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Road surface detection plays a pivotal role in the realm of autonomous vehicle
navigation. Contemporary methodologies primarily leverage LiDAR for acquiring
three-dimensional data and utilize imagery for chromatic information. However,
these approaches encounter significant integration challenges, particularly due to
the inherently unstructured nature of 3D point clouds. Addressing this, our novel
algorithm, specifically tailored for predicting drivable areas, synergistically combines
LiDAR point clouds with bidimensional imagery. Initially, it constructs an altitude
discrepancy map via LiDAR, capitalizing on the height uniformity characteristic of
planar road surfaces. Subsequently, we introduce an innovative andmore efficacious
attention mechanism, streamlined for image feature extraction. This mechanism
employs adaptive weighting coefficients for the amalgamation of the altitude
disparity imagery and two-dimensional image features, thereby facilitating road
area delineation within a semantic segmentation framework. Empirical evaluations
conducted using the KITTI dataset underscore our methodology’s superior road
surface discernment and extraction precision, substantiating the efficacy of our
proposed network architecture and data processing paradigms. This research
endeavor seeks to propel the advancement of three-dimensional perception
technology in the autonomous driving domain.
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1 Introduction

In the evolving landscape of intelligent transportation, the escalating demand for
precision in perception algorithms renders single image sensor modalities inadequate.
Visual imagery is susceptible to ambient light intensity variations, where shadows cast by
tall structures and trees can precipitate algorithmic inaccuracies or omissions. In scenarios
devoid of depth information, conventional visual image-based algorithms exhibit limited
efficacy in discerning road edges and pedestrian crossings. Conversely, LiDAR radar,
impervious to lighting and shadows, provides high-precision environmental depth data,
enhancing detection stability significantly. Perceiving road information using LiDAR point
cloud, which is collected by LiDAR sensors, is both a challenging research area and a key
focus in the field.
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Several researchers have explored LiDAR-based road
information extraction techniques. Zhang et al. [1] utilized
Gaussian difference filtering for point cloud segmentation,
aligning the results with a model to isolate ground points. Chen
et al. [2], targeting lane edge information, segmented lanes post
feature extraction. Asvadi et al. [3] adopted segmented plane fitting
as their evaluative criterion. Wijesoma et al. [4] approached the
challenge by focusing on road edge detection, employing extended
Kalman filtering for lane edge feature extraction.

The fusion of LiDAR and camera data for road perception has
garnered increasing scholarly interest. The inherent disparity between
three-dimensional LiDAR point clouds and two-dimensional image
pixels presents a significant data space challenge. Innovative algorithms
have been developed to transform and densify sparse point cloud data
into continuous, image-like formats. Chen et al. [5] leveraged LiDAR’s
scanning angle data to create image-like representations from point
clouds. Thrun et al. [6] introduced a top-down radar feature
representation based on vertical point cloud distribution. Gu et al.
[7] employed linear upsampling for point cloud data preprocessing,
extracting features from the densified clouds for road perception.
Similarly, Fernandes et al. [8] utilized upsampling but projected the
point cloud onto the X-Y plane before extracting Z-axis height values.
Caltagirone et al. [9] generated a top view of point clouds by encoding
their average degree and density, facilitating road perception. Han X
et al. [10] and Liu Z et al. [11] further contributed with high-resolution
depth image generation and directional ray map implementation,
respectively.

Existing methods that densify point clouds into more manageable
data forms often lead to computationally intensive outputs,
compromising the real-time capabilities of the overall algorithm. To
address this, our paper introduces a novel method for 3D point cloud
conversion, leveraging weighted altitude differences. This approach not
only efficiently preserves essential road information but also enhances
the distinction between road and non-road areas.

In this study, we propose distinct fusion strategies at both the data
and feature levels, tackling the challenges posed by disparate sensor data
structures and varied road characteristics. Initially, we transform three-
dimensional point cloud data into a two-dimensional weighted altitude
difference map. This process, anchored on the uniform height variation
in flat road areas, not only retains crucial road features but also
facilitates data-level fusion. Subsequently, we introduce a LiDAR-
camera feature adaptive fusion technique. This innovative method
refines the semantic segmentation network encoder and integrates a
feature adaptive fusion module. This module, comprising an adaptive
feature transformation network and a multi-channel feature weighting
cascade network, adeptly linearly transforms LiDAR radar features.
These transformed features are then coalesced with visual image
features across multiple levels, achieving effective feature-level fusion
of multimodal data.

2 Weighted altitude difference map
based on point cloud data

2.1 Altitude difference map

The disparity between original LiDAR data and visual data
presents significant challenges in direct data fusion and feature

extraction. LiDAR data, comprising tens of thousands of points
in a three-dimensional space, assigns each point with 3D
coordinates (x, y, z). In contrast, visual data consists of an array
of pixels on a two-dimensional image plane, each pixel defined by an
RGB value. This fundamental difference in data space complicates
their direct integration.

In the context of road areas, the LiDAR point cloud exhibits a
unique smoothness compared to other objects. This smoothness is
evident as the road area’s point cloud in 3D space shows fewer
irregularities, unlike non-road areas and entities like vehicles and
pedestrians. The discontinuities in the point cloud bounding box are
more pronounced for these non-road elements. The road surface’s
smoothness is quantified by the minimal average altitude difference
between road surface points and their neighboring points.

Through the process of joint calibration parameters and sparse
point cloud densification, a detailed projection image of the dense
LiDAR point cloud is obtained. This involves projecting the 3D
coordinate vectors of the LiDAR points onto a 2D image plane,
resulting in varying shapes depending on the observation
coordinates along the X, Y, and Z-axes. By defining the X-Y
plane as the base, the Z-axis can be interpreted as the height
value of the point cloud, providing a crucial dimensional
perspective.

As shown in Figure 1A, the absolute value of the altitude
difference between two positions (such as Z0 and Zi in the
Figure 1) is calculated as the spatial displacement between them.
The specific formula for the altitude difference value gx,y located at
(x0, y0) is as follows:

gx,y � 1
M

∑
i

Zi − Z0| |

In the formula, Z0 represents the height on the Z-axis of the
point projected at the coordinate (x0, y0), Zi represents the height
on the Z-axis of other points in the neighborhood of point (x0, y0),
and M represents the total number of points to be considered in the
set neighborhood.

Finally, all calculated gx,y values are scaled between 0–255, and
the scaled gx,y is used as the gray value at point (x, y) on the image
to form a gray-scale image with the altitude difference value as the
pixel value. This can be regarded as a two-dimensional image plane
composed of the average altitude difference values of the projected
points. The resulting altitude difference gray-scale image is shown
in Figure 1B.

The relationship between the average altitude difference of a
point relative to its neighbors and the resultant grayscale value in the
converted height map is inversely proportional. As illustrated in
Figure 1B, an upright and sharply defined object will cast a
projection with a significant altitude difference on the image
plane. Consequently, the road area, characterized by minimal
intensity, appears darker in the image. In contrast, other objects
typically exhibit higher altitude values, resulting in more
pronounced intensity differences when compared to the road
area. This conversion from original 3D data to point cloud
altitude difference effectively encapsulates the road’s inherent
characteristics and smoothness present in the initial LiDAR data.
The height map thus produced simplifies the task for a deep
convolutional neural network model in discerning and
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identifying the road, enhancing the model’s ability to differentiate
between various features.

2.2 Weighted altitude difference map

The elevation difference image principally focuses on the height
variation between a central point and its surrounding points. Upon
examination, it becomes apparent that the low grayscale values in

road areas on this image stem from the negligible height changes
extending in all directions from any given point on the road, leading
to minimal elevation difference values. Conversely, the areas of
higher intensity on the elevation difference image are predominantly
located where road and non-road areas intersect. These high-
intensity regions usually align approximately along the Y-axis. A
marked change in elevation difference values is observed when
neighboring points along the X-axis direction are selected for
calculation, distinguishing them from the road surface area.

FIGURE 1
Altitude difference image conversion process. (A) The point cloud image, (B) the calculated altitude difference image.

FIGURE 2
Point cloud data conversion results, (A) is the RGB image, (B) is the original Altitude Difference Map, and (C) is the Weighted Altitude Difference
Map. (C) Contains more details, and the changes in height are more pronounced in the pixel values.
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To leverage this characteristic, we propose an enhanced
elevation difference conversion method. The novel formula for
calculating elevation difference values is structured to more
accurately reflect these spatial variations. This approach aims to
provide a clearer distinction between road and non-road areas,
improving the precision of the elevation difference image for
subsequent analysis and application. The new formula for
calculating elevation difference values is as follows:

gx,y � max
1
M

∑
i

γ1i · Zi − Z0| |, 1
M

∑
i

γ2i · Zi − Z0| |⎛⎝ ⎞⎠

γ1i � Sigmoid Xi −X0( ) + 0.5

γ2i � Sigmoid X0 −Xi( ) + 0.5

In the formula, X0 and X0 respectively represent the X-axis
coordinates of the center point and the neighborhood point, and γ1i
and γ2i are adaptive weight parameters. When the center point is
located in the road surface area, the introduction of new weight
calculation will not cause an increase in numerical intensity. When
the center point is located near the left or right boundary, the
characteristic of the drastic increase in elevation difference will be
amplified by one of the adaptive weight parameters γ1i and γ2i. The
amplified elevation difference value is selected as the output value,
and the contrast at the boundary of the resulting elevation difference
image will be more obvious.

When considering the altitude difference between the
neighborhood points and the center point, the altitude difference
changes of the points closer to the center point can better reflect the
overall flatness of the neighborhood. Therefore, the weight values of
the points closer to the center point should be increased. The
formula with the added distance weight is as follows:

gx,y � max ( 1
M

∑
i

γ1i ·
Zi − Z0| |�������������������

Xi −X0( )2 + Yi − Y0( )2
√

1
M

∑
i

γ2i ·
Zi − Z0| |�������������������

Xi −X0( )2 + Yi − Y0( )2
√ ⎞⎟⎟⎟⎠

Where, X0, Y0, Z0 respectively represent the X, Y, and Z-axis values
of the LiDAR point projected onto the point (x, y), and (Xi, Yi, Zi)
represent the X, Y, and Z-axis values of other points in the
neighborhood of the center point (x, y). In our refined approach
for calculating altitude differences, the inverse of the distance
between a certain LiDAR point and the center point is
incorporated. This modification places greater emphasis on the
contribution of points closer to the center, making their altitude

FIGURE 3
Feature adaptive fusion network.

FIGURE 4
FAFM.
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differences more pronounced. This technique effectively enhances
the distinction between road and non-road areas in the altitude
difference image. The impact on road surface points is minimal,
preventing any significant intensification in the overall image
intensity, while markedly increasing the visibility of non-road
surface areas.

For the conversion of point cloud data, we set a 5 × 5 grid
centered around (x, y) as the neighborhood range for each point.
Consequently, the maximum number of LiDAR points, M, required
for computation within this neighborhood is 24 (excluding the
center point itself). The algorithm’s computational complexity is
a function of the generated weighted height map’s dimensions
(length W and width H), as well as the number of neighborhood

points, M. As a result, the computational demand remains low,
ensuring the algorithm’s real-time performance efficacy. Figure 2
illustrates the outcome of this process: the first row depicts the
original RGB image, the second row shows the LiDAR point cloud
data, and the third row presents the adaptive weighted altitude
difference image. This transformation process converts the initially
unordered and sparse point cloud information into a structured,
regular two-dimensional image format, where each pixel’s grayscale
value corresponds to the weighted altitude difference at
that location.

3 Feature adaptive fusion network

To integrate the transformed 3D point cloud data with visual
image data for better road surface recognition results, we
designed a dual-source feature adaptive fusion network, as
shown in Figure 3.

The diverse input data sources within our network contribute to
a notable disparity between features extracted from the altitude
difference map and those derived from visual images. This disparity
presents a challenge to the effective fusion of LiDAR and vision

FIGURE 5
Pavement recognition results before and after optimization.

TABLE 1 Perception algorithm accuracy statistics results.

MaxF (%) AP (%) PRE (%) REC (%)

Image 87.90 90.92 86.66 89.18

Image + WADM 89.39 91.18 88.91 89.87

Image + WADM +
FAFM

92.34 92.61 92.65 92.04

FIGURE 6
Road perception results before and after optimization on real data.
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features, hindering seamless integration. To address this challenge,
we have devised a methodology for refining features extracted from
LiDAR point cloud data. This refinement process enhances the
compatibility and synergistic enhancement of LiDAR features with
visual features, consequently bolstering road perception
performance based on visual inputs.

To materialize this approach, we have developed the Feature
Adaptive Fusion Module (FAFM), a novel component comprising
two essential elements: the Feature Transformation Network (FTN)
and a multi-channel feature weighting cascaded network. The FTN is
specifically engineered to adapt LiDAR-derived features to align more

cohesively with visual features, facilitating a smoother integration process.
Meanwhile, the multi-channel network orchestrates the weighted
amalgamation of these refined features. The overarching architecture,
illustrated in Figure 4, delineates a sophisticated system that harmoniously
leverages the strengths of both LiDAR and visual data for superior road
perception capabilities.

3.1 Feature transformation network

The primary objective of the Feature Transformation Network
(FTN) is to conduct a linear transformation of LiDAR-derived
features, generating new features that exhibit similarity and
compatibility with visual image features. This linear
transformation is achieved through the following formula:

f FTN Flidar( ) � αFlidar + β

Where, Flidar represents the lidar features, α represents the weight,
and β represents the offset. To estimate α and β reasonably and
achieve a better fusion of the two features, this paper introduces a
feature transformation network to learn and adapt to the lidar
features. The following feature transformation network is used to
estimate α and β:

α � f α Flidar, Fimage;Wα( )
β � f β Flidar, Fimage;Wβ( )

Fimage represents the visual image features, fα represents the
network function that calculates α, and f β represents the network
function that calculates β. Wα and Wβ are the weight parameters of
the corresponding networks. The weight values Wα and Wβ are
constantly updated during the entire network training process,
which makes the estimated weight α and offset β more reasonable.

FIGURE 7
Training process diagram. The figure shows the changes in AP
during the training process. The model quickly converged to a
relatively high level after 50 epochs, and finally completed training
after about 240 epochs.

FIGURE 8
Comparison of different algorithms. We used MaxF and AP, the two most significant parameters, as comparison metrics. Our algorithm exhibited a
considerable advantage in MaxF and achieved a second-best performance in AP.
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The number of output channels for each layer is unified to
256. Flidar and Fimage are input into the transformation network
and their channels are stacked. Two 1 × 1 convolution kernels
are used in the transformation network to implement fα and fβ.
The stacked input of Flidar and Fimage channels is used as input
because the 1 × 1 convolution kernel does not change the size of
the input feature map. The output is a 256-dimensional weight
vector and an offset vector. To avoid introducing too much
computational burden, no activation function is added in the
transformation network. On the other hand, because the
expression ability of the linear model is not sufficient, (α + 1)
is selected as the final weight vector to introduce nonlinear
factors into the network.

3.2 Multi-channel feature weighted
cascade network

The fusion function is achieved by taking the visual image
features and the transformed lidar features as inputs, as
shown below:

f kfuse � Fkimage + λf kFTN Fklidar( )
In the context of the road detection system, let k denote the features

from the kth convolution stage of the Deep Convolutional Neural
Network (DCNN), and λ represent a weight parameter. Semantic
segmentation heavily relies on information provided by visual image
features, with added lidar point cloud features serving as supplementary
data. However, experiments have demonstrated that an excessively large
proportion of lidar point cloud features can impact the expression of
image features, leading to a reduction in semantic segmentation accuracy.
Conversely, when the proportion of lidar point cloud features is too small,
the effect on algorithmic accuracy optimization is not significant. Optimal
balance is achieved when the value of λ is approximately 0.1, resulting in
the highest accuracy (subsequent experiments were conducted under the
condition of λ = 0.1).

4 Experiments and results

This paper’s experimental evaluation comprises two distinct
parts: 1) assessing the efficacy of fusing point cloud altitude

FIGURE 9
Comparison of lane boundary recognition effects. (A) DeepLabV3 (B) Ours.

TABLE 2 Statistical results of lane extraction accuracy evaluation parameters.

Methods Input MaxF (%) AP (%) PRE (%) REC (%)

DeeplabV3+ [12] Image 90.66 88.23 90.81 90.51

LoDNN [13] LiDAR 94.07 92.03 92.81 95.37

LidCamNet [14] Image + LiDAR 96.03 93.93 96.23 95.83

SNE-RoadSeg, [15] Image + LiDAR 96.42 93.67 96.59 96.26

USNet [16] Image + LiDAR 96.46 92.78 96.32 96.6

SAR-Net [17] Image + LiDAR 96.51 92.57 97.36 96.66

Ours Image + LiDAR 96.72 93.74 96.76 96.68

The bolded data represent the best results among the comparison algorithms.
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difference data with the feature-adaptive module; 2) benchmarking
the recognition accuracy against other leading road detection
algorithms.

(1) In the first part, we conducted quantitative assessments of our
algorithm’s enhancement in road perception accuracy on the
public KITTI dataset. We configured three distinct network
structures for this purpose: 1) Image: inputs only the visual
image, representing the baseline unoptimized network; 2)
Image + WADM (Weighted Altitude difference Map):
combines the visual image with the adaptive weighted
altitude difference map; 3) Image + WADM + FAFM:
integrates the visual image and the adaptive weighted
altitude difference map, incorporating the feature-adaptive
fusion network for a fully optimized algorithm.

As depicted in Figure 5, the results before and after optimization
reveal notable differences. The unoptimized road perception algorithm
shows marginally weaker semantic segmentation, influenced more
significantly by shadows and background luminosity. However, the
optimizations, specifically the altitude difference conversion and
feature-adaptive fusion, markedly enhance segmentation accuracy.
These optimizations address semantic segmentation blurring due to
shadows and object occlusion, improving the delineation of
segmentation boundaries and the accuracy of distant object
perception. Additionally, the integration of LiDAR data bolsters the
segmentation effects across various environmental objects.

We further analyzed the performance enhancement of the
altitude difference weighted transformation and feature adaptive
fusion network. Comparative experiments were conducted
under three scenarios, with statistical analyses of various

performance metrics tabulated in Table 1. The results affirm
that both improvements substantially optimize the algorithm.
We used parameters such as MaxF, AP, PRE, and REC to
evaluate the algorithm. Their meanings are as follows: MaxF
stands for Maximum F1-measure; AP refers to Average
Precision as used in PASCAL VOC challenges; PRE indicates
Precision; and REC denotes Recall. Notably, the Image +
WADM network configuration enhanced the MaxF by 1.49%
compared to the baseline, underscoring the significant impact of
incorporating LiDAR point cloud information. This addition
also positively influenced other parameters, evidencing the
improved robustness of the algorithm. The final algorithm
model (Image + WADM + FAFM) exhibited the best
performance overall, with notable advancements in recall rate
and a more balanced performance across all parameters. This
underscores the effectiveness and necessity of the feature-
adaptive fusion network, confirming its pivotal role in
enhancing the algorithm’s overall robustness.

In addition, we tested the road perception accuracy of the
algorithm before and after full optimization in a real
environment. In Figure 6, the first column shows the original
visual image (a) in the input network, the second column shows
the road perception result under the Image condition (b), and the
third column shows the road result under the Image + WADM +
FAFM condition (c).

The road perception algorithm designed in this study performs
well on both simple and complex structured roads. Compared with
the algorithm before optimization, the proposed improvement
scheme has improved the accuracy of the algorithm perception
and has better robustness under different road conditions. The lane
segmentation results are more detailed.

FIGURE 10
Comparison of lane and sidewalk segmentation effects. (A) DeepLabV3 (B) Ours.
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(2) In the lane boundary recognition accuracy experiment, the
efficacy of our proposed algorithm was benchmarked against
other leading algorithms on the KITTI road dataset. The training
process is shown in Figure 7. As detailed in Figure 8; Table 2, our
algorithm demonstrates substantial improvements across all
accuracy parameters. However, it’s noteworthy that the
incorporation of two DCNN networks and the fusion
network has resulted in a decrease in algorithm speed.

When comparing specific inputs, the LoDNN network, which
solely relies on point cloud data, and the DeeplabV3+, which only
uses image data, both fall short in overall accuracy compared to
algorithms that integrate Image + LiDAR inputs. Among algorithms
that employ visual image and LiDAR point cloud data fusion,
including LidCamNet, SNE-RoadSeg, USNet, SARNet, and our
proposed algorithm, ours shows superior performance in MaxF,
PRE, and REC parameters. Although it slightly lags behind
LidCamNet in the AP parameter, it maintains a competitive edge.

Based on the subjective and objective evaluation indicators of
comprehensive road perception and lane extraction, it can be proved
that the algorithm proposed in this paper not only takes into account
the effect of road perception, but also has high-precision lane extraction
capability.

Our proposed up-sampling network, an enhancement of the
Deeplabv3+ network, underwent comparative experiments with
the original network. The detailed results, as shown in Figure 9,
highlight the algorithm’s proficiency. The original image data,
road perception results, and lane boundary details are
sequentially presented. The proposed algorithm excels at
delineating the intersection between lanes and other objects,
yielding more precise lane extraction results. This
improvement is attributed to the addition of lane edge
constraints when converting LiDAR point cloud data into a
weighted altitude difference map. This enhancement clarifies
lane edge features, heightening their distinctiveness from other
objects and facilitating the network’s ability to extract the lane
area, thereby improving lane recognition accuracy.

In Figure 10, a comparative analysis of segmentation results between
two algorithms for lanes and sidewalks underscores our algorithm’s
superior detection capabilities, even with distant objects. It achieves
precise segmentation of lanes and sidewalks, thus significantly
enhancing the accuracy of road segmentation at extended distances.

5 Summary

In this study, we meticulously preprocessed the LiDAR point
cloud data by removing noise points and optimizing the information
within the cloud. This refined 3D point cloud was then projected onto
the image plane using specific calibration parameters. A pivotal
method based on weighted altitude difference was developed for
converting the LiDAR point cloud data. This technique harnessed
the height consistency characteristic of flat road areas to extract an
altitude difference map from the LiDAR-derived height map. We
integrated neighborhood point distance constraints and road
boundary point constraints, culminating in the formation of a
detailed weighted height map. This innovative approach
transforms 3D point cloud data into 2D weighted height map

data, adeptly preserving road surface characteristics and
accentuating road boundary features. This transformation lays a
solid foundation for subsequent fusion with visual imagery. The
incorporation of spatial point coordinate information in the point
cloud data, coupled with boundary constraints during the conversion
process, enabled the explicit representation of road boundary features.
This enhancement made the delineation between road and non-road
areas more pronounced, greatly benefiting the feature extraction
capabilities of subsequent semantic segmentation networks.
Additionally, the weighted altitude difference map addresses the
susceptibility of visual images to lighting and shadow effects. It
remains effective even under challenging conditions of strong light
and shadow occlusion, consistently conveying comprehensive road
information. The integration of this weighted altitude difference map
has significantly bolstered the accuracy of our road perception
algorithm, marking a substantial advancement in the field.
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