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In the field of computer-assisted medical diagnosis, developing medical image
segmentation models that are both accurate and capable of real-time operation
under limited computational resources is crucial. Particularly for skin disease
image segmentation, the construction of such lightweight models must balance
computational cost and segmentation efficiency, especially in environments with
limited computing power, memory, and storage. This study proposes a new
lightweight network designed specifically for skin disease image segmentation,
aimed at significantly reducing the number of parameters and floating-point
operations while ensuring segmentation performance. The proposed ConvStem
module, with full-dimensional attention, learns complementary attentionweights
across all four dimensions of the convolution kernel, effectively enhancing the
recognition of irregularly shaped lesion areas, reducing the model’s parameter
count and computational burden, thus promoting model lightweighting and
performance improvement. The SCF Block reduces feature redundancy
through spatial and channel feature fusion, significantly lowering parameter
count while improving segmentation results. This paper validates the
effectiveness and robustness of the proposed SCSONet on two public skin
lesion segmentation datasets, demonstrating its low computational resource
requirements. https://github.com/Haoyu1Chen/SCSONet.
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1 Introduction

In 2024, it is projected that around 99,700 cases of in situ melanoma will be diagnosed,
with an estimated 13,120 deaths from skin cancer, of whichmelanoma accounts for 99% [1].
Early detection of melanoma can often lead to cure through simple outpatient surgery, as
opposed to late-stage diagnosis significantly reducing survival rates from over 99%–32%.
Early detection is thus crucial for improving survival chances [2].

Dermatologists typically use dermatoscopy, an intuitive method for skin lesion
examination, which relies on experienced doctors manually inspecting images [3].
However, this method can be less accurate for inexperienced dermatologists [4].

Traditional image segmentation methods, such as threshold-based [5], edge-based [6],
and clustering-based [7] approaches, have played a role but are often time-consuming and
error-prone, with limited effectiveness on complex datasets. In contrast, deep learning
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enhances accuracy and adaptability in image segmentation, making
skin disease diagnosis more efficient and widespread.

Over the years, with the enhancement of computing
capabilities and advancements in deep learning technologies,
segmentation methods based on convolutional neural
networks have seen significant performance improvements [8].
Fully Convolutional Networks (FCN) were developed as pioneers
for semantic segmentation [9]. The introduction of the U-Net
network marked a major breakthrough in medical image
segmentation [10]. Following that, the integration of
Transformer technology through Vision Transformer (ViT)
further enhanced the capabilities in medical image
segmentation [11]. These advanced network technologies
continue to push the performance and accuracy of medical
image segmentation, providing more efficient and widespread
technical support for the diagnosis of skin diseases.

Previous work on enhancing the performance of the U-Net
network has tended to introduce more complex modules. However,
in the field of medical image segmentation, the importance of model
lightweighting is self-evident. In the modern medical field, especially
in the application of medical image analysis, the importance of
lightweight models is becoming increasingly prominent. These
models can run efficiently on devices with limited memory and
processing capabilities, and they show great potential in mobile
healthcare and rapid response scenarios. Forn make high-qua
instance, in emergencies, they can be used to quickly diagnose a
patient’s condition, saving valuable treatment time. Moreover, these
models are particularly valuable in remote areas because they cality
medical diagnostic services more widespread and accessible,
representing a significant advancement for typically resource-
poor regions.Furthermore, the economic benefits of lightweight
models cannot be overlooked. They can reduce the investment in
hardware and operations for medical institutions, bringing cost
benefits to medical systems around the world, especially in
developing countries. By lowering medical costs, lightweight
models provide more equal opportunities for medical services to
a broader population, thereby helping to address socio-economic
inequalities. In summary, the development of lightweight medical
image segmentation models is not only a manifestation of
technological progress but also an important part of social
responsibility and commitment, aiming to improve the health
level of all humanity by popularizing high-quality medical services.

To address the need for lightweight models, solutions like
MobileNets [12–14] and transformer-based lightweight models
such as MobileViT [15] have been developed for real-time image
classification and segmentation of 2D images. Inception-ResNet
optimizes inception modules and residual networks to enhance
image feature extraction and detail restoration [16]. Additionally,
in medical image segmentation, MISegNet [17] offers a powerful yet
lightweight network for real-time segmentation of multimodal
medical images. The UNeXt [18] model, combining UNet and
MLP technologies, reduces parameters and computational load
while maintaining high performance. MALUNet, through
channel reduction and multiple attention mechanisms, shows
superior performance in skin lesion segmentation, maintaining
compactness and efficiency [19].

While existing lightweight medical image segmentation models
have made progress in reducing computational resource

consumption, they often overlook the issues of spatial and
channel redundancy. Previous research has shown that there is
considerable redundancy in both the spatial and channel dimensions
of deep neural network feature maps. This redundancy can lead to
insufficient extraction of key edge features in lesion areas, affecting
the model’s performance and segmentation accuracy. Moreover, the
presence of redundancy leads to wasteful use of computational
resources. Therefore, addressing spatial and channel redundancy
is crucial for enhancing the segmentation performance of
lightweight medical image models.

In this study, we designed a U-shaped network architecture, the
core of which is the Spatial-Channel Fusion Block (SCF Block). In
addition, by incorporating ConvStem at the initial stage of feature
extraction, we combined the stability of traditional convolution with
the dynamic adaptability of Omni-dimensional Dynamic
Convolution (ODConv) [20]. Additionally, our network
introduces Channel Attention Bridge Block (CAB) and Spatial
Attention Bridge Block (SAB) through skip connections,
effectively achieving fusion of multi-level and multi-scale
information. The core SCF Block, based on Spatial and Channel
Reconstruction Convolution (SCConv) [21], significantly reduces
feature redundancy through spatial-channel feature fusion
technology, incorporating the Efficient Multi-Scale Attention
Module (EMA) [22] and Partial Convolution (Pconv) [23] to
establish short and long-range dependencies and enhance feature
extraction capabilities. This ensures a substantial improvement in
SCConv’s segmentation performance while reducing the parameter
count and computational cost.In summary, our contributions
are threefold:

• The Spatial-Channel Fusion Block (SCF Block) introduced
aims to apply SCConv in the medical image segmentation
field, reducing redundancy in the spatial and channel
dimensions of feature mappings as well as in dense model
parameters. It enhances the model’s ability to extract key edge
features in lesion areas, significantly reducing parameter count
and computational cost while ensuring
segmentation accuracy.

• We introduced a unique lightweight feature extractor,
ConvStem, that employs the ODConv convolution
mechanism. By learning four different types of attention in
parallel across the four core spatial dimensions, this
mechanism not only enhances the model’s efficiency in
capturing features but also significantly reduces the
additional number of parameters. ConvStem merges the
stability of traditional convolution with the dynamic
adaptability of enhanced convolution structures, ensuring
the model remains lightweight while effectively capturing a
richer array of local features and details.

• We present SCSONet, a model characterized by innovative
lightweight design and efficient feature extraction
mechanisms. It significantly reduces the model’s parameters
while maintaining segmentation accuracy. This approach not
only streamlines the computational demands but also
enhances the model’s applicability in real-world scenarios
where resources are limited, ensuring both high
performance and efficiency in medical image
segmentation tasks.
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2 Related work

In the evolution of medical image segmentation, Convolutional
Neural Networks (CNN) have played a pivotal role. The
introduction of Fully Convolutional Neural Networks (FCN) laid
the foundation for precise segmentation and identification of target
areas in images. UNet, with its encoder-decoder structure and
efficient skip connections, significantly advanced medical image
segmentation. Following UNet, architectures like 3D U-Net [24],
V-Net [25], and U-Net++ [26] improved segmentation performance
through enhanced convolution processes and connections. SF-Net
[27] is an innovative multi-task framework that boosts tumor
segmentation precision by fusing multimodal features and
employing an uncertainty-based method for adaptive loss weight
adjustment.TDGraphDTA Through multi-scale information
interaction and graph optimization techniquesthe method
enhances the accuracy of predictions and the interpretability of
the model [28].BTSFDS-EI-MMRI [29] develops an advanced
technique utilizing the Swin Transformer and CNNs for
enhanced MRI image analysis, focusing on integrating semantic
and edge features for improved accuracy.X-Net [30] combines
CNNs and Transformers for improved medical image
segmentation, employing a dual architecture for enhanced feature
extraction and accuracy on small datasets.GSOMMIF-AL [31]
introduces an adversarial approach for enhancing glioma
segmentation from multi-modal MR images, emphasizing image
fusion for better segmentation outcomes.MISMFIF [32] presents a
cloud-enhanced medical image segmentation technique, integrating
Transformers and CNNs for robust feature extraction and
employing an interactive module for improved accuracy,
showcasing cloud computing’s scalability and performance
advantages.ASTCMSeg [33] presents a 3-D self-training
framework for segmenting medical images across different
modalities without paired data, focusing on anatomical
consistency and a novel frequency domain approach for
improved accuracy.ViT-UperNet [34], a hybrid model leveraging
vision transformers and a unified-perceptual-parsing network,
excels in medical image segmentation by combining self-attention
with multi-scale feature fusion, significantly improving accuracy on
cardiac MRI images.

As models grow in scale and complexity, so do their
computational and storage costs, limiting their practical
application in resource-constrained settings. This highlights the
need for optimizing model efficiency without compromising
performance, ensuring that advanced medical image
segmentation technologies can be effectively deployed in diverse
environments, particularly where computational resources
are scarce.

To address these challenges, researchers are focusing on the
design of lightweight segmentation networks for efficient visual
processing. Innovations such as MobileNets with depthwise
(DW) and pointwise (PW) convolutions, grouped convolutions
from AlexNet [35], ODConv with multidimensional attention,
PConv focusing on reducing redundant computation, and
SCConv reducing feature map redundancy, are paving the way
for more resource-efficient and practical models in medical
image segmentation, especially in scenarios with limited
computational and memory resources.

Recently, UNeXt, based on Multi-Layer Perceptrons (MLP) and
UNet, has become a more suitable solution for practical applications
in medical image segmentation due to its significant reduction in
parameter count. MALUNet, as a lightweight medical image
segmentation model incorporating various attention mechanisms,
is better suited for clinical settings. However, despite these
advancements, lightweight models still have performance gaps
compared to larger models, with room for improvement in
parameter efficiency and GFlops. Additionally, these methods
have not fully addressed the redundancy in spatial and channel
dimensions during the feature extraction process.

Given these considerations, this paper introduces an innovative
lightweight UNet segmentation model based on the Spatial-Channel
Fusion Block (SCF Blcok). This model effectively addresses spatial
and channel redundancy issues by fusing multi-level, multi-scale
information in skip connection paths, simultaneously enhancing
segmentation accuracy and efficiency. Its innovation lies in its ability
to deliver efficient, accurate segmentation results while maintaining
low computational complexity, making it an ideal choice for
practical applications and the mobile health domain. This
approach offers a more efficient, practical solution for medical
image analysis, also providing new directions for future
developments in medical image segmentation technology.

3 Methods

3.1 Overview

The proposed skin lesion segmentation framework is shown in
Figure 1, which consists of ConvStem, SCF Block, and SCAB
modules. ConvStem enhances flexibility and reduces parameters
through dynamic adjustment of convolution kernels via omni-
dimensional attention, moving beyond static application. The
SCF Block, comprising SCConv for spatial-channel
reconstruction, PConv, and EMA for establishing dependencies
and enhancing feature extraction, reduces spatial and channel
redundancy, refining feature representation. SCAB, with CAB
and SAB, improves multi-level and multi-scale information
fusion, reducing feature loss during downsampling.

3.2 ConvStem

Lesion areas in medical images often present irregular shapes
and vary greatly across different images, making accurate
identification and segmentation a highly challenging task. To
enhance the performance of medical image segmentation,
particularly in capturing fine-grained and shape-sensitive local
details, this study introduces the ConvStem module, as shown in
the top right corner of Figure 1.

Traditional Convolutional Neural Networks are limited in
simulating complex and irregular shape changes due to the fixed
geometric structure of their basic modules. To overcome this
limitation, the ConvStem module employs ODConv at the initial
feature extraction stage, an innovative convolutional method with
Omni-Dimensional attention mechanisms. ODConv combines the
stability of traditional convolution with the flexibility of dynamic
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convolution, enabling the model to more effectively capture and
process shape-aware features of irregularly shaped lesion areas in
medical images. Through this design, the ConvStem module
significantly enhances the network’s ability to recognize complex
lesion morphologies in medical images, thereby providing richer
and more accurate primary feature information for subsequent
network layers’ feature learning and fusion.

The input image, denoted as F0 ∈ RH×W×C, is initially operated
by ConvStem.ConvStem consists of two standard convolutions and

one ODConv, with a max pooling downsampling step in between.
ODConv introduces a multidimensional attention mechanism that
employs a parallel strategy to learn different attentions across all four
spatial dimensions of the convolution kernel. Figure 2 provides a
schematic illustration of ODConv, which can also be represented by
the Eq. 1:

y � αw1 ⊙ αf1 ⊙ αc1 ⊙ αs1 ⊙ W1 +/ + αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙ Wn( )*x
(1)

FIGURE 1
The framework of the proposed skin lsion segmentation method. It llustrates the framework for segmenting skin diseases, primarily consisting of
three modules: the ConvStem module, the SCF Block, and the SCAB module for skip connections.

FIGURE 2
The architecture of Omni-dimensional Dynamic Convolution.
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where αwi ∈ R denotes the attention scalar for the convolutional
kernelWi, αsi ∈ Rk×k , αci ∈ RCin and αfi ∈ RCout denote three newly
introduced attentions, which are computed along the spatial
dimension, the input channel dimension and the output channel
dimension of the kernel space for the convolutional kernel Wi,
respectively; denotes the multiplication operations along different
dimensions of the kernel space. Here, αsi, αci, αfi and αwi are
computed with a multi-head attention module.: (1)αsi assigns
different attention scalars to convolutional parameters (per filter)
at k × k spatial locations; (2)αci assigns different attention scalars to
cin channels of each convolutional filterWmi; (3) αfi assigns different
attention scalars to cout convolutional filters; (4) αwiassigns an
attention scalar to the whole convolutional kernel. ODConv
enhances feature extraction focus and efficiency by dynamically
concentrating on key aspects of the input features through its
attention mechanism across each dimension.

This application within ConvStem allows the convolution
kernels to adjust dynamically to different inputs, moving away
from a static, singular approach. This increases the model’s
flexibility, reduces the number of parameters and computational
burden, aiding in model lightweighting while boosting performance.
Standard convolution captures basic features efficiently, while
ODConv’s dynamic adjustment provides a deeper understanding
and extraction for specific features, crucial for complex skin disease
image analysis. Combining these convolutions, ConvStem outputs
feature mappings that finely reflect shapes and local details, enabling
our proposed SCSONet to produce more detailed lesion
segmentation results, showcasing rich, multi-faceted feature
information. After passing through ConvStem, the input F0
produces the outputs F1, F2 and F3, as described by the following
Eq. 2.

F1 � MaxPool Conv F0( )( )
F2 � MaxPool ODonv F1( )( )
F3 � MaxPool Conv F2( )( )

⎧⎪⎨
⎪⎩ (2)

F1, F2 and F3 are each connected to the decoder through the SCAB,
which includes a Channel Attention Bridge Block (CAB) and a
Spatial Attention Bridge Block (SAB).

The SAB uses max and average pooling operations at each stage
to establish short and long-range dependencies and enhance feature
extraction capability. After these operations, feature maps with
channel C, height H, and width W are concatenated into feature
maps with two channels, while height and width remain unchanged.
Dilated convolution and the sigmoid function are then applied to
obtain spatial attention maps for each stage. Finally, these are
element-wise multiplied with the initial images of the stage, and
the residuals are summed, restoring the original channel count for
each stage.

The CAB is primarily designed to fuse features across different
channel orders to better integrate information. The internal
workings of this module can be represented by the following
Eq. 3:

ti′ � GAP ti( ),
T � Concat′ t1′, t2′, . . . , ts−1′( ),
T′ � Conv1D T( ),
Atti � σ FCi Ti( )( ),
Out i � ti + ti ⊙ Atti.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(3)

Pi is the feature map obtained at stage input. Is the total number of
stages, FCi is the fully connected layer at stage, and σ is the
sigmoid function.

The two bridge attention modules can fuse the multi-stage and
multi-scale features of Stages 1–3 (Including the output from the
subsequent SCF Block) to generate the attention maps in the spatial
and channel dimension. And then, we add features obtained by
bridge attention modules with features of the decoder part to reduce
the feature semantic difference between the encoder and decoder
while alleviating the information loss caused by the
sampling process.

3.3 Spatial-channel fusion block (SCF block)

Although existing lightweight medical image segmentation
models have made progress in reducing computational resource
consumption, they often overlook issues of spatial and channel
redundancy. To address these problems, the SCF Block was
designed to significantly optimize the feature fusion process,
particularly in reducing feature map redundancy across spatial
and channel dimensions. By integrating the spatial-channel
feature fusion technique of SCConv, the SCF module
innovatively reduces feature redundancy, while the
introduction of EMA and PConv enhances the model’s ability
to capture short and long-range dependencies, further improving
the efficiency and accuracy of feature extraction. This method,
which focuses on feature fusion, not only reduces computational
costs and model parameters but also greatly enhances the quality
and precision of the segmentation results while maintaining the
model’s lightweight stature. The SCF Block for Stage 2 can be
represented as follows Eq. 4:

F4 � MaxPool EMA PConv SCConv F3( )( )( )( ) (4)

As shown in Figure 3. SCConv initially obtains spatially refined
features Xw through SRU operations, and then acquires channel-
refined features Y using CRU operations.

The Spatial Reconstruction Unit (SRU) reconstructs redundant
features based on weights to suppress redundancy in the spatial
dimension and enhance feature representation. The formula for
calculating weights is as follows Eq. 5:

W � Gate Sigmoid Wγ GN X( )( )( )( ) (5)

The formula for reconstruct is as follows Eq. 6:

Xw
1 � W1 ⊗ X, Xw

2 � W2 ⊗ X,
Xw

11 ⊕ Xw
22 � Xw1, Xw

21 ⊕ Xw
12 � Xw2

Xw1 ∪ Xw2 � Xw.

⎧⎪⎨
⎪⎩ (6)

The Channel Reconstruction Unit (CRU) employs a Split −
Transform − and − Fuse strategy to reduce redundancy in the
channel dimension, as well as computational and storage costs.
After splitting, the spatially optimized feature Xw is divided into
upper Xup and lower Xlow parts. In the Transform stage, Xup

undergoes efficient convolution operations (i.e., GWC and PWC),
and the outputs are aggregated to form a combined representative
feature map Y1. The upper layer transformation stage can be
represented as follows Eq. 7:
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Y1 � MGXup +MP1Xup (7)

Xlow is input into a lower transformation stage where a cost-effective
1 × 1 PWC operation is applied to generate a feature map Y2 with
shallow hidden details, complementing the rich feature extractor.

Global spatial information s1 and s2 are then collected through
global average pooling, and channel soft attention operations
produce feature importance vectors β1 and β2. These vectors
guide the fusion of upper-layer features Y1 and lower-layer
features Y2, generating refined features Y. The specific formula is
as follows Eq. 8:

β1 �
es1

es1 + es2
, β2 �

es1

es1 + es2
, β1 + β2 � 1

Y � β1Y1 + β2Y2

⎧⎪⎪⎨
⎪⎪⎩ (8)

After passing through Partial Convolution (PConv),
conventional convolution is applied to only a portion of the
input channels for spatial feature extraction, with the remaining
channels left unchanged, as shown on the right side of Figure 1. For
continuous or regular memory access, the first or last continuous cp
channels are computed as a representation of the entire feature
map. Therefore, the Floating Point Operations (FLOPs) of a PConv
are significantly reduced, as indicated by the Eq. 9:

h × w × k2 × c2p (9)

With a typical partial ratio r � cp
c � 1

4, the FLOPs of a PConv is
only 1

16 of a regular Conv.To further reduce computational
redundancy and ensure model lightweighting, on one hand,
PConv applies convolution to only a subset of channels,
refining channel features. On the other hand, the CRU in the
subsequent SCF Block integrates the uneven channels from
Partial Conv, achieving better performance with fewer
parameters and more efficient computation, thus enhancing
the overall quality of the features.

To address the potential loss of important features due to
SCConv’s spatial information compression, we introduced an
Efficient Multi-Scale Attention (EMA) mechanism.

As shown on the right side of Figure 1, EMA reshapes part of the
channel dimensions into batch dimensions, avoiding dimensionality
reduction through standard convolution. This approach allows for
different strategies in parallel subnetworks to maximally preserve
multi-scale features of pathological sections. Moreover, EMA fuses
output feature maps of two parallel subnets using a cross-space
learning method, ensuring areas with potential targets in the final
output feature map have higher feature weights.

By adjusting channel dimensions and applying multi-scale
attention, EMA compensates for SCConv’s limitations in feature
extraction, enhancing the capture of key features, optimizing feature
representation, and improving the accuracy of medical image
segmentation, effectively addressing SCConv’s limitations in
handling fine-grained features.

The SCF Block represents a significant advancement in medical
image segmentation, offering a robust solution for reducing
redundancy while enhancing feature representation through
spatial-channel fusion. By integrating SCConv, EMA, and PConv,
it addresses the critical need for efficient, high-performance
segmentation in medical imaging. This module’s innovative
approach to capturing fine-grained details and dependencies not
only improves segmentation accuracy but also ensures the model’s
lightweight nature, making it an ideal choice for applications where
computational resources are limited.

3.4 Loss function

In this study, each image in the dataset is associated with a
corresponding binary mask. Skin lesion segmentation is treated as a
pixel-level binary classification task, distinguishing skin lesions from
the background. The combination of Binary Cross-Entropy (BCE)
loss and Dice similarity coefficient loss is used as the loss function to
optimize network parameters, effectively addressing the challenges
of skin lesion segmentation by balancing pixel-wise accuracy and
overlap between the predicted and ground truth masks.

The loss function is BceDice loss, which can be expressed by the
Eq. 10:

FIGURE 3
The architecture of Spatial and Channel Reconstruction Convolution.
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LBce � − 1
N

∑
N

i�1
yi log pi( ) + 1 − yi( )log 1 − pi( )[ ]

LDice � 1 − 2|X ∩ Y|
|X| + |Y|

LBceDice � α1LBce + α2LDice

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Where N is the total number of samples, yi is the real label,pi is
the prediction. |X| and |Y| represent ground truth and X ∩ Y
prediction, respectively. α1 and α2 refer to the weight of two loss
functions. In this paper, both weights are taken as one by default.

4 Experiment

4.1 Datasets

The segmentation tasks were conducted on the ISIC2017 [36] and
ISIC2018 datasets.Figure 4 showcasing a portion of the ISIC2017 and
ISIC2018 datasets. The International Skin Imaging Collaboration (ISIC)
dataset is a widely used open dataset in dermatological research. These
datasets aim to facilitate computer-assisted dermatology diagnosis and
research by providing a large collection of skin lesion images and related
clinical metadata, supporting the development and validation of
segmentation algorithms.

The ISIC2017 and ISIC2018 datasets contain 2,150 and
2,694 dermoscopic images with segmentation mask labels, respectively.
For experimental purposes, the datasets were randomly split into training
and testing sets at a 7:3 ratio. Specifically, the ISIC2017 dataset was divided
into 1,500 images for training and 650 for testing, while the
ISIC2018 dataset was divided into 1,886 images for training and
808 for testing. Comparative experiments were conducted on both
ISIC2017 and ISIC2018, with ablation studies performed on ISIC2018.

4.2 Implementation details

All experiments were implemented in the PyTorch framework
and conducted on an NVIDIA GeForce RTX 3070 Ti Laptop GPU

with 8 GB of memory. Based on experience, all images were
normalized and resized to 256 × 256, with data augmentation
techniques including vertical flip, horizontal flip, and random
rotation applied. The loss function used was the BceDice loss,
represented by Eq. 10. AdamW was used as the optimizer with
an initial learning rate of 0.001, employing a cosine annealing
scheduler for learning rate adjustment, with a maximum of
50 iterations, a minimum learning rate of 0.00001, training
epochs set to 300, and a batch size of 8.

Five metrics including Mean Intersection over Union (mIoU)
and Dice similarity score (DSC), Eq. 11 are used to measure
segmentation performances. In addition, Params is utilized to
indicate the number of parameters, and the unit is Million (M).
The computational complexity is calculated regarding the
number of floating point operators (GFLOPs). Note that the
parameters and GFLOPs of models are measured with 256 × 256
input size.

mIoU � TP

TP + FP + FN

DSC � 2TP
2TP + FP + FN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(11)

Where TP, FP, FN, TN represent true positive, false positive,
false negative, and true negative.

4.3 Comparsion with other methods

In comparative experiments, the proposed SCSONet demonstrated
significant advantages over advanced models like EGEUNet [37],
showcasing its lightweight nature with fewer parameters and
GFLOPs. Notably, SCSONet achieved the lowest GFLOPs among
skin disease segmentation methods, at only 0.056, highlighting its
efficiency. Figure 5 emphasized SCSONet’s reduced computational
demand, making it an ideal choice for resource-constrained
environments while maintaining high segmentation performance.

Table 1 showcase SCSONet’s performance against other
methods on the ISIC2017 and ISIC2018 datasets, illustrating its

FIGURE 4
A portion of the ISIC2017 and ISIC2018 datasets.
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state-of-the-art overall performance. Specifically, compared to larger
U-net models, SCSONet not only achieved superior performance
but also significantly reduced parameters and GFLOPs by 451× and
1,224×, respectively. It outperformed other lightweight models by
increasing mIoU by 7.56% over QGD-Net, with fewer parameters.

Surpassing EGEUNet, it demonstrated better results in mIoU and
DCS while reducing GFLOPs by 22.2%, able to train within 0.6 GB
of VRAM. Its effectiveness is showcased in Figures 5, 6.

The qualitative comparison results, as shown in Figure 7, involve
randomly selected test samples for qualitative evaluation. It is observed

FIGURE 5
Histogram visualization with the Y-axis set as a logarithmic scale comparison with other methods on parameters and FLOPs.

TABLE 1 Comparative experimental results on the ISIC2017 and ISIC2018 dataset.

Data Model Params GFLOPs mIoU (%) DSC(%)

ISIC2018 UNet (2015) 7.77 13.76 78.13 86.99

Unet++(2018) 9.16 34.86 78.92 87.83

TransFuse[38](2021) 26.16 11.5 80.63 89.27

FF-UNet (2022) 3.94 — 80.2 88.7

UNeXt-S (2022) 0.32 0.1 79.09 88.33

MALUNet (2022) 0.175 0.083 80.25 89.04

MAAU (2023)[39] 4.2 — — 88.1

AMCC-Net (2023)[40] 0.845 — — 89

SEACU-Net (2023)[41] 12.81 — — 87.58

EGE-Unet (2023) 0.053 0.072 80.94 89.46

SCSONet (ours) 0.149 0.056 80.99 89.5

ISIC2017 UNet (2015) 7.77 13.76 76.98 86.99

TransFuse (2021) 26.16 11.5 79.21 88.4

UNeXt-S (2022) 0.32 0.1 78.26 87.8

FAT-Net (2022)[42] 30 23 76.53 85

MALUNet (2022) 0.175 0.083 78.78 88.13

EGFNet (2022)[43] 0.52 — — 84.87

MMS-Net (2023)[44] 67.34 68.52 77.9 87.6

QGD-Net (2023)[45] 0.777 — 72.58 —

LCAUnet (2023)[46] 13.38 18.91 76.1 86.6

EGE-Unet (2023) 0.053 0.072 79.81 88.77

SCSONet (ours) 0.149 0.056 80.14 88.97

The bold values represent the optimal metrics.
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that SCSONet effectively differentiates between skin lesion areas and
normal skin, achieving more accurate target area localization and
boundary prediction compared to other models, which show issues
with over-segmentation and under-segmentation. These comparisons
demonstrate SCSONet’s effectiveness in skin lesion segmentation.

4.4 Ablation studies

As shown in Table 2, ablation studies were conducted to assess the
effectiveness of each module within the proposed method. MALUNet

served as the base model. Initially, ablation on the ConvStem module
showed significant improvements in mIoU and DSC with notable
reductions in parameters and GFLOPs, by replacing the first three
convolutional layers in the base with ConvStem. Subsequently,
replacing the base model’s last three layers with three SCF Blocks
similarly resulted in performance enhancement and reductions in
parameters and GFLOPs. The ablation study meticulously
demonstrates the significant contributions of key modules within
SCSONet—ConvStem and SCF—towards enhancing medical image
segmentation performance. The ConvStem module, by incorporating
Omni-Dimensional Dynamic Convolution (ODConv), significantly

FIGURE 6
Lightweight model performance comparison.

FIGURE 7
Comparison of segmentation results from different models on the ISIC2018 dataset and Grad CAM visualization (utilizing heatmaps to visualize the
network prediction process.
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enhances themodel’s capability to recognize the shapes of irregular lesion
areas, substantially improving the efficiency of primary feature extraction.
Meanwhile, the SCF module effectively reduces feature map redundancy
through spatial-channel feature fusion technology, further enhancing the
model’s segmentation precision and efficiency.Experimental results
indicate that the inclusion of each module positively impacts model
performance, particularly when used in combination, leading to optimal
performance in terms of mIoU and DSC, while also achieving a

significant reduction in the number of parameters and computational
costs. These findings not only validate the effectiveness of the ConvStem
and SCFmodules inmedical image segmentation tasks but also highlight
the potential application of our lightweight network architecture in
resource-constrained environments.Finally, for clearer visual
comparison, experimental results are shown in Figure 8.

In Table 3, we conduct micro ablations on SCF Block.Further
ablation studies within the SCF Block compared the effects of

TABLE 2 Objective evaluation results of the ablation study on the ISIC2018 benchmark.

Model Params GFLOPs mIoU (%) DSC(%)

Base 0.175 0.083 79.01 88.27

Base + ConvStem 0.164 0.057 80.02 89.01

BASE + SCF Block 0.150 0.078 80.48 89.19

Base + ConvStem + SCF Block 0.149 0.056 80.99 89.50

The bold values represent the optimal metrics.

FIGURE 8
The results of the ablation study on the ISIC2018.

TABLE 3 Comparison and ablation experiments within the SCF Block.

Model Params GFLOPs mIoU (%) DSC(%)

SCConv 0.131 0.072 79.20 88.42

SCConv + PConv 0.148 0.075 80.24 89.01

SCConv + DepthwiseSeparableConv 0.141 0.074 79.86 88.75

SCConv + Dilated convolution 0.181 0.082 79.14 88.32

SCConv + PConv + EMA 0.149 0.056 80.48 89.19

The bold values represent the optimal metrics.
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PConv, DepthwiseSeparableConv, and Dilated convolution. The
results highlighted PConv’s significant contribution to SCConv’s
performance enhancement, also confirming the role of EMA within
the SCF Block for improving the segmentation capabilities of
the network.

SCSONet stands out as the first lightweight model to reduce
GFlops to around 0.056 while maintaining exceptional segmentation
performance. Its effectiveness is showcased in Figures 5, 6, which
clearly present experimental results and segmentation outcomes,
respectively. Demonstrating robust performance on two public
datasets, SCSONet’s primary clinical application is to assist in
diagnosis, helping doctors quickly delineate focal areas or
enabling non-specialists to diagnose diseases rapidly. Deploying
this model in hospitals for semantic segmentation on small
datasets can achieve higher segmentation accuracy.

5 Conclusion and future works

In the field ofmedical image processing and analysis, hospitals often
rely on high-performance GPUs and large computational devices,
requiring substantial computational resources. However, for under-
resourced or remote medical facilities, limited computational resources
pose a significant barrier to implementing advanced medical image
analysis. This gap hinders the widespread adoption and application of
advanced medical imaging technologies, especially in regions that need
them most. And also, for rapid lesion detection and diagnosis in the
field or emergency situations, a model that can be easily integrated into
mobile devices is equally necessary.To address this challenge, this paper
proposes SCSONet, an innovative lightweight network architecture
comprising ConvStem, SCF Block, and skip connections, aimed at
bridging this gap by enabling efficient, high-quality medical image
analysis with lower computational demands.

The ConvStem module with full-dimensional attention effectively
enhances the recognition of irregularly shaped lesion areas while
reducing the model’s parameter count and computational load,
facilitating model lightweighting and performance improvement.
The SCF Block, through spatial and channel feature fusion,
efficiently reduces feature redundancy, significantly lowering
parameter count while improving segmentation results. It addresses
the challenges of resource-intensive traditional segmentation methods
and high hardware requirements, offering an efficient solution for skin
disease image segmentation tasks.

This study demonstrates the superior performance of the SCSONet
model through optimization of parameters and floating-point
operations (FLOPs), showcasing its strong generalizability and
adaptability compared to other advanced models, while significantly
reducing network parameters and computational costs. SCSONet
achieves competitive segmentation performance with only 0.149 M
parameters and 0.056GFLOPs, making it, to our knowledge, the first
model to operate under such low computational load. Notably,
SCSONet’s lightweight design allows it to be trained with just
0.6 GB of VRAM, a breakthrough feature that not only reduces the
dependence on high-performance computing resources but also offers a
new solution for medical image segmentation tasks in resource-limited
environments. This design focus underscores the innovativeness and
practical application value of our model, particularly in advancing
mobile health technology and remote medical services.

While SCSONet exhibits a notable reduction in parameters and
computational efficiency, it still has a gap compared to EGEUnet in
terms of parameter quantity. Additionally, the limited datasets used
for experiments and the model’s generalizability are areas for further
inquiry. Additionally, during multiple training sessions, there were
occasional instances of lower accuracy. This indicates that the model
may not consistently achieve the expected high precision under
certain specific datasets or training conditions, suggesting a
sensitivity to training data or a deficiency in the optimization
strategy under specific conditions. Although these instances are
rare, they must be taken seriously as they could affect the model’s
reliability and robustness in practical applications.

Future research should focus on extending the lightweight
architecture to additional semantic segmentation tasks, alongside
a thorough examination of its integration with hardware devices for
enhanced performance. Investigating advanced training techniques
and structural adjustments to the model will be crucial for
augmenting its adaptability and consistency across diverse
training scenarios. The ultimate objective is to refine
segmentation efficiency without compromising accuracy, thereby
rendering the model more effective for assisted diagnostics within
medical image analysis. This approach aims to strike a balance
between computational efficiency and diagnostic precision,
facilitating broader application in real-world clinical settings.
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