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Backgroud and objectives: The implementation of patient-specific quality
assurance (PSQA) has become a crucial aspect of the radiation therapy
process. Machine learning models have demonstrated their potential as virtual
QA tools, accurately predicting the gamma passing rate (GPR) of volumetric
modulated arc therapy (VMAT)plans, thereby ensuring safe and efficient
treatment for patients. However, there is limited multi-center research
dedicated to predicting the GPR. In this study, a dosiomics-based machine
learning approach was employed to construct a prediction model for
classifying GPR in multiple radiotherapy institutions. Additionally, the model’s
performance was compared by evaluating the impact of two distinct feature
selection methods.

Methods: A retrospective data collection was conducted on 572 VMAT patients
across three radiotherapy institutions. Utilizing a three-dimensional dose
verification technique grounded in real-time measurements, γ analysis was
conducted according to the criteria of 3%/2 mm and 2%/2 mm, employing a
dose threshold of 10% along with absolute dose and global normalization mode.
Dosiomics features were extracted from the dose files, and distinct subsets of
features were selected as inputs for the model using the random forest (RF) and
RF combined with SHapley Additive exPlanations (SHAP) methods. The data
underwent training using the extreme gradient boosting (XGBoost) algorithm,
and the model’s classification performance was assessed through F1-score and
area under the curve (AUC) values.

Results: The model exhibited optimal performance under the 3%/2 mm criteria,
utilizing a subset of 20 features and attaining an AUC value of 0.88 and an F1-
score of 0.89. Similarly, under the 2%/2 mm criteria, the model demonstrated
superior performance with a subset of 10 features, resulting in an AUC value of
0.91 and an F1-score of 0.89. The feature selectionmethods of RF and RF + SHAP
have achieved good model performance by selecting as few features as possible.

Conclusion: Based on the multi-center PSQA results, it is possible to utilize
dosiomics features extracted from dose files to construct a machine learning
predictive model. This model demonstrates excellent discriminative abilities, thus
promoting the progress of gamma passing rate prognostic models in clinical

OPEN ACCESS

EDITED BY

Ruijie Yang,
Peking University Third Hospital, China

REVIEWED BY

Wei Wei,
Hubei Cancer Hospital, China
Xiadong Li,
Hangzhou Cancer Center, China
Fada Guan,
Yale University, United States

*CORRESPONDENCE

Xiaohua Yang,
xiaohua1963@usc.edu.cn

Luqiao Chen,
m19186599706@163.com

RECEIVED 18 February 2024
ACCEPTED 08 May 2024
PUBLISHED 21 May 2024

CITATION

Ni Q, Chen L, Tan J, Pang J, Luo L, Zhu J and
Yang X (2024), Predicting the PSQA results of
volumetric modulated arc therapy based on
dosiomics features: a multi-center study.
Front. Phys. 12:1387608.
doi: 10.3389/fphy.2024.1387608

COPYRIGHT

© 2024 Ni, Chen, Tan, Pang, Luo, Zhu and Yang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 21 May 2024
DOI 10.3389/fphy.2024.1387608

https://www.frontiersin.org/articles/10.3389/fphy.2024.1387608/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1387608/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1387608/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1387608/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1387608&domain=pdf&date_stamp=2024-05-21
mailto:xiaohua1963@usc.edu.cn
mailto:xiaohua1963@usc.edu.cn
mailto:m19186599706@163.com
mailto:m19186599706@163.com
https://doi.org/10.3389/fphy.2024.1387608
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1387608


application and implementation. Furthermore, it holds potential in providing
patients with secure and efficient personalized QA management, while also
reducing the workload of medical physicists.
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1 Introduction

The treatment of tumors has increasingly become a
multidisciplinary collaboration. Radiation therapy, as an
important method in tumor treatment, will continue to play a
key role in treating various tumor diseases with technological
innovation and development [1]. Volumetric modulated arc
therapy (VMAT) is an emerging technique in intensity-
modulated radiation therapy (IMRT). Compared to traditional
IMRT, VMAT not only shortens treatment time but also
significantly improves dose coverage in the target area and
protection of normal tissues [2–4]. Due to the complexity of
VMAT treatment, implementing patient-specific quality
assurance (PSQA) before treatment is crucial. It ensures that the
VMAT treatment plan is implemented as expected and verifies the
accuracy of dose calculation and beam model in the treatment
planning system (TPS) [5]. Currently, the standard workflow for
PSQA of intensity-modulated radiation therapy plans relies on
technology based on actual measurements of phantoms. It
compares the dose calculation results in the TPS with
measurements on phantoms to determine if the plan is suitable
for treatment [6, 7]. Gamma analysis is commonly used to evaluate
the difference between calculated and measured doses. It
quantitatively assesses regions that pass or fail the criteria [8].
Performing PSQA based on phantom measurements involves
several processes: dose calculation on the phantom using the
treatment plan parameters to generate a PSQA plan, data
transfer of the PSQA plan, positioning of verification equipment,
beam delivery, and gamma analysis. These repetitive tasks not only
increase the workload of medical physicists but may also delay the
patient’s first treatment. Previous studies have shown a correlation
between plan complexity metrics and gamma passing rate (GPR),
which is expected to optimize the PSQA process [9, 10].

In recent years, artificial intelligence (AI) has shown great
potential in the clinical workflow of radiation therapy, thanks to
the rapid development of computer technology. This includes tasks
such as image reconstruction, image registration, target delineation,
automated planning, automatic QA, and treatment efficacy
evaluation [11, 12]. Deep learning and machine learning models
have the potential to become accurate and time-saving virtual QA
tools, making the QA process more efficient and effective [13, 14].
Several studies have used plan complexity parameters to predict
GPR in VMAT with good accuracy [15–17]. However, there is
limited research on predicting and classifying GPR using multi-
institutional data. Valdes et al. [18, 19] extracted 78 plan complexity
metrics for each IMRT plan and developed a lasso regularized
Poisson regression model to predict GPR. The error for all
analyzed plans was less than 3% under the 3%/3 mm gamma
criterion. They validated this approach using 139 IMRT

measurement data from different institutions, accurately
predicting GPR across multiple institutions and measurement
techniques. Yang et al. [20] used 54 complexity metrics to
validate GPR prediction and classification accuracy for different
delivery devices, QA equipment, and treatment planning systems.
The average absolute error and root mean square error in the multi-
institutional validation were between 2.42%–4.60% and 2.83%–
4.95%, respectively, under the 3%/2 mm criterion. The sensitivity
and specificity were 90% and 70.1%, respectively. Independent end-
to-end testing showed a deviation within 3% between predicted and
measured results.

The multicenter data employed in the GPR prediction model
confers greater representativeness, thus enhancing its applicability
and reliability. Furthermore, radiomics features encompass semi-
quantitative and/or quantitative characteristics extracted from
radiographic images. When integrated with AI, they hold the
potential to facilitate the practical implementation of precision
medicine in radiation therapy [21]. Dosiomics features, on the
other hand, refer to radiomics features extracted based on dose
distribution. However, the applicability of utilizing dosiomics
features to construct predictive models for GPR classification
across multiple institutions remains uncertain.

In this study, we utilized dosiomics features based on dose files
as inputs to construct machine learning classification models for
predicting VMAT PSQA results. The data used in the study was
collected from three radiation therapy institutions. To account for
the high-dimensional nature of dosiomics features, we employed
two different feature selection methods and compared their impact
on the performance of the models.

2 Materials and methods

2.1 Data collection

This study retrospectively collected data from 572 VMAT
patients from three different radiation therapy institutions
(Institution 1: Hunan Cancer Hospital, Institution 2:Yueyang
Central Hospital, Institution 3: Changde First People’s Hospital).
Among them, there were 174 cases of head and neck tumor plans,
141 cases of chest tumor plans, 24 cases of abdominal tumor plans,
223 cases of pelvic tumor plans, and 10 cases of other plans. The
specific distribution is as follows: 213 VMAT plans from institution
1 underwent dose validation using Monaco (Elekta, Sweden) and
Eclipse (Varian, United States) Treatment Planning Systems (TPS)
on the ArcCHECK (Sun Nuclear, United States) platform,
subsequently executed on the Axesse (Elekta, Sweden) and
Trilogy (Varian, United States) linear accelerators. Likewise,
institution 2’s 200 VMAT plans were dose validated on the
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TABLE 1 Distribution of data among three radiation therapy institutions.

Number Percentage (%)

Disease site Head and Neck 174 30.42

Chests 141 24.65

Abdomen 24 4.19

Pelvis 223 38.99

Other 10 1.75

Radiotherapy machines Trilogy 291 50.87

Infinity 200 34.97

Axesse 81 14.16

TPS Eclipse 291 50.87

Monaco 281 49.13

QA equipment ArcCHECK 372 65.03

Compass 200 34.97

Dose calculation algorithm AAA/AXB 291 50.87

XVMC 281 49.13

Abbreviation: AAA, Anisotropic Analytical Algorithm; AXB, Acuros External Beam; XVMC, X-ray voxel Monte Carlo.

TABLE 2 GPR data and classification of different radiotherapy institutions.

3%/2 mm 2%/2mm

Institution 1
(n = 213)

Institution 2
(n = 200)

Institution 3
(n = 159)

Institution 1
(n = 213)

Institution 2
(n = 200)

Institution 3
(n = 159)

Mean value of
GPR (%)

96.40 96.41 97.55 91.68 92.52 93.35

Sample size of
“pass"

149 130 142 133 128 124

Sample size of
“failure"

64 70 17 80 72 35

FIGURE 1
Workflow diagram for constructing GPR prediction model.
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Compass (IBA, Belgium) system, employing Monaco TPS, and
delivered on the Infinity (Elekta, Sweden) linear accelerators.
Institution 3’s 159 VMAT plans underwent dose validation using
Eclipse TPS on the ArcCHECK device, and were administered on
the Trilogy linear accelerators. The dose calculation grid resolution
in the Eclipse and Monaco TPS was set to 3.0 mm, the Monaco TPS
was a Monte Carlo algorithm, and the dose uncertainty was set to
1%. Regular checks and calibrations were conducted on the linear
accelerators and verification devices during the measurement period
to ensure their good performance. Please refer to Table 1, 2 for
detailed distribution of the research data.

According to the recommendations of the American
Association of Physicists in Medicine (AAPM) Task Group
218 report [22], gamma analysis was performed in the modes of
absolute dose, global normalization, and 10% dose threshold. The
mean ± standard deviation of the GPR data measured in this study,
under the 3%/2 mm and 2%/2 mm criteria, were 96.72% ± 2.10%

and 92.43% ± 4.49%, respectively. To construct the GPR
classification prediction model, a tolerance threshold was
introduced to classify the measurement results. In this study, the
99% confidence level of the average measured GPR value was used as
the tolerance threshold [23]. When the measured GPR exceeded this
tolerance threshold, the result was labeled as “pass” and denoted as
“1"; otherwise, the result was labeled as “failure” and denoted as “0".
Figure 1 illustrates the workflow for establishing the GPR
classification prediction model.

2.2 Feature extraction

In this study, the region for extracting dosiomics features was
determined by importing the RT dose files of each VMAT plan using
3D Slicer 5.0.2. This region encompassed the range covered by the
isodose line, specifically 10% of the maximum dose. A Gaussian

TABLE 3 Number of radiomic features extracted based on RT dose.

Shape Firstorder GLCM GLSZM GLRLM NGTDM GLDM Total

Original 14 18 24 16 16 5 14 107

Wavelet/LOG \ 18 24 16 16 5 14 93

Wavelet includes eight combinations of high-pass and low-pass filters, while LoG includes three combinations with different sigma parameters.

TABLE 4 Top ten important features after feature selection based on 3%/2 mm criteria.

Feature selection method Serial number Feature name (3%/2 mm)

RF 0 wavelet-HHL_glcm_Correlation

1 wavelet-HHL_glcm_Contrast

2 log-sigma-3-0-mm-3D_glszm_ZonePercentage

3 wavelet-HHL_glcm_Imc2

4 log-sigma-2-0-mm-3D_glcm_MaximumProbability

5 log-sigma-3-0-mm-3D_glrlm_HighGrayLevelRunEmphasis

6 wavelet-HHL_gldm_DependenceVariance

7 wavelet-LHL_glszm_SmallAreaHighGrayLevelEmphasis

8 wavelet-HHL_glcm_MaximumProbability

9 log-sigma-3-0-mm-3D_glrlm_RunEntropy

RF + SHAP 0 log-sigma-3-0-mm-3D_glszm_ZonePercentage

1 wavelet-HHL_glcm_Correlation

2 wavelet-LHL_glszm_SmallAreaHighGrayLevelEmphasis

3 log-sigma-3-0-mm-3D_gldm_HighGrayLevelEmphasis

4 log-sigma-3-0-mm-3D_glrlm_LowGrayLevelRunEmphasis

5 log-sigma-3-0-mm-3D_glrlm_HighGrayLevelRunEmphasis

6 log-sigma-2-0-mm-3D_glrlm_GrayLevelVariance

7 log-sigma-2-0-mm-3D_glcm_SumEntropy

8 log-sigma-3-0-mm-3D_gldm_SmallDependenceEmphasis

9 wavelet-HHL_glcm_Contrast
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smoothing filter with a standard deviation of two pixels was used for
each image in determining the feature extraction range to reduce
image noise. All the images were resampled using B-spline
interpolation algorithm to standardise the computation of
features and resampled Pixel Spacing was set to 1 × 1 × 1 mm3.
To eliminate the effect of different grey scale ranges and to ensure
better comparability, discretisation was performed using a fixed bin
width of 25 HU. The feature extraction process employed the
radiomics library in Python 3.7, encompassing various image
types such as original images (Original), wavelet-transformed
images (Wavelet), and Gaussian-filtered images (LoG). A total of
1,130 features were extracted, which can be categorized into seven
different types: shape features (2D/3D), first-order features, gray
level cooccurrence matrix features (GLCM), gray level size zone
matrix features (GLSZM), gray level run length matrix features
(GLRLM), neighboring gray tone difference matrix features
(NGTDM), and gray level dependence matrix features (GLDM),
as presented in Table 3.

2.3 Dataset partitioning and processing

The entire dataset is randomly divided, with 90% of the data
(514 plans) used as the training dataset, and the remaining 58 plans
reserved solely for model performance evaluation. Given the
inherent imbalance in the data, a stratified sampling technique

was employed during the dataset partitioning process to ensure
that the proportions of different data classes in the training and
testing sets remained consistent with the original data. The data was
then standardized using Eq. 1.

χ � Χ − μ( )
σ

(1)

Where χ is the value after normalization, Χ is the original
value, μ is the mean of each feature class, and σ is the standard
deviation for each feature class. Before applying this
transformation to the test set, the training set was subjected to
standardization to prevent any potential information leakage
from the test data.

2.4 Feature selection

Feature selection is a crucial step in building machine learning
predictionmodels based on dosiomics due to the high dimensionality of
dosiomics features. It helps address challenges associated with high-
dimensional data, such as reducing training time and improving model
interpretability and predictive performance [24]. RandomForest (RF) is
an extraordinary ensemble technique that combines multiple decision
trees, wherein each tree relies on the values of independently sampled
random vectors. It is worth noting that all trees within the forest share
the same distribution [25]. RF can be used as a feature selectionmethod

TABLE 5 Top ten important features after feature selection based on 2%/2 mm criteria.

Feature selection method Serial number Feature name (2%/2 mm)

RF 0 wavelet-HHL_glcm_Correlation

1 wavelet-HHL_glcm_Contrast

2 wavelet-HHL_glcm_DifferenceAverage

3 wavelet-HHL_glcm_ClusterTendency

4 wavelet-HHL_glcm_Idm

5 wavelet-HHL_glcm_MCC

6 wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis

7 wavelet-HHL_glrlm_RunLengthNonUniformityNormalized

8 log-sigma-3-0-mm-3D_glrlm_RunEntropy

9 wavelet-HHL_glcm_MaximumProbability

RF + SHAP 0 wavelet-HHL_glcm_Correlation

1 wavelet-HHL_glcm_Contrast

2 wavelet-HHL_glcm_Idm

3 wavelet-HHL_glcm_ClusterTendency

4 wavelet-HHL_glcm_DifferenceAverage

5 wavelet-HHL_glcm_MCC

6 wavelet-LLH_gldm_LargeDependenceHighGrayLevelEmphasis

7 log-sigma-4-0-mm-3D_glrlm_RunEntropy

8 log-sigma-3-0-mm-3D_glrlm_RunEntropy

9 wavelet-HHL_glrlm_RunLengthNonUniformityNormalized

Frontiers in Physics frontiersin.org05

Ni et al. 10.3389/fphy.2024.1387608

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1387608


by calculating the importance of each feature in the dataset and sorting
them in descending order. In addition to RF, this study incorporates the
use of SHAP (SHapley Additive exPlanations) values for feature
selection. SHAP values assign importance to features based on their
contributions to themodel’s output. A feature selection algorithm based
on SHAP values can yield good results [26]. RF + SHAP is defined as a
feature selection method for RF algorithms combined with SHAP. The
process begins by inputting the training dataset into the RF model.
Then, the SHAP values for each feature in the samples are calculated to
measure their importance. Finally, the features are sorted in descending
order based on their SHAP values [27]. The SHAP value of feature i was
defined as Eq. 2.

ϕi� ∑
S⊆N\ i{ }

S| |! N| | − S| | − 1( )!
N| |! ] S ∪ i{ }( ) − ] S( )( ) (2)

Where N denotes the feature sets of the original data and S
represents any feature subset in N. S ⊆ N\ i{ } represents a subset of

all elements in the sequence before feature i, ](S) represents the
output of a machine learning model for a feature subset S, and
](S ∪ i{ }) − ](S) denotes the cumulative contribution of feature i.
After feature selection, the new index of the selected features is set to
start counting from the number 0. The purpose of feature selection is
to identify a small number of important features in order to achieve
better model performance. In this study, the first 50 features were
selected as inputs to construct a GPR classification prediction model
(See Supplementary Material sheet). Specifically, subsets of 10, 20,
30, 40, and 50 important features were selected for each of the two
feature selection methods, based on different γcriteria, to train a
given machine learning model. This resulted in a total of
20 combinations, all of which underwent grid search and five-
fold cross-validation on the training set to obtain the model with
the highest performance parameters. This model was then applied to
the test dataset. Finally, the impact of the two feature selection
methods and different feature quantities on the performance of the
classification model was evaluated.

FIGURE 2
ROC curves under different γ criteria and subset size of 10,20,30,40,50, where (A, B) represent feature selection using RF and RF + SHAP methods,
respectively, under the 3%/2 criterion, and (C, D) represent feature selection using RF and RF + SHAP methods, respectively, under the 2%/2 criterion.
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2.5 Model training and evaluation

In this study, the data training was conducted using the extreme
gradient boosting (XGBoost) algorithm. XGBoost is an expandable tree
boosting system that utilizes the entire dataset for each decision tree
generation. It takes into account the residuals between the prediction
results of the previous decision tree model and the actual results during
the generation of subsequent decision trees. XGBoost demonstrates
high precision and effectively mitigates overfitting while supporting
parallelization [28]. The performance of the binary classification model
was evaluated using the F1-score, receiver operating characteristic
(ROC) curve, and the area under the ROC curve (AUC). The ROC
curve is a graphical representation that plots the false positive rate on the
x-axis and the true positive rate on the y-axis, at different threshold
values. The F1-score is defined as in Eqs. 3–5:

precision � TP

TP + FP( ) (3)

recall � TP

TP + FN( ) (4)

F1 − score � 2* precision*recall( )
precision + recall

(5)

TP, FP, TN and FN represent the number of positive samples
predicted positive, number of negative samples predicted positive,
number of negative samples predicted negative, and number of

positive samples predicted negative, respectively. In assessing the
model’s performance, greater values of AUC and F1-score are
indicative of better performance. All modeling and analysis
procedures were executed using Python 3.7.

3 Results

3.1 The results of feature selection

Feature selection was conducted separately using the RF and
RF + SHAP methods on the training set to derive distinct subsets

TABLE 6 F1-scores under different γ criteria.

Feature selection method Number of features 3%/2 mm 2%/2 mm

Recall Precision F1-score Recall Precision F1-score

RF 10 0.88 0.84 0.86 0.90 0.88 0.89

20 0.95 0.84 0.89 0.87 0.79 0.83

30 0.91 0.83 0.87 0.90 0.80 0.84

40 0.88 0.83 0.85 0.90 0.83 0.86

50 0.91 0.83 0.87 0.85 0.79 0.81

RF + SHAP 10 0.91 0.78 0.84 0.85 0.77 0.80

20 0.98 0.88 0.92 0.90 0.80 0.84

30 0.98 0.81 0.88 0.87 0.79 0.83

40 0.91 0.89 0.90 0.87 0.83 0.85

50 0.93 0.82 0.87 0.90 0.83 0.86

TABLE 7 Hyperparameter values obtained from the best model for different
criteria.

Hyperparameters 3%/2 mm 2%/2 mm

RF RF + SHAP RF RF + SHAP

learning_rate 0.05 0.1 0.1 0.05

n_estimators 120 80 280 130

max_depth 3 4 11 8

subsample 0.8 0.7 0.8 0.6

FIGURE 3
The top ten ranked features of the best predictive model under
the conditions of 3%/2 mm. Note:Feature15:log-sigma-3-0-mm-
3D_gldm_HighGrayLevelEmphasis, Feature13:wavelet-LHL_glszm_
SmallAreaLowGrayLevelEmphasis, Feature9:log-sigma-3-0-
mm-3D_glrlm_RunEntropy, Feature0:wavelet-HHL_glcm_
Correlation, Feature18:wavelet-LLL_glcm_Imc2,Feature4:log-sigma-
2-0-mm-3D_glcm_MaximumProbability, Feature7:wavelet-LHL_
glszm_SmallAreaHighGrayLevelEmphasis, Feature16:wavelet-LHH_
glrlm_GrayLevelNonUniformityNormalized, Feature10:log-sigma-3-
0-mm-3D_glszm_GrayLevelNonUniformity, Feature6:wavelet-HHL_
gldm_DependenceVariance.
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of features. Table 4 showcases the top ten significant feature
names based on the 3%/2 mm criterion. Among the features
chosen by RF, there were five GLCM features, two GLSZM
features, two GLRLM features, and one GLDM feature.
Conversely, RF + SHAP recognized three GLCM features, two
GLSZM features, three GLRLM features, and two GLDM features
as the top ten important features. Additionally, Table 5 displays
the top ten vital feature names under the 2%/2 mm criterion. RF
selection yielded seven GLCM features, one GLSZM feature, and
two GLRLM features, whereas RF + SHAP selected six GLCM
features, three GLRLM features, and one GLDM feature. It is
evident that both methods consistently identified texture features
as the top ten important features under different criteria.

3.2 Evaluation of classification performance

The ROC curves and F1-score under different γ criteria for the
test set are depicted in Figure 2 and Table 6 respectively. Under the
3%/2 mm criterion, the AUC values and F1-score of the prediction
models built using the feature subsets selected by RF ranged from
0.82 to 0.88 and 0.85 to 0.89, respectively. The best performance was
achieved when the feature subset size was 20 (AUC = 0.88, F1-
score = 0.89). For the feature subsets selected by RF + SHAP, the
AUC values and F1-score ranged from 0.78 to 0.86 and 0.84 to 0.92,
respectively. The best performance was also observed when the
feature subset size was 20 (AUC = 0.86, F1-score = 0.92), which was
similar to the best model based on RF feature selection. Under the
2%/2 mm criterion, the AUC values and F1-score of the prediction
models built using the feature subsets selected by RF ranged from
0.80 to 0.91 and 0.81 to 0.89, respectively. The best performance was
achieved when the feature subset size was 10 (AUC = 0.91, F1-
score = 0.89). For the feature subsets selected by RF + SHAP, the

AUC values and F1-score ranged from 0.78 to 0.86 and 0.80 to 0.86,
respectively. The best performance was observed when the feature
subset size was 40 (AUC = 0.86, F1-score = 0.85), slightly lower than
the best model based on RF feature selection. Utilize GridSearchCV
on the training set to fine-tune hyperparameter values for all models.
The hyperparameter values acquired for the optimal model using
various criteria are presented in Table 7.

3.3 Assessment of feature importance in
model outputs

SHAP values explain the output of a predictive model by
assigning a specific importance value to each feature [29]. Figures
3, 4 illustrate the importance ranking of input features based on
SHAP values for the best model obtained through RF feature
selection on the test set. Under the 3%/2 mm criterion, there are
a total of 20 input features, comprising 9 GLCM features, 4 GLSZM
features, 4 GLRLM features, and 3 GLDM features. The highest-
ranked feature, Feature15, corresponds to log-sigma-3-0-mm-3D_
gldm_HighGrayLevelEmphasis, closely followed by wavelet-LHL_
glszm_SmallAreaLowGrayLevelEmphasis. Under the 2%/2 mm
criterion, there are 10 input features, consisting of 7 GLCM
features, 1 GLSZM feature, and 2 GLRLM features. The top-
ranked feature, Feature6, corresponds to wavelet-LLH_glszm_
LargeAreaHighGrayLevelEmphasis, closely followed by log-sigma-
3-0-mm-3D_glrlm_RunEntropy.

4 Discussion

The implementation of individualized QA process for VMAT
patients prior to treatment is a vital component of the clinical
radiotherapy workflow. Developing a GPR classification prediction
model can optimize the radiotherapy process, minimize the
repetitive workload of medical physicists, and enable them to
assess the plan’s “pass” or “failure” in advance without actual
measurements. In case of a potential risk of “failure,” plan
parameters can be adjusted for re-optimization. Multi-center
studies are crucial for the application of prediction models in
clinical decision-making as they enhance the reliability and
robustness of the models. Multicenter studies help improve the
reproducibility and applicability of predictive models. Two studies
have successfully constructed GPR prediction models using plan
modulation complexity indices as inputs, achieving excellent
prediction accuracy. Furthermore, they demonstrated the
feasibility of cross-validation across different delivery devices, QA
devices, and TPS systems [19, 20]. Lambri et al [30] showed that
single-centre GPR prediction model may not be directly applicable
to other centres, and that the establishment of a public multicentre
PSQA measurement database could provide benchmarking for the
prediction model and help to advance the clinical implementation of
PSQA outcome prediction models. In this study, a GPR
classification prediction model was established using dosiomics
features from VMAT plans in three radiotherapy institutions.
These institutions encompassed three distinct combinations of
devices (Trilogy + Eclipse + Arccheck, Infinity + Monaco +
Compass, Axesse + Monaco + Arccheck). The results indicated

FIGURE 4
The top ten ranked features of the best predictive model under
the conditions of 2%/2 mm. Note:Feature6:wavelet-LLH_glszm_
LargeAreaHighGrayLevelEmphasis, Feature8:log-sigma-3-0-mm-
3D_glrlm_RunEntropy, Feature0:wavelet-HHL_glcm_
Correlation, Feature5:wavelet-HHL_glcm_MCC,Feature7:wavelet-
HHL_glrlm_RunLengthNonUniformityNormalized, Feature9:wavelet-
HHL_glcm_MaximumProbability, Feature1:wavelet-HHL_glcm_
Contrast, Feature3:wavelet-HHL_glcm_ClusterTendency, Feature2:
wavelet-HHL_glcm_DifferenceAverage, Feature4:wavelet-HHL_
glcm_Idm.
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that the optimal prediction model, based on the 3%/2 mm criterion,
yielded an AUC value of 0.88 and an F1-score of 0.89. Similarly, the
best model according to the 2%/2 mm criterion achieved an AUC
value of 0.91 and an F1-score of 0.89. The model demonstrated
favorable classification performance across various γ criteria.

The purpose of feature selection is to use as few features as
possible to obtain better model performance. In order to compare
the advantages and disadvantages of the two feature selection
methods, the same number of feature subsets are used as model
input. In this study, the maximum number of features was set to 50,
and the number of features selected in order of feature importance
was 10, 20, 30, 40, and 50. Under the 3%/2 mm standard, both the RF
and RF + SHAP methods performed best when the number of
feature subsets was 20, and the AUC values were 0.88 and
0.86 respectively. Under the 2%/2 mm standard, the RF method
showed the best model performance with 10 feature subsets (AUC =
0.91), while the RF + SHAP method showed the best performance
with 40 feature subsets (AUC = 0.86). Under the same γ criterion,
the best model using RF + SHAP method in this study is superior to
the results of the classification model based on dosimetry features by
Hirashima et al [31], which shows that the use of RF + SHAP feature
selection method to construct GPR classification prediction model
has a certain degree of feasibility. Liu et al. [32] compared feature
selection using SHAP values with feature selection using Fscore,
Anova-F and MI, and confirmed the feasibility and superiority of
SHAP-based feature selection in the classification diagnosis of
Parkinson’s disease. This study also showed that superior
performing algorithms combined with SHAP values build models
that perform better. In this work, a preliminary comparison of two
RF-based feature selection methods in GPR classification prediction
was made, although the RF + SHAP feature selection method
achieved good classification results, it did not show an absolute
advantage in the test set compared to the RF feature selection
method. According to the results of Liu et al. [32], SHAP value
combined with other algorithms (gcForest and LightGBM) may
make the model perform better, which requires in-depth analysis
and discussion in the next steps.

Dosiomics features, derived from dose files, serve as quantifiable
characteristics of dose distribution. Lizar et al. [33] have
convincingly demonstrated the rationale of utilizing radiomics
features for assessing PSQA results, with a particular emphasis
on first-order and texture features as the most crucial ones. In
our study, despite employing different feature selection methods on
the training set under two distinct γ criteria, the top ten selected
features consistently gravitated towards GLCM, GLSZM, GLRLM,
and GLDM, underscoring the pivotal role of these four categories of
texture features in the GPR prediction model. Notably, the input
features of the optimal prediction model under both 3%/2mm and
2%/2 mm criteria also fell within these four texture feature
categories, validating the robust performance of these texture
features identified from the training set on the test set. These
texture features are quantitative features of the 3D dose
distribution and reflect the complexity of the treatment plan dose
distribution. For PSQA results, it has been shown that texture
features computed from fluence maps show a large correlation
with plan deliverability and can be used as an indicator to assess
the degree of modulation of a VMAT plan or may even have better
performance than the traditional VMAT modulation index [34, 35].

Hirashima et al. [31] have further highlighted the significance of
dosiomics features extracted from 3D dose distribution in predicting
GPR values for individual plans, where texture features
encompassing GLCM, GLDM, and GLRLM have exhibited
substantial influence on GPR value prediction. Our findings
unequivocally establish the significance of GLSZM as an
additional influential factor, alongside GLCM, GLRLM, and
GLDM, in the GPR classification prediction model.

Based on clinical practice, the GPR of VMAT patient plans
rarely falls below the tolerance limits recommended by AAPM TG
218 [22]. As a result, the GPR data itself suffers from an imbalance
issue. The setting of “pass” and “fail” tolerance limits for the GPR
classification prediction model can significantly impact its
performance. Previous studies have encountered severe data
imbalance due to the challenge of collecting a sufficient number
of low GPR plans for model training within a single radiation
therapy institution [36, 37]. In this study, a total of 572 VMAT
plans from three radiation therapy institutions were collected. To
address the data imbalance issue, the classification tolerance limits
were set based on the mean GPR. This approach helps improve the
accuracy of GPR prediction. Specifically, for the 3%/2mm and 2%/
2 mm γ criteria, the classification tolerance limits were set at 95.7%
and 91.5%, respectively. Among the plans, approximately 26.4%
(151 plans) were labeled as “fail” under the 3%/2 mm criterion, and
approximately 32.7% (187 plans) were labeled as “fail” under the
2%/2 mm criterion. This distribution can be considered as a mild
imbalance in the dataset [38]. Additionally, during the random
partitioning of the dataset, stratified sampling techniques were
employed to ensure that the proportions of different data classes
in the training and test sets remained consistent with the
overall dataset.

This study has several limitations. Firstly, it only utilized
dosiomics features as inputs for multi-center GPR prediction. In
future work, it is necessary to consider additional features such as
plan complexity indices, MLC speed and acceleration. Moreover, it
is crucial to explore methods for extracting a concise set of stable
features from these combinations. By doing so, a prediction model
with high robustness and generalizability can be constructed for
clinical decision-making. These stable and significant features are
expected to serve as valuable references for medical physicists in
plan design. Secondly, the dataset used in this study encompasses
multiple disease sites. Previous research has demonstrated that
different disease sites can impact the classification performance
of prediction models. Therefore, future multi-center studies and
clinical validations should focus on specific treatment sites to
enhance the model’s performance. Additionally, the relationship
between dose-based dosiomics features and “failed” plans is
complex. Currently, there is a lack of direct and accurate
troubleshooting methods if a treatment plan fails dose validation.

5 Conclusion

Regarding the multi-center PSQA results, it is possible to
construct a machine learning prediction model using dose-based
dosiomics features. This model can exhibit good classification
performance, which would facilitate the clinical application and
implementation of GPR prediction models. This, in turn, has the
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potential to provide patients with safe and efficient personalized QA
management while reducing the workload for medical physicists.
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