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In recent years, Internet of Things security incidents occur frequently, which is
often accompanied by malicious events. Therefore, anomaly detection is an
important part of Internet of Things security defense. In this paper, we create a
process whitelist based on the K-Core decomposition method for detecting
anomalous processes in IoT devices. The method first constructs an IoT process
network according to the relationships between processes and IoT devices.
Subsequently, it creates a whitelist and detect anomalous processes. Our
work innovatively transforms process data into a network framework,
employing K-Core analysis to identify core processes that signify high
popularity. Then, a threshold-based filtering mechanism is applied to
formulate the process whitelist. Experimental results show that the
unsupervised method proposed in this paper can accurately detect
anomalous processes on real-world datasets. Therefore, we believe our
algorithm can be widely applied to anomaly process detection, ultimately
enhancing the overall security of the IoT.
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1 Introduction

Due to the limitations of IoT devices, such as low power consumption, small size and
low cost, the security performance of IoT is poor, so these IoT devices are easy to be attacked
by hackers. It remains challenging to protect against hacker attacks. There are many factors
that can be a threat to server security, such as IoT device vulnerability, virus, malicious
procedure, etc. Common attack contains worm, botnet, Trojan horse and DDOS attack
(distributed denial of service). Most of these attacks invade the IoT devices by using the
malicious process and then hackers implement the further attack. In the network security
field, server security occupies an important position. While someone runs the vicious
procedure, it always starts some anomalous processes in the IoT devices. If we can detect
anomalous process as early as possible, then we will solve the problems in the early stage and
avoid heavy loss.

At present, the main technology of anomalous process detection is firewall and
intrusion detection technology. As a cordon between the internal network and the
public network, the firewall blocks most malicious attacks. However, the effect of the
firewall is limited because its defense strategy is static and can only block attacks from the
outside network. Intrusion detection technology effectively remedies the short-comings of
the firewall. Intrusion Detection System can monitor the real-time status of the IoT devices
and detect the anomalous action. Intrusion Detection Systems detect the process mainly by
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process behavior [1], but there is a problem that we cannot find the
anomalous process in time. Besides, Intrusion Detection Systems
heavily depend on rules and expert experience. Some researchers
proposed to detect anomalous processes based on the system call
sequence [2] and this method required kernel process data.

In this work, we detect anomalous processes in IoT devices from
a different perspective. The principle of anomalous processes
detection is that anomalous processes detection only works in a
few IoT devices Therefore, it is necessary to calculate the popularity
of Internet of Things devices, and the higher the popularity is, the
less suspicious process is. Considering the relationship between the
processes and servers, we propose a new approach that can
efficiently detect the malicious process in a short time. The
proposed approach is as follows. Firstly, we build process white
list by using a graph algorithm called K-Core, then we detect the
anomalous processes in the servers based on this white list. The
strength of this proposed method is that we build the anomaly
detection model by constructing the process network. Moreover, our
method is unsupervised and we can find out anomalous processes in
servers quickly.

The rest of this paper is organized as follows. We briefly review
related works in Section 2. Section 3 introduces the proposed
method to build weighted process networks. Detailed explanation
of detecting anomalous processes is presented in Section 3.3, and the
evaluation of the proposed method is discussed in Section 4 and
finally we draw a conclusion and discuss future work in Section 5.

2 Related work

The process can be defined as a basic unit of system dynamic
execution operation and it is a dynamic concept. Processes in servers
are not only the dynamic implementation of programs but also the
resource scheduling and allocation. There is a big difference between
the process and the program. Programs are static instructions or
code sets, while processes are the dynamic execution of programs.
Process monitoring is an important part of network security
technology. Most intrusion detection systems and anti-virus
software have the process monitoring module in the servers.

Considerable research efforts have been devoted to monitoring
the process in the servers. In 1996, Stephanie Forrest et al. firstly
proposed the delay-embedded sequence model, and analyzed the
process behavior based on the system call sequence [2]. In 1998,
Hofmeyr proposed an N-gram anomaly detection model [3], which
is used to monitor the process behavior. Much work so far has
focused on detecting anomalous processes at home and abroad and
made outstanding achievements, such as the Fuzzy ART neural
network algorithm, the method based on the hidden Markov model,
the method based on frequency statistics and method of data
mining. The main focus of this research is to extract the
characteristics of subsequences for the process. These detection
methods ignore the global characteristics of the process with a
shortage of poor timeliness.

Besides, much work has focused on anomaly intrusion detection.
The system detects anomaly behavior by using statistical profiles
such as IDES [4–6], and inductive pattern generation, as in TIM [7].
These methods require an audit trail of actions to all users in servers.
Moreover, these detection methods will perform terribly if we

change the model of user behavior in a new environment. Levitt
et al. proposed the method to define normal behavior for privileged
processes [8, 9]. Sezgin proposed the intrusion detection instrument
called AID4I and achieved better accuracy than traditional intrusion
detection methods in experiments on public datasets [10].

In addition to the detection based on rule matching, there are
also researches that use machine learning to detect anomalies. For
example, Yang et al. constructed LM-BP algorithm from the
characteristics of the Internet of Things [11]. Zhang et al.
designed an intrusion detection system based on genetic
algorithm and deep confidence network, which can adaptively
change the network structure to adapt to different types of
attacks in the Internet of Things [12]. Bhatt et al. designed a
hybrid machine learning detection system called HADS to detect
anomalies in time series with different characteristics generated by
Internet of Things devices [13]. Weinger B et al. use supervised deep
learning to achieve higher detection accuracy through special
processing of data features [14]. Alaiz-Moreton et al. realized
anomaly detection by multi-classifying the traffic of IoT devices
[15]. Nagarajan proposed a new hybrid deep learning in Industrial
Control Systems, which can be used to detect unknown attacks [16].
Al-Wesabi proposed an optimization algorithm based on federated
learning and reached great results in IoT attack detection [17].

In this paper, we proposed an unusual method to detect
anomalous processes. Firstly, we build the weighted process
network based on the relationship between processes and IoT
devices. Then creating a process white list by using the K-Core
decomposition method. Finally, we can detect anomalous process by
comparing with the white list.

3 Materials and methods

Processes running in IoT devices can be divided into four
categories: server system process, the third-party application
process, user-initiated process, and anomalous process. The first
three kinds of processes are common processes, and they are widely
distributed in devices. The last kind of process is running in devices
by hackers or other attackers. The distribution density in the devices
is different among these processes. Then we can establish the process
network topology with these distribution characteristics
of processes.

In this section, we build a graph of processes based on the
relationship between processes and IoT devices. And we will
introduce some definitions used in this paper.

3.1 Establishing the process
network topology

We mainly collect the following two types of process logs, the
real-time status logs of processes in the operating system kernel
and snapshots of processes in the server. We monitor the whole
life cycle of all processes and find out the popular processes that
could be considered as normal processes by analyzing the
process graph.

In this paper, an independent process pi is regarded as a node i.
When process pi and process pj run simultaneously on more than
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one server, there is an edge e(i, j) between the corresponding nodes i
and j, then we can establish a process network graph. As shown in
Figure 1, a process named “init” runs on the database server, and
another process named “sshd” runs on the same database server, so
there is an edge between two corresponding nodes in the process
network graph. By collecting and analyzing all processes data on
multiple devices, we can draw the process network topology graph
like Figure 2.

System processes such as system daemon processes, system log
management processes and kernel processes are very popular in
devices. The execution of these processes guarantees the basic
functions of devices. We can find these processes in mainstream
operating systems such as Ubuntu, CentOS, Red Hat, and Kali. The
second variety of processes is mainly third-party processes such as
Apache and Nginx applications which are very popular in many
devices. The third kind of process is user-initiated process. In

enterprises or huge server clusters, users will startup similar
processes such as the enterprises’ OA system processes. All three
of these processes are popular in the devices. And in the process
network topology graph, the corresponding nodes play an important
role in the whole network graph.

The more popular processes are in the devices, the greater the
core degree of the corresponding nodes are, and the more influential
they are in the process network topology graph. Therefore, the
problem of finding popular processes in devices is transformed into
the problem of finding core nodes in the network graph.

3.2 Building the weighted process graph

Graph density is an important index to measure the edge density
of a network graph [18]. The specific definition of graph density is
the ratio of the actual number of edges to the maximum potential
number of edges in the network. After constructing the process
network graph on the IoT devices, we found that the value of the
process network graph density is too high. And when the number of
IoT devices increases, the graph density changes little. Such a process
network graph structure is not an ideal model to analyze processes.

We make some improvements to the undirected process
network graph shown in Figure 2. The approach is to represent
the progress network with a weighted graph. If two independent
processes pi and pj run on the same nij (nij > 0) server, then there is
an edge e (pi, pj) between two corresponding nodes and the weight
of this edge is wij. The larger the value of nij is, the larger the
corresponding wij is. The specific weight calculation equation is
defined as follows:

wij � Ui ∩ Uj

∣∣∣∣
∣∣∣∣

Ui ∪ Uj

∣∣∣∣
∣∣∣∣

(1)

Where, Ui is the set of devices which process pi has ever been
running in, and Uj is the set of devices which process pj has ever
been running in. | Ui ∩Uj | is the module of intersection and | Ui ∪
Uj | is the module of the union. Here, we normalize all the weights
to ensure that the correlation degree between two processes is in a
reasonable range.

FIGURE 1
Processes in different servers.

FIGURE 2
Process network.
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As shown in Figure 3, process 2 runs in the devices {a, b, c},
process 3 runs in the devices {a, c} and process 5 runs in the devices
{c}, then we perform the following steps. First, we gather the set of
devices which one process has ever been running in, such that U2 is
equivalent to a, b, c{ } . Next, we calculate wij by using Eq. 1. And the
calculation result of w23 is 2

3. After calculating all wij, we can finally
build the weighted graph like Figure 4.

To form the process white list, we impose the following
conditions: 1) Malicious processes run on a small number of
servers; 2) Processes running on a large number of devices are
more trustworthy; 3) The strength of association between two
processes is related to the number of common servers they share.
Based on the premise, we can further deduce that the number of
servers a process resides on has a significant impact on its suspicion
level. For example, when a suspicious process and a common
process run on the same device, the association between the two
processes increases the node degree of the suspicious process, which
is not as expected. To model more realistically, it is necessary to
eliminate this bias. Therefore, we introduce a weighting factor C,
when the number of devices on which a process resides is small, its
weighting factor C is small. When the number of devices is large, the

weighting factor is large, and it is less influenced by the number of
devices. Furthermore, we can define C as following:

C � 1

1 + eγ−min Ui| |, Uj| |( ) (2)

Where, Ui and Uj are the sets of devices, and γ(γ � 0, 1, . . .) is
the correction factor. In different detection scenarios, the value of γ
varies. For example, in a certain IoT environment, specific normal
processes independently run on 4 optical sensor devices. To increase
the confidence in these processes, γ can be set to 2. From the
characteristics of the function curve, the weighting factors of these
specific processes are significantly greater than those of anomalous
processes. According to the definition of the weighting factor C, when
the number of devices on which two associated processes reside is
large, their weighting factor is large. When the number of devices for
one of the processes is small, the calculated weighting factor is small,
indicating a higher suspicion level for that process. Therefore, in the
current definition, the weighting factor C addresses the issue of the
absolute value of device count affecting suspicion levels. Then the new
edge weight of the process network is redefined as following by using
C in Eq. 2:

wij
′ � wijpC (3)

With the above processing, we can construct the weighted
undirected graph based on the relationship between processes
and devices. After analyzing the coreness of all nodes in the
graph, we can obtain the widely popular processes in the devices.
These popular processes are legitimate and can be used to create
process white list.

3.3 Detecting anomalous processes

In this section, K-Core algorithm is proposed to help create a
process white list. According to previous classification, the first three

FIGURE 3
Processes in different IoT servers.

FIGURE 4
Weighted process network.
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kinds of processes are very popular and their nodes are core nodes. If
we find out these core nodes based on K-Core algorithm, then we
can find out the popular processes and write them to the white list.

The node importance of complex networks, including the
influence, status, the popularity of nodes and the synthesis of these
elements, was first raised by social relationship scientists [19, 20].
With the development of society, the research value of this study has
been gradually discovered, and it plays an important role in the
communication network, social network, and engineering practice.
There are many indicators or methods to judge the importance of
nodes, such as degree, betweenness, coreness, degree centrality and
ranking of node importance based on random walk model [21, 22],
the ranking of node importance based on propagation dynamics [23,
24]. Kitsak first proposed that the node importance depends on its
location in the network [25], and then used the K-Core decomposition
algorithm to rank the importance of nodes. Among these indicators
andmethods, the coreness can obtain amore accurate ranking of node
importance than others such as betweenness. And it is easy to realize
with the K-Core algorithm. The time complexity of the K-Core
algorithm is O (N), which is suitable for huge complex networks.

3.3.1 Algorithm description
K-Core decomposition method is classical in graph theory

which can be used to analyze the importance of nodes in the
network [26]. The main idea is to iteratively generate different
kinds of node groups with different k-values (ks). In this work, a
k-core is a maximal group of processes, all of which are connected to
at least k other processes in the group. K-Core is a measure that can
help identify small interlinked core areas on a network.

As shown in Figure 5, there is the K-Core decomposition of a
network. The nodes of the outer layer compose shell 1 (ks � 1), while
the nodes within the central ring compose shell 3 (ks � 3). We can
see that a group is the k-core if it contains all nodes that are
connected to at least k other nodes within the group. Besides, the

k-core contains the (k + 1)-core. When k increases, the core sizes
decrease while the cores become more interlinked and the nodes are
more popular. Algorithm 1 provides the pseudocode for finding the
k-values of networks.

Input: Network graph data.

Output: The list of different k-values

1: ks ← 0, D ← [Φ, . . . , Φ], d ← 0, S ← 0.

2: for all i ← 0 to n do

3: d[i] ← degree(i)

4: D[d[i]].add(i)

5: end for

6: for k to degree(max) do

7: ks � max ks ,k{ }
8: while D[k] not empty do

9: D[k].remove(vertex)

10: S[vertex] ← ks

11: end while

12: ks ← ks + 1

13: end for

14: return S

Algorithm 1. K-Core decomposition.

In Algorithm 1, we define three arrays, D which contains a list of
the nodes with a different degree, d which holds the degree of each
node and S holds the k-values of all nodes. Firstly, we initialize three
arrays and ks. Then we increase the value of k fromminimum degree
to maximum degree of the graph. In this cycle process, we delete the
nodes from D whose degree is equivalent to the present value of ks
and add these nodes to S. Finally, the algorithm returns S which
holds different k-values of all nodes.

3.3.2 Creating process white list based on K-Core
The K-Core decomposition method is used to analyze

unweighted undirected graphs. And this is a major limitation of
k-core decomposition method. However, most real networks are
weighted in practice, and the weight property describes the model’s
important features. In order to overcome these limitations, Garas
and Schweitzer proposed a weighted K-Core decomposition method
[27]. The basic idea is to redefine the weighted degree of a node, they
considered both the degree of a node and the weights of its links.
And the new degree is the multiplication of two types.

In this work, we define a weighted degree of one node which is
the sum over all its link weights. Then we use K-Core decomposition
method to partition a network into sub-structures that are directly
linked to centrality [28]. After finishing one decomposition, we
calculate all nodes’ weighted degree again to prepare the next
decomposition. This procedure is repeated iteratively until all
nodes are removed from the network.

A more detailed description of creating process white list based
on K-Core is as follows:

1) Using the approach in Section 3 to build a weighted
process network;

2) For process pi in the process network, there are m links
{e(pi, p1), e(pi, p2). . ., e(pi, pm)} in total. And the link
weights are {wi1, wi2, . . ., wim} by using Eq. 3, we calculate
the new degree of the weighted process network as follows,

FIGURE 5
Illustration of K-Core concept.
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where, k(i)w is the weighted degree of node i, and j is node who
has the same link with node I;

k i( )w � ∑
m

j�1
wij (4)

3) Using Eq. 4 and the K-Core decomposition method in
Algorithm 1 to calculate all nodes’ k-values. And then we
can obtain a group of different k-values;

4) Choosing a threshold k-value then filter out the processes
whose k-values are less than the threshold value;

5) After filtering, we can obtain the process white list.

3.3.3 Detecting anomalous process
We introduce the method to create a process white list including

building process networks. However, the final goal of our work is to

detect anomalous processes. Therefore, we detect anomalous processes
by using the white list. Users can integrate the proposed method to
some systems. For example, users can use directly detect anomalous
process by comparing with the process white list. Engineering
implementation is involved in detecting anomalous processes based
on white list. And different user scenarios entail different software
architectures. Since our work involves real-time detection of large
volumes of IoT data, we utilize Kafka, Spark, etc. We transmit
process data by Kafka and detect anomalous processes in Spark. The
spark system can help us deal with huge process data in time.

4 Results

In this section, we test our proposed method on the real-world
process data. All of our process data have been generated on IoT

TABLE 1 Statistical properties of process networks.

Number of servers Number of nodes Number of common processes Number of edges Average degree

3 674 359 13,516 40

5 926 513 16,593 36

10 1,048 576 17,842 34

20 1,351 738 20,275 30

30 1,587 852 22,354 28

FIGURE 6
K-values of processes.
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servers. And we gather the snapshots of these servers’ processes at
different time intervals.

4.1 The process network

We build the process network topology structure on different
data sets. As shown in Table 1, we provide some detailed statistical
properties of process networks. In this table, the number of processes
is equivalent to the number of nodes. We obtain the dense network
on processes data of three servers for which the number of edges is
about 20 times higher than the number of nodes. This is supported
by the conclusion that there is a close relationship between processes
and servers. The number of edges is about 14 times higher than the
number of nodes when the number of servers is equivalent to 30.
While the number of servers increase, we can obtain the sparse
process networks.

4.2 The process whitelist

We use the K-Core decomposition method to partition the
process network into sub-structures on ten servers. And Figure 6
shows K-values of all processes. There are 1,048 processes which
run on 10 servers. We can see that about 300 processes are in the
group of 160-core which is the biggest k-value. These processes
are very popular in servers. Moreover, 87% of these processes are
server system processes. This is supported by the appearance that
there are some system processes which are very popular. K-values
of the rest of processes are less than the k-value of system
processes. We can see that there are several obvious steps
from this diagram.

There are some processes whose k-values are less than 10. And
part of them is user-initiated processes such as “python test_one.py”
which runs on only one server. Besides, there are many processes
whose k-values are in the area around the average degree. Most of
these processes are third party processes such as “firefox” and
“nginx.” These processes are popular in some special servers.
Some processes such as “ps–ef,” “ls–al” and “tailf” are system
processes, but not always run on the servers. Therefore, the
k-values of these processes are less than expected.

In our work, we gather process data on 30 servers and obtain
1,587 processes. The servers contain IoT database servers, web
servers, spark clustering servers and so on. Finally, we obtain the
process white list based on K-Core decomposition method. And
Table 2 shows part of the white list.

Ranking refers to the popularity ranking of processes, where a
higher process ranking indicates greater popularity among IoT
devices and lower suspicion. By predefining thresholds, highly
ranked processes are written into the white list, which can then
be used for anomalous process detection. The result in Table 2 shows
that the most popular processes are mainly system processes such as
“init” and “crond.”

4.3 Anomaly detection of real-world data

In Section 3, we discussed how to detect anomalous processes.
The important part is to create a process white list and then we
compare process data with the white list to detect. In this
procedure, we use real-world process data that conclude process
data in database servers and process data in Hadoop clustering
servers. Surprisingly, we find out several anomalous processes in
Hadoop clustering servers which are viciously used to produce
bitcoin. The anomalous processes are “sustes,” “sh mr.sh” and “sh
i.sh” etc. We find that hackers make use of vulnerability to invade
our servers and download malicious procedure such as “mr.sh”
and “i.sh” from proxy servers in a foreign country. We didn’t know
this problem in our Hadoop servers until detecting anomalous
processes based on the process white list. The proposed anomaly
detection method helps us find the threat in clustering servers and
avoid huge damage. Table 3 shows the malicious processes and
vicious proxy IPs.

This real intrusion was mainly from Canada and the malicious
procedure is used to produce bitcoin. The IPs which hackers used in
Table 3 are the experimental servers.

TABLE 2 Process white list.

Rank Process Rank Process

1 init 26 netns

2 sh 27 ksmd

3 top 28 kaluad

4 kthreadd 29 nfit

5 crond 30 jbd2

6 grep 31 rpciod

7 celery 32 postgres

8 migration 33 dbus-launch

9 events 34 redis-server

10 uwsgi 35 sshd

11 java 36 mysql

12 bash 37 python manage.py

13 kworker 38 cut

14 netstat 39 anacron

15 hald 40 kblockd

16 crypto 41 rpm

17 sleep 42 ata_sff

18 deferwq 43 md_misc

19 bioset 44 aio

20 ksoftirqd 45 ext4-dio-unwrit

21 rcu_bh 46 su

22 rcu_sched 47 scp

23 systemd 48 ipv6_addrconf

24 md 49 kintegrityd

25 writeback 50 chown
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5 Discussion

We introduced a novel method to create process white list which
used to detect anomalous processes. Different from previous
approaches, the proposed method transforms the process data into
networks based on the relationship between processes and IoT devices.
Then we use K-Core decomposition method to partition the process
network into sub-structures. It is generally accepted that the K-Cores
with the biggest coreness values represent themost popular nodes of the
whole network. Therefore, we filter processes by controlling threshold
k-value. The popular processes such as system processes are put into the
white list. The rest of the work is simple. Just compare process data with
the white list and we can detect anomalous processes in devices. The
proposed method is unsupervised so we don’t need labeled data. From
the section of experimental results, we can see that processes at the front
of the white list are mainly system processes and they are very popular
in devices. This is consistent with the observation we expected. Notably,
the proposed method helps us find out the threat in clustering devices
and avoid huge damage.

The method proposed in this paper is suitable for detecting less
popular anomalous processes. It is difficult to detect widely
prevalent malicious processes used for attacks when most devices
in the IoT have already been compromised. For example, in DDOS
attack scenarios, attackers may use compromised C&C servers to
send commands to a large number of IoT devices. Therefore,
processes generated by these commands are highly prevalent in
the current IoT environment, and such processes may be included in
our white list, thereby eliminating their suspicion and causing leaks.
One way to address these issues is for security experts to intervene.
After generating the process white list, security experts further
analyze and remove suspicious processes to improve the
credibility of the white list.

The current work does not consider the influence of parent-child
process relationships on correlation. Therefore, in future research,
we consider introducing the natural correlation between processes
to detect anomalous processes. Compared to the undirected graph
structure in the current work, the future plan is to use a directed
graph to represent parent-child process relationships. The
probability that the parent process or child process of a
malicious process is malicious is relatively high. Therefore, after
introducing the directed graph, it is possible to model and detect
malicious process networks more realistically. To address the
limitations of the current work, subsequent work will incorporate
process features such as resource consumption and file transfer into
the attributes of graph nodes. For IoT environments vulnerable to
DDoS attacks, data theft, etc., the calculation function of the weight
factor will be adjusted to achieve better results.
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TABLE 3 Information of malicious processes.

Malicious process Proxy IPs Country

sustes, sh mr.sh, sh i.sh, sh cr.sh 158.69.133.18, 192.99.142.226, 192.99.142.229 Canada
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