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In this paper, we investigate a Leslie-type predator–prey model that incorporates prey harvesting and group defense, leading to a modified functional response. Our analysis focuses on the existence and stability of the system’s equilibria, which are essential for the coexistence of predator and prey populations and the maintenance of ecological balance. We identify the maximum sustainable yield, a critical factor for achieving this balance. Through a thorough examination of positive equilibrium stability, we determine the conditions and initial values that promote the survival of both species. We delve into the system’s dynamics by analyzing saddle-node and Hopf bifurcations, which are crucial for understanding the system transitions between various states. To evaluate the stability of the Hopf bifurcation, we calculate the first Lyapunov exponent and offer a quantitative assessment of the system’s stability. Furthermore, we explore the Bogdanov–Takens (BT) bifurcation, a co-dimension 2 scenario, by employing a universal unfolding technique near the cusp point. This method simplifies the complex dynamics and reveals the conditions that trigger such bifurcations. To substantiate our theoretical findings, we conduct numerical simulations, which serve as a practical validation of the model predictions. These simulations not only confirm the theoretical results but also showcase the potential of the model for predicting real-world ecological scenarios. This in-depth analysis contributes to a nuanced understanding of the dynamics within predator–prey interactions and advances the field of ecological modeling.
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1 INTRODUCTION
Since the pioneering work of Lotka and Volterra, who introduced a pair of differential equations to describe predator–prey dynamics, predator–prey models have attracted considerable interest from both mathematicians and biologists due to their widespread applicability [1]. Predominantly, predator–prey models have been developed around two main scenarios: (i) the growth function of the predator is directly proportional to its predation function, capturing the functional response of predators to prey availability, and (ii) the growth function of the predator is decoupled from its predation function, suggesting a more intricate relationship between the predator and prey.
Moreover, the growth term of the predator in these models is often portrayed as a function that depends not only on prey density but also on the predator-to-prey ratio, adding another dimension of complexity to the interactions. Among these diverse models, the Leslie-type model has emerged as a particularly influential paradigm. Its sophisticated treatment of predator–prey interactions has solidified its role as a fundamental framework in ecological studies, aiding in the comprehension of the delicate equilibrium within ecosystems.
[2] proposed a Leslie-type model to describe the relationship between predators and their prey:
[image: image]
where x and y denote the population densities of the prey and predators, respectively. In the absence of predators, the growth of prey populations is commonly modeled using a logistic growth function, characterized by an intrinsic growth rate r and an environmental carrying capacity K. This model assumes that population growth is limited by the availability of resources as the population size approaches the carrying capacity. The functional response, represented by f(x), describes how the rate of prey consumption by predators varies with the density of the prey population. In contrast, the growth rate of the predator is a Leslie-type growth function expressed as [image: image], which depends on both the prey density and the predator density. Here, q denotes the intrinsic per capita growth rate of the predator in the presence of abundant prey, p is a scaling factor that relates the carrying capacity of the predator to that of the prey, and the term [image: image] reflects the diminishing growth rate as the predator-to-prey ratio approaches one, indicating prey scarcity. This growth function is particularly useful for simulating systems where the success of the predator in capturing the prey is influenced not only by prey abundance but also by the density of the predator population. It captures the competitive pressures and the complex dynamics of resource allocation within an ecosystem, offering a more nuanced understanding of predator–prey interactions. The functional response function f(x) is typically categorized into four classical types: Holling type I [3], Holling type II [4], Holling type III [5, 6], and Holling type IV [7, 8]. These types are defined by specific mathematical expressions that reflect different assumptions about predator behavior and the efficiency of predation. Most predator–prey models incorporate one of these functional responses or their modifications.
Recently, [9, 10] proposed a novel functional response model that replaces the traditional prey density with the square root of prey density in the context of the Holling type II functional response. This innovation is particularly pertinent for prey species that exhibit herding behavior, where only peripheral individuals engage with predators. This revised functional response more accurately reflects how the protective effects of group living affect the rate at which predators encounter and consume the prey. Combining their functional response functions, we propose the following Leslie-type model:
[image: image]
where α presents the search efficiency of the predator for the prey and Th denotes the average handing time for each prey.
Before going into details, by substituting
[image: image]
into model Eq. 1 and dropping the bars, we obtain
[image: image]
Over the past three decades, a considerable amount of research has been devoted to understanding the effects of harvesting on the dynamics of predator–prey systems and its implications for the management of renewable resources. [11] explored a predator–prey model that includes Michaelis–Menten-type predator harvesting. In a similar vein, [12] discussed a modified Leslie–Gower model incorporating Michaelis–Menten-type prey harvesting. [13] investigated a model where both predator and prey populations exhibit logistic growth and are subject to nonlinear harvesting. The impact of proportional harvesting on the dynamic behavior of predator–prey models was examined by [14, 15]. [16] provided a detailed bifurcation analysis for a model with Holling-type II functional response and a constant harvesting rate. [17] also studied a model with constant prey harvesting. [18, 19] studied the dynamic behaviors of the predator–prey systems with a Holling- and Leslie-type or Leslie–Gower model with constant-yield prey harvesting, revealing a diverse array of bifurcations. [20] and [21] discussed ratio-dependent predator–prey systems with constant harvesting for both prey and predators, respectively. [22] investigated a system where the prey population forms herds as a defense against predators, and both species are exposed to a constant harvesting rate.
Inspired by these studies, we introduce the impact of a constant harvesting rate for the prey into Eq. 2 and obtain the following results:
[image: image]
where h represents the rate of prey harvesting.
It should be noted that system Eq. 2 is a Leslie-type predator–prey model that incorporates prey group defense mechanisms. Furthermore, system Eq. 3 extends this framework by accounting for the constant harvesting of the prey within system Eq. 2. To date, the dynamic behaviors of both systems Eq. 2 and Eq. 3 remain unexplored. Given the significance of biological resources as a sustainable source for human utilization and considering the rapid industrialization and population growth that have led to an inevitable increase in the utilization of various biological assets, it is imperative to investigate the impact of harvesting behavior on the population of both the predator and prey, particularly when prey group defense is involved, for the sake of maintaining ecological balance. In this paper, we study the dynamic behaviors of these two systems. Through rigorous mathematical analysis, we find that the population of the prey will be sustained without the effect of prey harvesting. However, due to the emergence of prey harvesting, system Eq. 3 exhibits complex dynamic behaviors and undergoes saddle-node, Hopf, and Bogdanov–Takens (BT) bifurcations. System Eq. 3 has bi-stable behavior due to saddle-node bifurcation, and whether the prey becomes extinct or not depends on the prey harvesting intensity. Specifically, we determine the maximum sustainable yield as [image: image]. Once the prey harvesting rate h exceeds hMSY, both the prey and predator species face extinction. This insight underscores the importance of selecting an appropriate harvesting rate, specifically to ensure the co-existence of the predator and prey, thereby sustaining ecological balance.
The structure of this paper is shown in Figure 1. Section 2 discusses the existence and stability of the equilibria for system Eq. 2. Section 3 delves into the investigation of the equilibria for system Eq. 3, providing both analytical insights and corroborating numerical results. Section 4 focuses on the bifurcation analysis of system Eq. 3, examining both saddle-node and Hopf bifurcations. Additionally, this section explores the Bogdanov–Takens bifurcation within the same system. Concluding remarks are given in Section 5, summarizing the key findings and implications of the study.
[image: Figure 1]FIGURE 1 | Flowchart of studies of the prey–predator system focusing on the harvesting setting in this paper.
2 EQUILIBRIA OF SYSTEM (3)
2.1 Existence of equilibria
To determine the equilibria of system Eq. 2, we analyze the prey and predator nullclines, which are given by the following equations:
[image: image]
From these nullclines, it is evident that system Eq. 2 has a unique boundary equilibrium at [image: image]. To identify potential positive equilibria, we solve the following equations:
[image: image]
By substituting [image: image], we transform the problem of finding positive solutions to f(x) = 0 into finding positive solutions to g(z) = adz3 + dz2 + (1 − ad)z − d = 0. Through algebraic analysis, we can easily determine that g(z) = 0 has a unique positive solution. Consequently, system Eq. 2 has a unique positive equilibrium point, denoted as [image: image], where [image: image], [image: image], and z0 is the unique positive root of g(z) = 0. Based on this analysis, we can formulate the following theorem regarding the number of equilibria in system Eq. 2.
Theorem 2.1. System Eq. 2 possesses a unique boundary equilibrium [image: image] and unique positive equilibrium denoted by [image: image].
2.2 Stability of equilibria
Theorem 2.2. For all positive parameters, system Eq. 2 has a boundary equilibrium [image: image] and a positive equilibrium [image: image]. Moreover, the boundary equilibrium [image: image] is always a hyperbolic saddle. Furthermore, the positive equilibrium [image: image] is a sink when b > b0, a source when b < b0, or a center when b = b0, where [image: image] and z0 is the positive root of g(z) = 0.
Proof. The Jacobian matrix of system Eq. 2 evaluated at [image: image] is given by
[image: image]
It is obvious that the matrix [image: image] has a positive eigenvalue b and a negative eigenvalue −1. Therefore, [image: image] is always a hyperbolic saddle.
The Jacobian matrix of system Eq. 2 evaluated at [image: image] is given by
[image: image]
According to g(z0) = 0, we can obtain [image: image]. Then,
[image: image]
Hence, when b > b0, [image: image], the matrix [image: image] has two negative part eigenvalues, and [image: image] is a sink. When b < b0, then [image: image], the matrix [image: image] has two positive part eigenvalues, and [image: image] is a source. When b = b0, then [image: image], the matrix [image: image] has a pair of purely imaginary eigenvalues, and [image: image] is a center.
3 EQUILIBRIA OF SYSTEM (4)
3.1 Existence of equilibria
This section conducts a qualitative analysis of model Eq. 3. With the biological context in mind, we focus on examining the dynamics of system Eq. 3 within the closed first quadrant, denoted as [image: image], in the (x, y) coordinate plane.
In order to obtain the equilibria of system Eq. 3, we first study the roots of the following equations:
[image: image]
Regarding the count of boundary equilibria for system Eq. 3, we derived the subsequent theorem.
Theorem 3.1. (i) When [image: image], system Eq. 3 admits a unique boundary equilibrium [image: image].
(ii) When [image: image], system Eq. 3 admits two boundary equilibria Ei = (xi, 0) (i = 1, 2), where [image: image] and [image: image].
Proof. When h exceeds [image: image], [image: image]. This implies that the dynamics of system Eq. 3 within [image: image] are inherently trivial. Consequently, the prey species faces extinction, an event that subsequently triggers the extinction of the predator. It is evident that system Eq. 3 lacks any equilibrium points within the positive quadrant [image: image].
We next explore the existence of boundary equilibria under the condition that [image: image]. Specifically, when y = 0 in Eq. 4, we are confronted with the following equation:
[image: image]
It is straightforward to determine that when [image: image], Eq. 5 has two distinct roots, denoted as x1 and x2. Conversely, when [image: image], the equation yields a unique root, which is [image: image].
Note that
[image: image]
Regarding the positive equilibria of system Eq. 3, we have the following theorem.
Theorem 3.2. (i) When [image: image] and [image: image], system Eq. 3 has a unique positive equilibrium E3 = (x3, y3).
(ii) When [image: image], system (4) has two different positive equilibria Ei = (xi, yi) (i = 4, 5),
where [image: image], [image: image], z3 is the larger positive root between two positive roots of g1(z) = 0, and z1 is the only positive root of h1(z) = 0.
Proof. When y ≠ 0, then [image: image] according to Eq. 5, and x is the positive root of the equation
[image: image]
where [image: image] and f1(z) is given in Eq. 6.
Through algebraic analysis, we find that the equation h1(z) = 0 has a unique positive root, denoted as z1. When g1(z1) < 0, which corresponds to [image: image], the equation g1(z) = 0 admits two distinct positive roots, z2 and z3 (with z2 < z3). If f1(z3) = 0, which occurs when [image: image], then the equation f1(z) = 0 has a unique positive root. Consequently, system Eq. 3 admits a unique positive equilibrium E3 = (x3, y3), where [image: image] and [image: image]. If f1(z3) < 0, corresponding to [image: image], then the equation f1(z) = 0 has two distinct positive roots, z4 and z5 (with z2 < z4 < z3 < z5). In this case, system Eq. 3 has two distinct positive equilibria, E4 = (x4, y4) and E5 = (x5, y5), where [image: image], [image: image], [image: image], and [image: image].
3.2 Stability of equilibrium E0
Theorem 3.3. When [image: image], system Eq. 3 possesses a unique boundary equilibrium at [image: image], which is classified as a saddle-node. This equilibrium divides a sufficiently small neighborhood into two parts, separated by two separatrices that approach E0 from above and below. One part forms a parabolic sector, while the other comprises two hyperbolic sectors. Additionally, the parabolic sector is situated in the left half-plane, and the equilibrium E0 acts as a repelling saddle-node. The dynamics of the system in this scenario are illustrated in the phase portraits shown in Figure 2A.
[image: Figure 2]FIGURE 2 | (A) Phase portrait of system (4) with a = 0.4, b = 0.5, d = 0.6, and [image: image]. (B) Phase portrait of system (4) with a = 0.4, b = 0.5193087015, d = 0.6, and h = 0.04485055324. E1 is an unstable node, E2 is a saddle, and E3 is a cusp.
Proof. The Jacobian matrix J(E0) of system Eq. 3 evaluated at E0 is
[image: image]
Given that Det[J(E0)] = 0, we can conclude that the equilibrium [image: image] is nonhyperbolic, indicating that it is a degenerate equilibrium. It is evident that the eigenvalues of the Jacobian matrix J(E0) are λ1 = 0 and λ2 = b. To ascertain the stability of E0, we perform a transformation by shifting the equilibrium to the origin using the transformation [image: image]. We then expand system Eq. 3 in a power series up to the second order around the origin. Under this transformation, system Eq. 3 becomes
[image: image]
where P1(X, Y) and Q1(X, Y) are smooth functions of at least the third order with respect to (X, Y).
Then, making the transformation
[image: image]
and introducing a new time variable τ = bt, for which we retain t to denote τ for notational simplicity, we obtain
[image: image]
where P2(x, y) and Q2(x, y) are smooth functions of at least the third order with respect to (x, y) and
[image: image]
According to Theorem 7.1 from Chapter 2 in [23], the equilibrium E0 is classified as a saddle-node. This implies that the vicinity of E0 is bifurcated by two separatrices that approach E0 from above and below. One region forms a parabolic sector, while the other comprises two hyperbolic sectors. Additionally, the parabolic sector is situated in the right half-plane, and E0 acts as a repelling saddle-node.
3.3 Stability of equilibria E1 and E2
Theorem 3.4. When [image: image], system Eq. 3 has two different boundary equilibria E1 and E2. Moreover, E1 is always a hyperbolic unstable node, and E2 is always a hyperbolic saddle. The corresponding phase portraits are shown in Figure 2B and Figure 3.
[image: Figure 3]FIGURE 3 | (A) Phase portrait of system (4) with a = 0.4, b = 0.2, d = 0.6, and h = 0.04485055324. E1 is an unstable node, E2 is a saddle, and E3 is a repelling saddle node. (B) Phase portrait of system (4) with a = 0.4, b = 1.2, d = 0.6, and h = 0.04485055324. E1 is an unstable node, E2 is a saddle, and E3 is an attracting saddle node.
Proof. The Jacobian matrix J(E1) of system Eq. 3 evaluated at E1 is
[image: image]
We can obtain that the eigenvalues are [image: image] and λ2 = b > 0. Hence, E1 is a hyperbolic unstable node.
The Jacobian matrix J(E2) of system Eq. 3 evaluated at E2 is
[image: image]
It is easy to observe that the eigenvalues are [image: image] and λ2 = b > 0. Hence, E2 is a hyperbolic saddle.
3.4 Stability of equilibrium E3
Now, we investigate the stability of equilibrium E3. The Jacobian matrix J(E3) of system Eq. 3 evaluated at E3 is
[image: image]
Straightforward computation shows that, due to [image: image],
[image: image]
where
[image: image]
Since f(z3) = 0, from Theorem 3.2, we can obtain
[image: image]
Substituting g1(z3) in the above equation yields [image: image]. Because z3 is a positive root of g1(z) = 0, g1(z3) = 0 and l(z3) = 0. Therefore, Det[J(E3)] = 0. Therefore, we can establish that equilibrium E3 is nonhyperbolic, which means it is a degenerate equilibrium. To elaborate further, we present the following theorem:
Theorem 3.5. (i) If [image: image],
(i-1) [image: image], then the parabolic sector is located in the right half-plane, and E3 is an attracting saddle-node. The corresponding phase portrait is shown in Figure 3B.
(i-2) [image: image], then the parabolic sector is located in the left half-plane, and E3 is a repelling saddle-node. The corresponding phase portrait is shown in Figure 3A.
(ii) When [image: image], E3 represents a degenerate critical point, specifically a cusp. Furthermore, E3 is a cusp of co-dimension 2 under the condition that [image: image] and [image: image]. However, if [image: image] or [image: image], E3 is a cusp of co-dimension at least 3. The corresponding phase portraits are shown in Figure 2B,where [image: image] and [image: image].
Proof. Since Tr[J(E3)] = a10 + b01, we know that the eigenvalues of J(E3) are λ1 = 0 and λ2 = a10 + b01.
Similar to the proof outlined in Theorem 3.3, we perform a transformation that shifts equilibrium E3 to the origin. We then expand system Eq. 3 in a power series up to the second order around this new origin. This transformation yields a simplified system that
[image: image]
where P11(X, Y) and Q11(X, Y) are smooth functions of at least the third order with respect to (X, Y), and 
[image: image]
[image: image]
When a10 + b01 ≠ 0, J(E3) has one zero eigenvalue and a nonzero eigenvalue. To further analyze the stability of this equilibrium, we introduce a transformation that
[image: image]
and introducing a new time variable τ1 = (a10 + b01)t, for which we retain t to denote τ1 for notational simplicity, we obtain
[image: image]
where P21(x, y) and Q21(x, y) are smooth functions of at least the third order with respect to (x, y), and
[image: image]
[image: image]
Straightforward computation shows that
[image: image]
Consequently, as shown by Theorem 7.1 from Chapter 2 in [23], if a10 + b01 ≠ 0, then the equilibrium E3 qualifies as a saddle-node. Moreover, the characteristics of this saddle-node are determined as follows: (i) if a10 + b01 > 0, the parabolic sector is situated in the upper half-plane, and E3 acts as a repelling saddle-node and (ii) conversely, if a10 + b01 < 0, the parabolic sector remains in the upper half-plane, but E3 is an attracting saddle-node.
When a10 + b01 = 0, J(E3) has one zero eigenvalue with two multiple. Then, making the transformation
[image: image]
and introducing a new time variable τ2 = −b01t = bt. For notational simplicity, we retain t to represent τ2, then system Eq. 7 becomes
[image: image]
where P22(x, y) and Q22(x, y) are smooth functions of at least the third order with respect to (x, y) and
[image: image]
To eliminate y2 terms in system Eq. 8, we make the following near identity transformation:
[image: image]
which transforms system Eq. 8 into
[image: image]
where P23(X, Y) and Q23(X, Y) are smooth functions of at least the third order with respect to (X, Y). Therefore, when f20 ≠ 0 [image: image] and f11 ≠ 0 [image: image], according to the results presented by [24], E3 is a cusp of co-dimension 2. If [image: image] or f11 = 0 [image: image], E3 is a cusp of co-dimension at least 3.
3.5 Stability of equilibria E4 and E5
Theorem 3.6. When system Eq. 3 exists with two positive equilibria E4 and E5, E4 is always a hyperbolic saddle. Furthermore, positive equilibrium E5 is a sink when b > b*, a source when b < b*, or a center when b = b*, where [image: image] and z5 is the larger positive root of f1(z) = 0.
Proof. The Jacobian matrix J(E4) of system Eq. 3 evaluated at E4 is
[image: image]
Straightforward computation shows that, due to [image: image],
[image: image]
where
[image: image]
Since f(z4) = 0, from Theorem 3.2, we obtain
[image: image]
Substituting g1(z4) by the above equation, then [image: image]. Because z2 < z4 < z3, z2 and z3 are two positive roots of g1(z) = 0, then g1(z4) < 0 and l(z4) < 0. Therefore, Det[J(E4)] < 0. Hence, the matrix J(E4) has a positive eigenvalue and a negative eigenvalue. Hence, E4 is a hyperbolic saddle.
Similarly, we obtain
[image: image]
since l(z5) > 0 (z5 > z3). Moreover, we can also obtain
[image: image]
Hence, when b > b*, Tr[J(E5)] < 0, the matrix J(E5) has two negative part eigenvalues, and E5 is a sink. When b < b*, then Tr[J(E5)] > 0, the matrix J(E5) has two positive part eigenvalues, and E5 is a source. When b = b*, then Tr[J(E5)] = 0, the matrix J(E5) has a pair of pure imaginary eigenvalues, and E5 is a center.
4 BIFURCATION ANALYSIS
In this section, we investigate the bifurcations that take place in system Eq. 3.
4.1 Saddle-node bifurcation
According to Theorem 3.1, we provided the conditions for the existence of E1 and E2 based on some restrictions. We obtain that
[image: image]
is a saddle-node bifurcation surface. Consequently, we can deduce that on the surface SN1, system Eq. 3 possesses a unique equilibrium E0, which is a saddle-node. As the parameters traverse this surface, the quantity of boundary equilibria undergoes a transition from zero to two. Biologically, this bifurcation corresponds to a critical threshold where the maximum sustainable yield (MSY) is at [image: image]. Beyond this threshold [image: image], the prey species faces extinction, leading to the collapse of the system. However, under certain initial conditions where [image: image], the prey species can avoid extinction [18, 20]. This phenomenon is shown in the saddle-node bifurcation diagram, as shown in Figure 4B.
[image: Figure 4]FIGURE 4 | (A) Saddle-node bifurcation diagram SN2 with a = 0.4, d = 0.6, and b = 0.5, where H represents the Hopf bifurcation point. The solid curve represents the stable equilibrium, and the dotted curve stands for the unstable equilibrium. (B) Saddle-node bifurcation diagram SN1 with a = 0.4, d = 0.6, and b = 0.5.
Similar to the above discussion, we obtain
[image: image]
according to Theorem 3.2, is another saddle-node bifurcation surface. When the parameters transition from one side of the surface to the other, the number of positive equilibria in system Eq. 3 changes from zero to two. The saddle-node bifurcation is illustrated in Figure 4A.
4.2 Hopf bifurcation
From Theorem 3.6, we know that the positive equilibrium E5 is a center-type nonhyperbolic equilibrium when b = b* and [image: image]. Therefore, system (4) may undergo a Hopf bifurcation. To proceed, we first confirm the transversality condition necessary for a Hopf bifurcation,
[image: image]
Therefore, the stability of the positive equilibrium E5 undergoes a change as the parameters traverse the specific critical surface
[image: image]
To determine the direction of the Hopf bifurcation, we calculate the first Lyapunov number l1 at the equilibrium E5 = (x5, y5). Initially, we shift the equilibrium to the origin using the transformation [image: image]. Subsequently, we expand system Eq. 3 into a power series around the origin. Then, system Eq. 3 becomes
[image: image]
where [image: image] and [image: image] are smooth functions of at least the fourth order with respect to [image: image] and
[image: image]
In accordance with the formula for the first Lyapunov number l1 presented in [24] [p.353], we proceed with the computation
[image: image]
where
[image: image]
and
[image: image]
Consequently, if l1 < 0 (which corresponds to M < 0), then E5 undergoes a supercritical Hopf bifurcation, leading to the emergence of a stable limit cycle in a small neighborhood of E5 as the parameters across the surface H1. Conversely, if l1 > 0 (or M > 0), a subcritical Hopf bifurcation occurs, resulting in an unstable limit cycle appearing in the vicinity of E5 as the parameters across the surface H1.
Given the complexity of l1, which does not readily reveal information about its sign, we turn to a numerical example for further clarification.
Fixing a = 0.4, d = 0.6, and h = 0.04, we obtain b* = 0.3960214438 and M = 0.537259605 and then l1 > 0, which implies that an unstable limit cycle is created around E5 = (0.1742665424, 00.2904442373). For b = 0.41 > b*, we obtain M = 0.652746120 and then l1 > 0, which implies that an unstable limit cycle is created around E5, where E5 is asymptotically stable (see Figure 5B). When b = 0.425, a collision occurs between the periodic orbit and saddle E4, resulting in the formation of a homoclinic orbit. Since M = 0.791862704, then l1 > 0, which means that periodic orbits remain unstable, as shown in Figure 5A.
[image: Figure 5]FIGURE 5 | (A) Phase portrait of system (4) with a = 0.4, b = 0.425, d = 0.6, and h = 0.04. E1 is an unstable node, E2 is a saddle, E4 is a saddle, and E5 is a sink. It indicates that the periodic orbit undergoes a collision with the saddle E4. (B) Phase portrait of system (4) with a = 0.4, b = 0.41, d = 0.6, and h = 0.04. E1 is an unstable node, E2 is a saddle, E4 is a saddle, and E5 is a sink. An unstable limit cycle, depicted as a black curve, surrounds the equilibrium point E5.
4.3 Bogdanov–Takens bifurcation
As presented in Theorem 3.5, the positive equilibrium E3 is identified as a cusp of co-dimension 2. This classification holds under certain conditions where a10 + b01 = 0, [image: image], f20 ≠ 0, and f11 ≠ 0. Consequently, system Eq. 3 may undergo a Bogdanov–Takens bifurcation in the immediate vicinity of E3.
Theorem 4.1. When h and d are selected as bifurcation parameters, system Eq. 3 is poised to experience a Bogdanov–Takens bifurcation in a neighborhood of E3 as (h, d) varies near (hBT, dBT) for a10 + b01 = 0, [image: image], f20 ≠ 0, and f11 ≠ 0, where (hBT, dBT) represents the threshold value of bifurcation parameters such as [image: image] and [image: image].
Proof. To obtain the expressions for the saddle-node, Hopf, and homoclinic bifurcation curves, we derive a normal form for the Bogdanov–Takens bifurcation. This derivation uses the techniques outlined by [11, 18, 25].
Let us examine a perturbation of the parameters h and d centered around their BT bifurcation values. We represent this perturbation as h = hBT + u and d = dBT + v, where u and v are small deviations from the critical values hBT and dBT, respectively. Consider
[image: image]
We begin by translating the equilibrium point E3 = (x3, y3) to the origin using the transformations X = x − x3 and Y = y − y3. Subsequently, we expand system Eq. 9 as a power series centered at the origin. Then, we have
[image: image]
where P1(X, Y) and Q1(X, Y) are smooth functions of at least the third order with respect to (X, Y), whose coefficients depend smoothly on u and v, and where
[image: image]
Let x = X and y = m00 + m10X + m01Y + m11XY + m20X2 + P1(X, Y), then system Eq. 10 can be written as
[image: image]
where Q2(x, y) are smooth functions of at least the third order with respect to (x, y), whose coefficients vary smoothly on u and v, and
[image: image]
By introducing a new variable τ through the relation dt = (1 − l02x)dτ and subsequently rewriting τ back as t, we can recast system Eq. 11 in a new form:
[image: image]
Let X = x and Y = y(1 − l02x), then system Eq. 12 can be written as
[image: image]
where Q3(X, Y) are smooth functions of at least the third order with respect to (X, Y), whose coefficients depend smoothly on u and v, and
[image: image]
Note that d20 is very complex, and we cannot determine the sign of d20 when u and v are small. Hence, we consider two cases: C-1: d20 > 0; C-2: d20 < 0.
C-1: If d20 > 0 for small values of u and v, we perform the following change of variables: x = X, [image: image], and [image: image]. Additionally, we retain variable t to represent τ. With these transformations, system Eq. 13 is transformed into a new form
[image: image]
where Q4(x, y) are smooth of at least the third order with respect to (x, y), whose coefficients depend smoothly on u and v, and
[image: image]
Let [image: image] and Y = y, then system Eq. 14 can be written as
[image: image]
where Q5(X, Y) are smooth of at least the third order with respect to (X, Y), whose coefficients depend smoothly on u and v, and
[image: image]
Suppose d11 ≠ 0, then g11 = h11 ≠ 0. Making the change of variables [image: image], [image: image], and [image: image], we then obtain from system Eq. 15 that
[image: image]
where Q6(x, y) are smooth of at least the third order with respect to (x, y), whose coefficients depend smoothly on u and v, and
[image: image]
C-2: If d20 < 0 for small u and v, we perform the following change of variables: x′ = X, [image: image], and [image: image]. Additionally, we retain variable t to represent τ′. With these transformations, system Eq. 12 is transformed into a new form:
[image: image]
where [image: image] are smooth of at le