
growth function expressed as q(1 − y

px), which depends on both the
prey density and the predator density. Here, q denotes the intrinsic per
capita growth rate of the predator in the presence of abundant prey, p is
a scaling factor that relates the carrying capacity of the predator to that
of the prey, and the term 1 − y

px reflects the diminishing growth rate as
the predator-to-prey ratio approaches one, indicating prey scarcity. This
growth function is particularly useful for simulating systems where the
success of the predator in capturing the prey is influenced not only by
prey abundance but also by the density of the predator population. It
captures the competitive pressures and the complex dynamics of
resource allocation within an ecosystem, offering a more nuanced
understanding of predator–prey interactions. The functional
response function f(x) is typically categorized into four classical
types: Holling type I [3], Holling type II [4], Holling type III [5, 6],
and Holling type IV [7, 8]. These types are defined by specific
mathematical expressions that reflect different assumptions about
predator behavior and the efficiency of predation. Most
predator–prey models incorporate one of these functional responses
or their modifications.

Recently, [9, 10] proposed a novel functional response model
that replaces the traditional prey density with the square root of prey
density in the context of the Holling type II functional response. This
innovation is particularly pertinent for prey species that exhibit
herding behavior, where only peripheral individuals engage with
predators. This revised functional response more accurately reflects
how the protective effects of group living affect the rate at which
predators encounter and consume the prey. Combining their
functional response functions, we propose the following Leslie-
type model:

dx
dt

� rx 1 − x

K
( ) − α

��
x

√
y

1 + Thα
��
x

√ ,

dy
dt

� qy 1 − y

px
( ), (1)

where α presents the search efficiency of the predator for the prey
and Th denotes the average handing time for each prey.

Before going into details, by substituting

�x � x

K
, �y � αy

r
��
K

√ , �t � rt, a � Thα
��
K

√
, b � q

r
, d � r

pα
��
K

√ ,

into model Eq. 1 and dropping the bars, we obtain

dx
dt

� x 1 − x( ) −
��
x

√
y

1 + a
��
x

√ ,

dy
dt

� by 1 − d
y

x
( ). (2)

Over the past three decades, a considerable amount of research
has been devoted to understanding the effects of harvesting on the
dynamics of predator–prey systems and its implications for the
management of renewable resources. [11] explored a predator–prey
model that includes Michaelis–Menten-type predator harvesting. In
a similar vein, [12] discussed a modified Leslie–Gower model
incorporating Michaelis–Menten-type prey harvesting. [13]
investigated a model where both predator and prey populations
exhibit logistic growth and are subject to nonlinear harvesting. The
impact of proportional harvesting on the dynamic behavior of
predator–prey models was examined by [14, 15]. [16] provided a
detailed bifurcation analysis for a model with Holling-type II
functional response and a constant harvesting rate. [17] also
studied a model with constant prey harvesting. [18, 19] studied
the dynamic behaviors of the predator–prey systems with a Holling-
and Leslie-type or Leslie–Gower model with constant-yield prey
harvesting, revealing a diverse array of bifurcations. [20] and [21]
discussed ratio-dependent predator–prey systems with constant
harvesting for both prey and predators, respectively. [22]
investigated a system where the prey population forms herds as a
defense against predators, and both species are exposed to a constant
harvesting rate.

Inspired by these studies, we introduce the impact of a
constant harvesting rate for the prey into Eq. 2 and obtain the
following results:

dx
dt

� x 1 − x( ) −
��
x

√
y

1 + a
��
x

√ − h,

dy
dt

� by 1 − d
y

x
( ), (3)

where h represents the rate of prey harvesting.
It should be noted that system Eq. 2 is a Leslie-type

predator–prey model that incorporates prey group defense
mechanisms. Furthermore, system Eq. 3 extends this
framework by accounting for the constant harvesting of the
prey within system Eq. 2. To date, the dynamic behaviors of
both systems Eq. 2 and Eq. 3 remain unexplored. Given the
significance of biological resources as a sustainable source for
human utilization and considering the rapid industrialization
and population growth that have led to an inevitable increase in
the utilization of various biological assets, it is imperative to
investigate the impact of harvesting behavior on the population
of both the predator and prey, particularly when prey group
defense is involved, for the sake of maintaining ecological
balance. In this paper, we study the dynamic behaviors of
these two systems. Through rigorous mathematical analysis,
we find that the population of the prey will be sustained
without the effect of prey harvesting. However, due to the
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emergence of prey harvesting, system Eq. 3 exhibits complex
dynamic behaviors and undergoes saddle-node, Hopf, and
Bogdanov–Takens (BT) bifurcations. System Eq. 3 has bi-
stable behavior due to saddle-node bifurcation, and whether
the prey becomes extinct or not depends on the prey
harvesting intensity. Specifically, we determine the maximum
sustainable yield as hMSY � 1

4. Once the prey harvesting rate h
exceeds hMSY, both the prey and predator species face extinction.
This insight underscores the importance of selecting an
appropriate harvesting rate, specifically to ensure the co-
existence of the predator and prey, thereby sustaining
ecological balance.

The structure of this paper is shown in Figure 1. Section 2 discusses
the existence and stability of the equilibria for system Eq. 2. Section 3
delves into the investigation of the equilibria for system Eq. 3, providing
both analytical insights and corroborating numerical results. Section 4
focuses on the bifurcation analysis of system Eq. 3, examining both
saddle-node and Hopf bifurcations. Additionally, this section explores
the Bogdanov–Takens bifurcation within the same system. Concluding
remarks are given in Section 5, summarizing the key findings and
implications of the study.

2 Equilibria of system (3)

2.1 Existence of equilibria

To determine the equilibria of system Eq. 2, we analyze the
prey and predator nullclines, which are given by the
following equations:

x 1 − x( ) −
��
x

√
y

1 + a
��
x

√ � 0,

by 1 − d
y

x
( ) � 0.

From these nullclines, it is evident that system Eq. 2 has a unique
boundary equilibrium at E0

0 � (1, 0). To identify potential positive
equilibria, we solve the following equations:

f x( ) ≔ 1 − x −
��
x

√
d 1 + a

��
x

√( ) � 0,

y ≔
x

d
.

By substituting
��
x

√ � z, we transform the problem of finding
positive solutions to f(x) = 0 into finding positive solutions to g(z) =
adz3 + dz2 + (1 − ad)z − d = 0. Through algebraic analysis, we can
easily determine that g(z) = 0 has a unique positive solution.
Consequently, system Eq. 2 has a unique positive equilibrium
point, denoted as E0* � (x0*, y0*), where y0* � x0*

d , x0* � z20, and z0
is the unique positive root of g(z) = 0. Based on this analysis, we can
formulate the following theorem regarding the number of equilibria
in system Eq. 2.

Theorem 2.1. System Eq. 2 possesses a unique boundary
equilibrium E0

0 � (1, 0) and unique positive equilibrium
denoted by E0* � (x0*, y0*).

2.2 Stability of equilibria

Theorem 2.2. For all positive parameters, system Eq. 2 has a
boundary equilibrium E0

0 and a positive equilibrium E0*.
Moreover, the boundary equilibrium E0

0 is always a hyperbolic
saddle. Furthermore, the positive equilibrium E0* is a sink when
b > b0, a source when b < b0, or a center when b = b0, where
b0 � 1 − z20 − z0

2d(1+az0)2 and z0 is the positive root of g(z) = 0.
Proof. The Jacobian matrix of system Eq. 2 evaluated at E0

0

is given by

J E0
0( ) � −1 − 1

1 + a

0 b

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

It is obvious that the matrix J(E0
0) has a positive eigenvalue b

and a negative eigenvalue −1. Therefore, E0
0 is always a

hyperbolic saddle.

FIGURE 1
Flowchart of studies of the prey–predator system focusing on the harvesting setting in this paper.
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The Jacobian matrix of system Eq. 2 evaluated at E0* is given by

J E0*( ) �
1 − 2x0* −

���
x0*

√

2d 1 + a
���
x0*

√( )2 −
���
x0*

√
1 + a

���
x0*

√

b

d
−b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1 − 2z20 −

z0
2d 1 + az0( )2 − z0

1 + az0

b

d
−b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

According to g(z0) = 0, we can obtain 1 − z20 � z0
d(1+az0). Then,

Det J E0*( )[ ] � bz20 +
bz0

2d 1 + az0( )2 > 0,
Tr J E0*( )[ ] � 1 − z20 −

z0
2d 1 + az0( )2 − b ≜ b0 − b.

Hence, when b > b0, Tr[J(E0*)]< 0, the matrix J(E0*) has two
negative part eigenvalues, and E0* is a sink. When b < b0, then
Tr[J(E0*)]> 0, the matrix J(E0*) has two positive part eigenvalues,
and E0* is a source. When b = b0, then Tr[J(E0*)] � 0, the matrix
J(E0*) has a pair of purely imaginary eigenvalues, and E0* is
a center.

3 Equilibria of system (4)

3.1 Existence of equilibria

This section conducts a qualitative analysis of model Eq. 3. With
the biological context in mind, we focus on examining the dynamics
of system Eq. 3 within the closed first quadrant, denoted as R2

+, in the
(x, y) coordinate plane.

In order to obtain the equilibria of system Eq. 3, we first study
the roots of the following equations:

x 1 − x( ) −
��
x

√
y

1 + a
��
x

√ − h � 0,

by 1 − d
y

x
( ) � 0. (4)

Regarding the count of boundary equilibria for system Eq. 3, we
derived the subsequent theorem.

Theorem 3.1. (i) When h � 1
4, system Eq. 3 admits a unique

boundary equilibrium E0 � (12, 0).
(ii)When 0< h< 1

4, system Eq. 3 admits two boundary equilibria
Ei = (xi, 0) (i = 1, 2), where x1 � 1− ���

1−4h√
2 and x2 � 1+ ���

1−4h√
2 .

Proof. When h exceeds 1
4, _x � x(1 − x) − h −

�
x

√
y

1+a �
x

√ < 0. This
implies that the dynamics of system Eq. 3 within R2

+ are
inherently trivial. Consequently, the prey species faces
extinction, an event that subsequently triggers the extinction
of the predator. It is evident that system Eq. 3 lacks any
equilibrium points within the positive quadrant R2

+.
We next explore the existence of boundary equilibria under the

condition that h≤ 1
4. Specifically, when y = 0 in Eq. 4, we are

confronted with the following equation:

x2 − x − h � 0. (5)

It is straightforward to determine that when h< 1
4, Eq. 5 has two

distinct roots, denoted as x1 and x2. Conversely, when h � 1
4, the

equation yields a unique root, which is 1
2.

Note that

f1 z( ) ≜ adz5 + dz4 + 1 − ad( )z3 − dz2 + adhz + hd,
g1 z( ) ≜ f1′ z( ) � 5adz4 + 4dz3 + 3 1 − ad( )z2 − 2dz + adh,
h1 z( ) ≜ g1′ z( ) � 20adz3 + 12dz2 + 6 1 − ad( )z − 2d.

(6)

Regarding the positive equilibria of system Eq. 3, we have the
following theorem.

Theorem 3.2. (i) When h � h2* and h2* < h1*, system Eq. 3 has a
unique positive equilibrium E3 = (x3, y3).

(ii) When h<min {h1*, h2*}, system (4) has two different positive
equilibria Ei = (xi, yi) (i = 4, 5),

where h1* � 5az41+2z31+z1
a , h2* � z23(2az33+z23+1)

2az3+3 , z3 is the larger positive
root between two positive roots of g1(z) = 0, and z1 is the only positive
root of h1(z) = 0.

Proof. When y ≠ 0, then y � x
d according to Eq. 5, and x is the

positive root of the equation

x 1 − x( ) 1 + a
��
x

√( )d − x
��
x

√ − dh 1 + a
��
x

√( ) � f1 z( ),
where z � ��

x
√

and f1(z) is given in Eq. 6.
Through algebraic analysis, we find that the equation h1(z) = 0

has a unique positive root, denoted as z1. When g1(z1) < 0, which
corresponds to h< h1* ≜

5az41+2z31+z1
a , the equation g1(z) = 0 admits two

distinct positive roots, z2 and z3 (with z2 < z3). If f1(z3) = 0, which
occurs when h � h2* ≜

z23(2az33+z23+1)
2az3+3 , then the equation f1(z) = 0 has a

unique positive root. Consequently, system Eq. 3 admits a unique
positive equilibrium E3 = (x3, y3), where x3 � z23 and y3 � x3

d . If
f1(z3) < 0, corresponding to h< h2*, then the equation f1(z) = 0 has
two distinct positive roots, z4 and z5 (with z2 < z4 < z3 < z5). In this
case, system Eq. 3 has two distinct positive equilibria, E4 = (x4, y4)
and E5 = (x5, y5), where x4 � z24, x5 � z25, y4 � x4

d , and y5 � x5
d .

3.2 Stability of equilibrium E0

Theorem 3.3.When h � 1
4, system Eq. 3 possesses a unique boundary

equilibrium at E0 � (12, 0), which is classified as a saddle-node. This
equilibrium divides a sufficiently small neighborhood into two parts,
separated by two separatrices that approach E0 from above and below.
One part forms a parabolic sector, while the other comprises two
hyperbolic sectors. Additionally, the parabolic sector is situated in the
left half-plane, and the equilibrium E0 acts as a repelling saddle-node.
The dynamics of the system in this scenario are illustrated in the phase
portraits shown in Figure 2A.

Proof. The Jacobian matrix J(E0) of system Eq. 3 evaluated at E0 is

J E0( ) � 0 − 1�
2

√ + a

0 b

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠.

Given that Det[J(E0)] = 0, we can conclude that the equilibrium
(12, 0) is nonhyperbolic, indicating that it is a degenerate equilibrium.
It is evident that the eigenvalues of the Jacobian matrix J(E0) are λ1 =
0 and λ2 = b. To ascertain the stability of E0, we perform a
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transformation by shifting the equilibrium to the origin using the
transformation (X,Y) � (x − 1

2, y). We then expand system Eq. 3 in
a power series up to the second order around the origin. Under this
transformation, system Eq. 3 becomes

_X � − 1�
2

√ + a
Y −X2 −

�
2

√�
2

√ + a( )2 XY + P1 X,Y( ),
_Y � bY − 2bdY2 + Q1 X,Y( ),

where P1(X, Y) and Q1(X, Y) are smooth functions of at least the
third order with respect to (X, Y).

Then, making the transformation

X
Y

( ) � 1 − 1�
2

√ + a

0 b

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ x
y

( ),
and introducing a new time variable τ = bt, for which we retain t to
denote τ for notational simplicity, we obtain

_x � a20x
2 + a11xy + a02y

2 + P2 x, y( ),
_y � y − 2bdy2 + Q2 x, y( ),

where P2(x, y) and Q2(x, y) are smooth functions of at least the third
order with respect to (x, y) and

a20 � −a
5 + 5

�
2

√
a4 + 20a3 + 20

�
2

√
a2 + 20a + 4

�
2

√

a + �
2

√( )5b < 0,

a11 � 2a4 − �
2

√
b + 8( )a3 + 6 4 − b( )a2 − 2

�
2

√
3b − 8( )a + 4 2 − b( )

a + �
2

√( )5b ,

a02 � 2a2b2d a2 + 4
�
2

√
a + 12( ) + a2 a − �

2
√

b + 3
�
2

√( ) + a 16b2d + 6 − 4b( ) + 8b2d − 2
�
2

√
b + 2

�
2

√

a + �
2

√( )5b .

According to Theorem 7.1 from Chapter 2 in [23], the equilibrium
E0 is classified as a saddle-node. This implies that the vicinity of E0 is
bifurcated by two separatrices that approach E0 from above and below.
One region forms a parabolic sector, while the other comprises two
hyperbolic sectors. Additionally, the parabolic sector is situated in the
right half-plane, and E0 acts as a repelling saddle-node.

3.3 Stability of equilibria E1 and E2

Theorem 3.4. When 0< h< 1
4, system Eq. 3 has two different

boundary equilibria E1 and E2. Moreover, E1 is always a hyperbolic
unstable node, and E2 is always a hyperbolic saddle. The
corresponding phase portraits are shown in Figure 2B and Figure 3.

Proof. The Jacobian matrix J(E1) of system Eq. 3 evaluated at
E1 is

J E1( ) �
�����
1 − 4h

√ −
��
x1

√
1 + a

��
x1

√

0 b

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠.

We can obtain that the eigenvalues are λ1 �
�����
1 − 4h

√
> 0 and λ2 =

b > 0. Hence, E1 is a hyperbolic unstable node.
The Jacobian matrix J(E2) of system Eq. 3 evaluated at E2 is

J E2( ) �
− �����

1 − 4h
√ −

��
x2

√
1 + a

��
x2

√

0 b

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠.

It is easy to observe that the eigenvalues are λ1 � − �����
1 − 4h

√
< 0

and λ2 = b > 0. Hence, E2 is a hyperbolic saddle.

3.4 Stability of equilibrium E3

Now, we investigate the stability of equilibrium E3. The Jacobian
matrix J(E3) of system Eq. 3 evaluated at E3 is

J E3( ) �
1 − 2x3 −

��
x3

√
2d 1 + a

��
x3

√( )2 −
��
x3

√
1 + a

��
x3

√

b

d
−b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≜ a10 a01

b10 b01
( ).

Straightforward computation shows that, due to x3 � z23,

FIGURE 2
(A) Phase portrait of system (4) with a=0.4, b= 0.5, d=0.6, and h � 1

4. (B) Phase portrait of system (4) with a=0.4, b=0.5193087015, d= 0.6, and h=
0.04485055324. E1 is an unstable node, E2 is a saddle, and E3 is a cusp.
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Det J E3( )[ ] � b

2d 1 + az3( )2 l z3( ),

where

l z( ) � 4a2dz4 + 8adz3 + 2a + 4d − 2a2d( )z2 + 3 − 4ad( )z − 2d.

Since f(z3) = 0, from Theorem 3.2, we can obtain

h � −z
2
3 adz33 + dz23 + 1 − ad( )z3 − d( )

d 1 + az3( ) .

Substituting g1(z3) in the above equation yields
g1(z3) � z3

1+az3 l(z3). Because z3 is a positive root of g1(z) = 0,
g1(z3) = 0 and l(z3) = 0. Therefore, Det[J(E3)] = 0. Therefore, we
can establish that equilibrium E3 is nonhyperbolic, which means it is
a degenerate equilibrium. To elaborate further, we present the
following theorem:

Theorem3.5. (i) If a10 + b01 ≠ 0 (b ≠ b1* ≜ 1 − 2x3 −
��
x3

√
2d(1+a ��

x3
√ )2),

(i-1) a10 + b01 < 0 (b> b1*), then the parabolic sector is located in
the right half-plane, and E3 is an attracting saddle-node. The
corresponding phase portrait is shown in Figure 3B.

(i-2) a10 + b01 > 0 (b< b1*), then the parabolic sector is located in
the left half-plane, and E3 is a repelling saddle-node. The
corresponding phase portrait is shown in Figure 3A.

(ii) When a10 + b01 � 0 (b � b1*), E3 represents a degenerate
critical point, specifically a cusp. Furthermore, E3 is a cusp of co-
dimension 2 under the condition that d ≠ d1* and d ≠ d2*.However, if
d � d1* or d � d2*, E3 is a cusp of co-dimension at least 3. The
corresponding phase portraits are shown in Figure 2B,
where d1* � −4ax3+(3a−4) ��

x3
√ +1

8x3(1+a ��
x3

√ )3 and d2* � 6
��
x3

√ (1+a ��
x3

√ )+3a ��
x3

√ +1
8(1+a ��

x3
√ )3(2−3x3) .

Proof. Since Tr[J(E3)] = a10 + b01, we know that the eigenvalues
of J(E3) are λ1 = 0 and λ2 = a10 + b01.

Similar to the proof outlined in Theorem 3.3, we perform a
transformation that shifts equilibrium E3 to the origin. We then
expand system Eq. 3 in a power series up to the second order around
this new origin. This transformation yields a simplified system that

_X � a10X + a01Y + a11XY + a20X
2 + P11 X,Y( ),

_Y � b10X + b01Y + b11XY + b20X
2 + +b02Y2 + Q11 X,Y( ), (7)

where P11(X, Y) and Q11(X, Y) are smooth functions of at least the
third order with respect to (X, Y), and

a11 � − 1

2
��
x3

√
1 + a

��
x3

√( )2, a20 � 1 + 3a
��
x3

√
8dx3 1 + a

��
x3

√( )3 − 1,

b11 � 2b
x3
, b20 � − b

dx3
, b02 � −bd

x3
.

When a10 + b01 ≠ 0, J(E3) has one zero eigenvalue and a nonzero
eigenvalue. To further analyze the stability of this equilibrium, we
introduce a transformation that

X
Y

( ) �
1

a10
b10

−a10
a01

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ x
y

( ),

and introducing a new time variable τ1 = (a10 + b01)t, for which we
retain t to denote τ1 for notational simplicity, we obtain

_x � c20x
2 + c11xy + c02y

2 + P21 x, y( ),
_y � y + d20x

2 + d11xy + d02y
2 + Q21 x, y( ),

where P21(x, y) and Q21(x, y) are smooth functions of at least the
third order with respect to (x, y), and

c20 � 1

a10 + b01( )2 a01 a11 − b02( ) + a10a01 a20 − b11( )
b10

− a210a01b20
b210

( ),

FIGURE 3
(A) Phase portrait of system (4) with a= 0.4, b= 0.2, d= 0.6, and h =0.04485055324. E1 is an unstable node, E2 is a saddle, and E3 is a repelling saddle
node. (B) Phase portrait of system (4) with a = 0.4, b = 1.2, d = 0.6, and h = 0.04485055324. E1 is an unstable node, E2 is a saddle, and E3 is an attracting
saddle node.
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c11 � 1

a10 + b01( )2 a11b01 − a10 a11 − 2b02( ) − 2b01b20a210
b210

+
b11a210 + 2a10b01 a20 − 1

2
b11( )

b10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ,

c02 � 1

a10 + b01( )2 a10b11 − a01b20 + a20b01 − a11b10 − a10b10b02
b01

( ),
d20 � 1

a10 + b01( )2 b01b20 + b10 a20 − b11( ) − b210 a11 − b02( )
b01

( ),
d11 � 1

a10 + b01( )2 2a01b20 + b01b11 + a11 − 2b02( )b10 + 2a20 − b11( )a10 − a10a11b10
b01

( ),
d02 � 1

a10 + b01( )2 a10a11 + b01b02 + a01b11 + a210a20 + a10a01b20
b10

( ).

Straightforward computation shows that

c20 � b

a10 + b01( )2 ·
3a2dx

3
2
3 + a

8 + d( ) ��
x3

√ + a3dx2
3 + 3adx3 + 3

8

d
��
x3

√
a + a

��
x3

√( )3 > 0.

Consequently, as shown by Theorem 7.1 from Chapter 2 in
[23], if a10 + b01 ≠ 0, then the equilibrium E3 qualifies as a saddle-
node. Moreover, the characteristics of this saddle-node are
determined as follows: (i) if a10 + b01 > 0, the parabolic sector
is situated in the upper half-plane, and E3 acts as a repelling
saddle-node and (ii) conversely, if a10 + b01 < 0, the parabolic
sector remains in the upper half-plane, but E3 is an attracting
saddle-node.

When a10 + b01 = 0, J(E3) has one zero eigenvalue with two
multiple. Then, making the transformation

X
Y

( ) �
1 1

−a10
a01

0
⎛⎜⎝ ⎞⎟⎠ x

y
( ),

and introducing a new time variable τ2 = −b01t = bt. For
notational simplicity, we retain t to represent τ2, then system
Eq. 7 becomes

_x � y + e02y
2 + P22 x, y( ),

_y � f20x
2 + f11xy + f02y

2 + Q22 x, y( ), (8)

where P22(x, y) and Q22(x, y) are smooth functions of at least the
third order with respect to (x, y) and

e02 � − 1
x3
, f20 � a11

bd
+ a20

b
, f11 � 2a20

b
+ a11
bd

− 4
x3
, f02 � a20

b
+ 1
x3
.

To eliminate y2 terms in system Eq. 8, we make the following
near identity transformation:

x � X + f02

2
X2,

y � Y + f02XY − e02Y
2,

which transforms system Eq. 8 into

_X � Y + P23 X,Y( ), _Y � f20X
2 + f11XY + Q23 X,Y( ),

where P23(X, Y) and Q23(X, Y) are smooth functions of at least the
third order with respect to (X, Y). Therefore, when f20 ≠ 0(d ≠ d1* �
−4ax3+(3a−4) ��

x3
√ +1

8x3(1+a ��
x3

√ )3 ) and f11 ≠ 0 (d ≠ d2* � 6
��
x3

√ (1+a ��
x3

√ )+3a ��
x3

√ +1
8(1+a ��

x3
√ )3(2−3x3) ),

according to the results presented by [24], E3 is a cusp of co-
dimension 2. If f20 � 0 (d � d1*) or f11 = 0 (d � d2*), E3 is a cusp of
co-dimension at least 3.

3.5 Stability of equilibria E4 and E5

Theorem 3.6. When system Eq. 3 exists with two positive
equilibria E4 and E5, E4 is always a hyperbolic saddle.
Furthermore, positive equilibrium E5 is a sink when b > b*, a
source when b < b*, or a center when b = b*, where b* � 1 − 2z25 −

z5
2d(1+az5)2 and z5 is the larger positive root of f1(z) = 0.

Proof. The Jacobian matrix J(E4) of system Eq. 3 evaluated at E4 is

J E4( ) �
1 − 2x4 −

��
x4

√
2d 1 + a

��
x4

√( )2 −
��
x4

√
1 + a

��
x4

√

b

d
b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Straightforward computation shows that, due to x4 � z24,

Det J E4( )[ ] � b

2d 1 + az4( )2 l z4( ),

where

l z( ) � 4a2dz4 + 8adz3 + 2a + 4d − 2a2d( )z2 + 3 − 4ad( )z − 2d.

Since f(z4) = 0, from Theorem 3.2, we obtain

h � −z
2
4 adz34 + dz24 + 1 − ad( )z4 − d( )

d 1 + az4( ) .

Substituting g1(z4) by the above equation, then
g1(z4) � z4

1+az4 l(z4). Because z2 < z4 < z3, z2 and z3 are two
positive roots of g1(z) = 0, then g1(z4) < 0 and l(z4) < 0. Therefore,
Det[J(E4)] < 0. Hence, the matrix J(E4) has a positive eigenvalue and a
negative eigenvalue. Hence, E4 is a hyperbolic saddle.

Similarly, we obtain

Det J E5( )[ ] � b

2d 1 + az5( )2 l z5( )> 0,

since l(z5) > 0 (z5 > z3). Moreover, we can also obtain

Tr J E5( )[ ] � 1 − 2x5 −
��
x5

√
2d 1 + a

��
x5

√( )2 − b ≜ b* − b.

Hence, when b > b*, Tr[J(E5)] < 0, the matrix J(E5) has two
negative part eigenvalues, and E5 is a sink. When b < b*, then Tr
[J(E5)] > 0, the matrix J(E5) has two positive part eigenvalues, and E5
is a source. When b = b*, then Tr[J(E5)] = 0, the matrix J(E5) has a
pair of pure imaginary eigenvalues, and E5 is a center.

4 Bifurcation analysis

In this section, we investigate the bifurcations that take place in
system Eq. 3.

4.1 Saddle-node bifurcation

According to Theorem 3.1, we provided the conditions for the
existence of E1 and E2 based on some restrictions. We obtain that
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SN1 � a, b, d, h( ): h � 1
4
, a> 0, b> 0, d> 0{ }

is a saddle-node bifurcation surface. Consequently, we can deduce
that on the surface SN1, system Eq. 3 possesses a unique equilibrium
E0, which is a saddle-node. As the parameters traverse this surface,
the quantity of boundary equilibria undergoes a transition from zero
to two. Biologically, this bifurcation corresponds to a critical
threshold where the maximum sustainable yield (MSY) is at
hMSY � 1

4. Beyond this threshold (h> 1
4), the prey species faces

extinction, leading to the collapse of the system. However, under
certain initial conditions where 0< h< 1

4, the prey species can avoid
extinction [18, 20]. This phenomenon is shown in the saddle-node
bifurcation diagram, as shown in Figure 4B.

Similar to the above discussion, we obtain

SN2 � a, b, d, h( ): h � h2*, h2* < h1*, a> 0, b> 0, d> 0{ },
according to Theorem 3.2, is another saddle-node bifurcation surface.
When the parameters transition from one side of the surface to the
other, the number of positive equilibria in system Eq. 3 changes from
zero to two. The saddle-node bifurcation is illustrated in Figure 4A.

4.2 Hopf bifurcation

From Theorem 3.6, we know that the positive equilibrium E5 is a
center-type nonhyperbolic equilibrium when b = b* and
h<min {h1*, h2*}. Therefore, system (4) may undergo a Hopf
bifurcation. To proceed, we first confirm the transversality
condition necessary for a Hopf bifurcation,

d

db
Tr J E5( )( )|b�b* � −1 ≠ 0.

Therefore, the stability of the positive equilibrium E5 undergoes
a change as the parameters traverse the specific critical surface

H1 � a, b, d, h( ): b � b*, h<min h1*, h2*{ }, a> 0, d> 0{ }.

To determine the direction of the Hopf bifurcation, we
calculate the first Lyapunov number l1 at the equilibrium
E5 = (x5, y5). Initially, we shift the equilibrium to the origin
using the transformation (�x, �y) � (x − x5, y − y5). Subsequently,
we expand system Eq. 3 into a power series around the origin.
Then, system Eq. 3 becomes

d�x

dt
� α10�x + α01 �y + α20�x

2 + α11�x�y + α30�x
3 + α21�x

2 �y + P21 �x, �y( ),
d�y

dt
� β10�x + β01 �y + β20�x

2 + β11�x�y + β02 �y
2 + β30�x

3 + β21�x
2 �y

+ β12�x�y
2 + Q21 �x, �y( ),

where P21(�x, �y) and Q21(�x, �y) are smooth functions of at least the
fourth order with respect to (�x, �y) and

α10 � 1 − 2x5 −
��
x5

√
2d 1 + a

��
x5

√( )2, α01 � −
��
x5

√
1 + a

��
x5

√ ,

α11 � − 1

2
��
x5

√
1 + a

��
x5

√( )2, α20 � 1 + 3a
��
x5

√
8dx5 1 + a

��
x5

√( )3 − 1,

α30 � −5a
2x5 + 4a

��
x5

√ + 1

16dx
3
2
5 1 + a

��
x5

√( )4, α21 � 1 + 3a
��
x5

√

8x
3
2
5 1 + a

��
x5

√( )3,
β10 � b

d
, β01 � −b, β20 � − b

dx5
, β11 �

2b
x5
, β02 � −bd

x5
,

β30 �
b

dx2
5

, β21 � −2b
x2
5

, β12 � bd

x2
5

.

In accordance with the formula for the first Lyapunov number l1
presented in [24] [p.353], we proceed with the computation

l1 � −3π
2α01Δ

3
2
M,

where

M �α10 α11β10 α11 + β02( ) + α01 β211 + α20β11 + α11β02( )[
−2β10β202 − 2α01 α220 − β20β02( )] − α201 2α20β20 + β11β20( )
+ α01β10 − 2α210( ) β11β02 − α11α20( ) − α210 + α01β10( )
× −3α01α30 + 2α10 α21 + β12 − β21β01( )[ ],

FIGURE 4
(A) Saddle-node bifurcation diagram SN2 with a= 0.4, d= 0.6, and b= 0.5, where H represents the Hopf bifurcation point. The solid curve represents
the stable equilibrium, and the dotted curve stands for the unstable equilibrium. (B) Saddle-node bifurcation diagram SN1 with a=0.4, d=0.6, and b=0.5.
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and

Δ � α10β01 − α01β10 � Det J E5( )[ ]> 0, α01 � −
��
x5

√
1 + a

��
x5

√ < 0.

Consequently, if l1 < 0 (which corresponds to M < 0), then E5
undergoes a supercritical Hopf bifurcation, leading to the emergence of
a stable limit cycle in a small neighborhood of E5 as the parameters
across the surfaceH1. Conversely, if l1 > 0 (orM > 0), a subcritical Hopf
bifurcation occurs, resulting in an unstable limit cycle appearing in the
vicinity of E5 as the parameters across the surface H1.

Given the complexity of l1, which does not readily reveal
information about its sign, we turn to a numerical example for
further clarification.

Fixing a = 0.4, d = 0.6, and h = 0.04, we obtain b* = 0.3960214438
andM = 0.537259605 and then l1 > 0, which implies that an unstable
limit cycle is created around E5 = (0.1742665424, 00.2904442373).
For b = 0.41 > b*, we obtainM = 0.652746120 and then l1 > 0, which
implies that an unstable limit cycle is created around E5, where E5 is
asymptotically stable (see Figure 5B). When b = 0.425, a collision
occurs between the periodic orbit and saddle E4, resulting in the
formation of a homoclinic orbit. SinceM = 0.791862704, then l1 > 0,
which means that periodic orbits remain unstable, as shown
in Figure 5A.

4.3 Bogdanov–Takens bifurcation

As presented in Theorem 3.5, the positive equilibrium E3 is
identified as a cusp of co-dimension 2. This classification holds
under certain conditions where a10 + b01 = 0, h � h2*, f20 ≠ 0, and f11
≠ 0. Consequently, system Eq. 3 may undergo a Bogdanov–Takens
bifurcation in the immediate vicinity of E3.

Theorem4.1.When h and d are selected as bifurcation parameters,
system Eq. 3 is poised to experience a Bogdanov–Takens bifurcation
in a neighborhood of E3 as (h, d) varies near (hBT, dBT) for a10 + b01 =
0, h � h2*, f20 ≠ 0, and f11 ≠ 0, where (hBT, dBT) represents the
threshold value of bifurcation parameters such as
Det(J(E3))|(h,d)�(hBT,dBT) � 0 and Tr(J(E3))|(h,d)�(hBT,dBT) � 0.

Proof. To obtain the expressions for the saddle-node, Hopf, and
homoclinic bifurcation curves, we derive a normal form for the
Bogdanov–Takens bifurcation. This derivation uses the techniques
outlined by [11, 18, 25].

Let us examine a perturbation of the parameters h and d
centered around their BT bifurcation values. We represent this
perturbation as h = hBT + u and d = dBT + v, where u and v are
small deviations from the critical values hBT and dBT,
respectively. Consider

dx

dt
� x 1 − x( ) −

��
x

√
y

1 + a
��
x

√ − hBT − u,

dy

dt
� by 1 − dBT + v( )y

x
( ). (9)

We begin by translating the equilibrium point E3 = (x3, y3) to the
origin using the transformations X = x − x3 and Y = y − y3.
Subsequently, we expand system Eq. 9 as a power series centered
at the origin. Then, we have

_X � m00 +m10X +m01Y +m11XY +m20X
2 + P1 X,Y( ),

_Y � n00 + n10X + n01Y + n11XY + n20X
2 + n02Y

2 + Q1 X,Y( ),
(10)

where P1(X, Y) and Q1(X, Y) are smooth functions of at least the
third order with respect to (X, Y), whose coefficients depend
smoothly on u and v, and where

FIGURE 5
(A) Phase portrait of system (4) with a = 0.4, b = 0.425, d = 0.6, and h = 0.04. E1 is an unstable node, E2 is a saddle, E4 is a saddle, and E5 is a sink. It
indicates that the periodic orbit undergoes a collisionwith the saddle E4. (B) Phase portrait of system (4) with a=0.4, b=0.41, d=0.6, and h=0.04. E1 is an
unstable node, E2 is a saddle, E4 is a saddle, and E5 is a sink. An unstable limit cycle, depicted as a black curve, surrounds the equilibrium point E5.
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m00 � −u, m10 � 1 − 2x3 −
��
x3

√
2dBT 1 + a

��
x3

√( )2, m01 � −
��
x3

√
1 + a

��
x3

√ ,

n00 � −bvx3

d2
BT

, m11 � − 1

2
��
x3

√
1 + a

��
x3

√( )2,
m20 � 1 + 3a

��
x3

√
8dBTx3 1 + a

��
x3

√( )3 − 1, n02 � −b dBT + v( )
x3

,

n10 � b dBT + v( )
d2
BT

, n01 � −b dBT + 2v( )
dBT

, n11 � 2b dBT + v( )
x3dBT

,

n20 � −b dBT + v( )
x3d

2
BT

.

Let x = X and y = m00 +m10X + m01Y +m11XY +m20X
2 + P1(X,

Y), then system Eq. 10 can be written as

_x � y,
_y � l00 + l10x + l01y + l11xy + l20x

2 + l02y
2 + Q2 x, y( ), (11)

where Q2(x, y) are smooth functions of at least the third order with
respect to (x, y), whose coefficients vary smoothly on u and v, and

l00 � m2
00n02 −m00m01n01 +m2

01n00
m01

,

l01 � m10 + n01 − m00 2n02 +m11( )
m01

,

l10 � m01n10 −m00n11 −m10n01 +m11n00

+ m00n02 2m10m01 −m00m11( )
m2

01

,

l20 � m11n10 −m10n11 +m01n20 + 2m00m20 +m2
10( )n02

m01

+ m00m11n02 m00m11 − 2m01m10( )
m3

01

,

l11 � 2m20 + n11 + m00m11 m11 + 2n02( )
m2

01

− m10 m11 + 2n02( )
m01

, l02 � m11 + n02
m01

.

By introducing a new variable τ through the relation dt = (1 −
l02x)dτ and subsequently rewriting τ back as t, we can recast system
Eq. 11 in a new form:

_x � y 1 − l02x( ),

_y � 1 − l02x( ) l00 + l10x + l01y + l11xy + l20x
2 + l02y

2 + Q2 x, y( )( ).
(12)

LetX = x and Y = y(1 − l02x), then system Eq. 12 can be written as

_X � Y,
_Y � d00 + d10X + d01Y + d11XY + d20X

2 + Q3 X,Y( ), (13)

where Q3(X, Y) are smooth functions of at least the third order
with respect to (X, Y), whose coefficients depend smoothly on u
and v, and

d00 � l00, d10 � l10 − 2l00l02, d01 � l01, d11 � l11 − l01l02,
d20 � l20 − 2l10l02 + l00l

2
02.

Note that d20 is very complex, and we cannot determine the sign
of d20 when u and v are small. Hence, we consider two cases: C-1:
d20 > 0; C-2: d20 < 0.

C-1: If d20 > 0 for small values of u and v, we perform the
following change of variables: x = X, y � Y��

d20
√ , and τ � ���

d20
√

t.
Additionally, we retain variable t to represent τ. With these
transformations, system Eq. 13 is transformed into a new form

_x � y,
_y � h00 + h10x + h01y + h11xy + x2 + Q4 x, y( ), (14)

where Q4(x, y) are smooth of at least the third order with respect to
(x, y), whose coefficients depend smoothly on u and v, and

h00 � d00

d20
, h10 � d10

d20
, h01 � d01���

d20

√ , h11 � d11���
d20

√ .

Let X � x + h10
2 and Y = y, then system Eq. 14 can be written as

_X � Y,
_Y � g00 + g01Y + g11XY +X2 + Q5 X,Y( ), (15)

where Q5(X, Y) are smooth of at least the third order with respect to
(X, Y), whose coefficients depend smoothly on u and v, and

g00 � h00 − 1
4
h210, g01 � h01 − 1

2
h10h11, g11 � h11.

Suppose d11 ≠ 0, then g11 = h11 ≠ 0. Making the change of
variables x � g2

11X, y � g3
11Y, and τ � 1

g11
t, we then obtain from

system Eq. 15 that

_x � y,
_y � μ1 + μ2y + x2 + xy + Q6 x, y( ),

where Q6(x, y) are smooth of at least the third order with respect to
(x, y), whose coefficients depend smoothly on u and v, and

μ1 � g00g
4
11, μ2 � g01g11. (16)

C-2: If d20 < 0 for small u and v, we perform the following change
of variables: x′ = X, y′ � Y���

−d20
√ , and τ′ � ����−d20

√
t. Additionally, we

retain variable t to represent τ′. With these transformations, system
Eq. 12 is transformed into a new form:

_x′ � y′,
_y′ � h00′ + h10′ x′ + h01′ y′ + h11′ x′y′ + x′2 + Q5′ x′, y′, ε( ), (17)

where Q5′(x′, y′) are smooth of at least the third order with
respect to (x′, y′), whose coefficients depend smoothly on u and
v, and

h00′ � −d00

d20
, h10′ � −d10

d20
, h01′ � d01����−d20

√ , h11′ � d11����−d20

√ .

LetX′ � x′ − h10′
2 and Y′ = y′, then system Eq. 17 can be written as

_X′ � Y′,
_Y′ � g00′ + g01′ Y′ + g11′ X′Y′ +X′2 + Q6′ X′, Y′( ), (18)

where Q6′(X′, Y′) are smooth of at least the third order with respect
to (X′, Y′), whose coefficients depend smoothly on u and v, and

g00′ � h00′ + 1
4
h′ 2
10, g01′ � h01′ + 1

2
h10′ h11′ , g11′ � h11′ .

Suppose d11 ≠ 0, g11′ � h11′ ≠ 0. Making x′ � −g′ 2
11X′,

y′ � g′ 3
11Y′, and τ′ � − 1

g11
t, we obtain the versal unfolding of

system Eq. 18:
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_x′ � y′,
_y′ � μ1′ + μ2′y′ + x′2 + x′y′ + Q7′ x′, y′( ),

where Q7′(x′, y′) are smooth of at least the third order with respect
to (x′, y′), whose coefficients depend smoothly on u and v, and

μ1′ � −g00′ g′ 4
11, μ2′ � −g01′ g11′ . (19)

To streamline the analysis, we retain the notation μ1 and μ2 for the
transformed parameters μ1′ and μ2′, as defined in Equation Eq. 19. This
approach reduces the number of cases wemust consider. If the Jacobian
determinant |∂(μ1 ,μ2)∂(u,v) |(u,v)�(0,0) is non-zero, then the parameter
transformations described by Eqs 16 and 19 are homeomorphisms
in a small neighborhood of the origin. Consequently, μ1 and μ2 can be
treated as independent parameters.

Drawing upon the findings obtained by [24] and as supported by
[5, 11, 18, 26], we establish that system Eq. 9 experiences a
Bogdanov–Takens bifurcation when the parameters (u, v) are in
a small neighborhood of the origin. The local representatisons of the
bifurcation curves, derived from the analysis, are as follows (“+” for
d20 > 0, “-” for d20 < 0):

(1) The saddle-node bifurcation curve SN = {(u, v): μ1 = 0, μ2 ≠ 0};
(2) The Hopf bifurcation curveH � {(u, v): μ2 � ±

���−μ1√
, μ1 < 0};

(3) The homoclinic bifurcation curve HL � {(u, v): μ2 �
± 5

7
���−μ1√

, μ1 < 0}.

Subsequently, we numerically illustrate the locations of the
bifurcation curves and the dynamics of the system at the
Bogdanov–Takens bifurcation point. This is achieved by selecting
specific values for the dimensionless parameters. We choose a = 0.4
and dBT = 0.6, then hBT = 0.04485055333 and b = 0.5193087015. Since
d20 = 1729.213892u2 − 1.159964346–9.646351129v − 31.60626034u −
319.1508390uv and d11 = (22.77081918–346.0816837u)v2 +
(19.64233118–642.5091021u)v − 284.7831954u − 2.673388394, then
d20 < 0 and d11 ≠ 0 for u ∈ (−0.01, 0.01) and v ∈ (−0.1, 0.1), so we
compute Eq. 19 and get |∂(μ1 ,μ2)∂(u,v) |(u,v)�(0,0) � −14.3295339671392 ≠ 0.
Hence, the parameter transformation Eq. 19 is nonsingular. The local

representations of the bifurcation curves up to second-order
approximations are as follows:

(1) The saddle-node bifurcation curve SN � (u, v):{
μ2 ≠ 0,−1.86375448162305v + 16.9957334575794u
+ 4614.59435174402u2 − 1401.21892975004uv
+ 98.3266830247282v2};

(2) The Hopf bifurcation curve H � (u, v): μ1 < 0,{
− 1.86375448162305v + 16.9957334575794u
+ 4784.69223204402u2 − 1460.51719203213uv
+ 103.494713194792v2};

(3) The homoclinic bifurcation curve HL � (u, v):{
μ1 < 0,−0.950895143738617v + 8.67129258088447u
+ 2524.48275351690u2 − 774.205879496251uv
+ 55.3347051835753v2}.

These bifurcation curves H, HL, and SN divide the small
neighborhood of the origin in the parameter plane (u, v) into four
regions. The bifurcation diagram of system Eq. 9 is given in
Figure 6A, from which we obtain the following observations:

(a) When (u, v) = (0, 0), the unique positive equilibrium is a cusp
of co-dimension 2.

(b) When the parameters are situated within region I, the system
lacks a positive equilibrium, as shown in Figure 6B. This
absence implies that the prey population is inclined toward
extinction under nearly all initial conditions.

(c) When the parameters are positioned along the curve SN, the
system exhibits a positive equilibrium that is characterized as a
saddle node.

(d) In region II, system Eq. 9 possesses two positive equilibria.
Specifically, E4 is identified as a saddle, while E5 acts as a
source, as shown in Figure 7A.

(e) Upon crossing curve H and entering region III, the system
undergoes a subcritical Hopf bifurcation, resulting in the
emergence of an unstable limit cycle. This phenomenon is
depicted in Figure 7B.

FIGURE 6
(A) Bifurcation diagram of system (26). (B) No positive equilibrium when (u, v) = (−0.01, − 0.1) lies in region I, and system (26) has two boundary
equilibria E1 and E2.
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(f) When the parameters are selected along the curve HL, an
unstable homoclinic cycle encircles a sink, while the other
equilibrium remains a saddle. This configuration is illustrated
in Figure 8A.

(g) In region IV, the system is characterized by the presence of a
sink and a saddle, as depicted in Figure 8B.

5 Conclusion

In this paper, we explore a Leslie-type predator–prey system
incorporating prey harvesting. Initially, we examine system Eq. 2
without prey harvesting, establishing that it possesses a unique
boundary equilibrium and a unique positive equilibrium. Theorem

2.2 elucidates the stability of both boundary equilibrium and positive
equilibrium.Notably, the boundary equilibrium is consistently unstable,
indicating that neither the prey nor the predator will ever become
extinct without the influence of prey harvesting.

Furthermore, we study the dynamic behaviors of system Eq. 3 to
analyze the effect of prey harvesting on the prey and predator.
Hence, we first analyze the existence and stability of equilibria for
system Eq. 3 in Section 3. As shown in Theorem 3.1, we identify the
maximum sustainable yield as hMSY � 1

4. Beyond this threshold
(h> 1

4), both the prey and predator species face extinction. Our
investigation into the stability of the positive equilibria reveals that
the coexistence of both species is possible if b> b1* and the harvesting
rate h � h2* is between h1* and hMSY, or if bPb* and h is less than the
minimum of h1* and h2*. Otherwise, either only the prey survives or
both species become extinct. This insight underscores the
importance of selecting an appropriate harvesting rate,

FIGURE 7
(A) E5 is a source and E4 is a saddle when (u, v) = (−0.01, − 0.09) lies in region II. (B) E5 is a sink and E4 is a saddle when (u, v) = (−0.01, − 0.087) lies in
region III, and an unstable limit cycle encloses E5.

FIGURE 8
(A) E5 is a sink and E4 is a saddle when (u, v) = (−0.01, − 0.0854) lies on curve HL and an unstable homoclinic orbit encloses E5. (B) E5 is a sink and E4 is a
saddle when (u, v) = (−0.01, − 0.08) lies in region IV.
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specifically one that is below a critical threshold and less than hMSY

to ensure the coexistence of the predator and prey, thereby
sustaining ecological balance.

In Section 4, we chose the constant harvesting rate h as one of the
bifurcation parameters to perform the bifurcation analysis of system
Eq. 3. We find that system Eq. 3 has complex dynamic behavior and
undergoes Hopf bifurcation, Bogdanov–Takens bifurcation of co-
dimension 2, and saddle-node bifurcation. Among them, the
emergence of saddle-node bifurcation means that system Eq. 3
has bi-stable behavior, and the prey may face extinction or
sustain, which depends on the harvesting rate. For the Hopf
bifurcation, we calculate the first Lyapunov number to ascertain
the direction of the Hopf bifurcation, which indicates whether a
stable or unstable limit cycle emerges in the vicinity of the
equilibrium E5. By selecting two parameters from system Eq. 3 as
bifurcation parameters, we demonstrate that the system undergoes a
Bogdanov–Takens bifurcation of co-dimension 2. This conclusion is
drawn from our analysis of the universal unfolding near the cusp.

In conclusion, we constructed and provided a detailed
dynamic analysis of a Leslie-type predator–prey system that
incorporates prey harvesting. Our findings reveal that prey
harvesting introduces complex dynamic behaviors into the
system, potentially leading to a series of bifurcations.
Furthermore, if the harvesting intensity exceeds a critical
threshold, the prey may face extinction. These insights offer
valuable contributions to the understanding of predator–prey
systems and ecological balance. However, it is worth noting that
this paper focuses primarily on qualitative analysis and lacks
empirical data to support our theoretical findings. Despite this,
significant algorithms have been developed to gather and analyze
real-world data. We intend to leverage these algorithms to
quantitatively assess the impact of harvesting using the
methodologies introduced by [27, 28]. Additionally, this study
does not consider the removal of both prey and predator species,
and human activity can significantly impact ecosystems, as
highlighted by [29]. Drawing inspiration from [30–36], our
model can be extended to eco-epidemic systems and
reaction–diffusion systems. These areas represent promising
directions for future research in this field.
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