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Previous studies on the co-evolving between vaccination strategies and
epidemics mainly assumed that the vaccination strategies were made in the
period between two spreading seasons. However, individual cognition during the
spreading seasons might also alter the vaccination strategy and inversely
influence the epidemic spreading. We propose a coupled disease–behavior
model to describe the dynamic evolution of vaccination behavior during the
spread of infectious diseases. The model integrates a
susceptible–infected–vaccinated (SIV) model with the diffusion of vaccination
behavior. We focus on the trade-off between perceptions of infection risk and the
vaccination behaviors of neighbors, characterizing individual vaccination
opinions. We introduce an opinion-critical value to map vaccination opinions
into vaccination behavior. The vaccination coverage of the disease–behavior
model is studied in network models and real-world networks. In addition, when
societal costs are measured based on the degree of initial vaccinees, the cost of
randomly selecting initial vaccinees is lower than selecting individuals with high or
low degrees as vaccinees. Evaluating an individual’s ability to transmit vaccination
behavior based on the neighbor’s number is inappropriate. We find that the
impact of effective spreading rates on group vaccination is not one-sided and
that reducing fear and highlighting the dangers of infectious diseases are crucial
to increasing vaccination coverage.
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1 Introduction

The outbreak of infectious diseases seriously endangers human health and social
development [1, 2]. Intense research effort has been devoted to developing epidemic
spreading models [3, 4]. In addition, previous studies [5–8] have also shown that the spread
of infectious diseases interacts with individual behavior. Many studies focus on vaccination,
which is considered one of the most successful and cost-effective health interventions [9,
10]. Individuals continuously adjust their attitude toward vaccination during the spread of
infectious diseases. In-depth research on the dynamic evolution of individual vaccination
behavior and its impact on the epidemic is of great significance for formulating more
effective public health policies. Many studies have primarily constructed disease–behavior-
coupled models from the perspective of information dissemination or economic costs
[11–13]. The dissemination of disease-related information inhibits the spread of infectious
diseases and contributes to the recovery of infected individuals [14]. [15] found that

OPEN ACCESS

EDITED BY

Dun Han,
Jiangsu University, China

REVIEWED BY

Baoyu Hou,
Qingdao University, China
Yilun Shang,
Northumbria University, United Kingdom

*CORRESPONDENCE

Cong Li,
cong_li@fudan.edu.cn

Bo Qu ,
bo@qubo.im

RECEIVED 17 February 2024
ACCEPTED 19 March 2024
PUBLISHED 09 April 2024

CITATION

Zhou L, Dai J, Qu B and Li C (2024), Vaccination
strategies in the disease–behavior
evolution model.
Front. Phys. 12:1387267.
doi: 10.3389/fphy.2024.1387267

COPYRIGHT

© 2024 Zhou, Dai, Qu and Li. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 09 April 2024
DOI 10.3389/fphy.2024.1387267

https://www.frontiersin.org/articles/10.3389/fphy.2024.1387267/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1387267/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1387267/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1387267&domain=pdf&date_stamp=2024-04-09
mailto:cong_li@fudan.edu.cn
mailto:cong_li@fudan.edu.cn
mailto:bo@qubo.im
mailto:bo@qubo.im
https://doi.org/10.3389/fphy.2024.1387267
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1387267


vaccination coverage increases as people become sensitive to
disease-related information, which increases the likelihood of
herd immunity. Researchers have explored the dynamics of
epidemic spreading in situations where vaccines are not fully
effective. [16] studied both the case of a fixed immunity loss rate
and an asymptotic total loss scenario based on the assumption of
limited knowledge and temporary immunity. [17] pointed out that
curbing the spread of negative information and improving vaccine
effectiveness are effective means to prevent and control epidemics.
Information-driven vaccination behavior significantly reduces the
social cost of infection and facilitates the process of disease
eradication [18] but ignores individual considerations of vaccine
costs and vaccine spillover effects. The reason is that unvaccinated,
self-interested individuals are dedicated to obtaining protection
from other vaccinated individuals [19, 20]. For instance, [21]
combined classical game theory with an epidemic model,
revealing the “free-rider” behavior of self-interested individuals.
[22, 23] found that the Nash equilibrium of vaccination game
based on the vaccination cost could not form herd immunization
due to conflict between herd and individual interests.

Psychological and behavioral experiments indicate that
individual behavior tends to deviate from the rational criterion
under the expected utility theory, exhibiting bounded rationality
[24, 25]. For vaccination, even if a rational decision model predicts
that vaccines will be accepted by individuals, in reality, low-cost and
highly effective vaccines may still be rejected [26]. [10] proposed a
two-stage vaccination game model that includes the disease
spreading stage and the vaccination strategy update stage and
illustrates the vaccine dilemma due to evolving psychological
perceptions based on vaccine costs. Therefore, studying the
impact of bounded rationality on individual vaccination decisions
is crucial for disease control [27–29]. Prospect theory (PT) [30],
which explains the decision-making process of individuals in the
case of risk and uncertainty, not only captures the subjective
perception of risk but also reveals the key role of bounded
rationality in decision-making. PT contains two core concepts,
namely, the weighting effect (WE), which describes an
individual’s subjective perception probability [31, 32], and the
framing effect (FE), which indicates an individual’s subjective
evaluation of payoffs [33, 34]. In relevant studies, [35] developed
an imperfect vaccination evolutionary game model, accounting for
subjective perception and individual social differences. The results
revealed that the epidemic threshold is significantly influenced by
social differences in the epidemic spreading layer. [36] proposed an
evolutionary vaccination game model in multiplex networks,
incorporating an information-epidemic spreading process into
vaccination dynamics. They found that the effect of information
dissemination on vaccination decisions depends on vaccination
costs, network topology, and the evolutionary stage of the system.

However, two-stage vaccination game models fail to capture the
interactive dynamics between individual vaccination behavior and
epidemic spreading. Moreover, traditional vaccination game models
focus only on vaccination costs and payoffs, neglecting individual
psychological cognition, i.e., perceptions of infection risk and
vaccination behaviors of neighbors. In this work, we propose a
disease–behavior-coupled model where individuals are exposed to
the risk of infection and make vaccination decisions at each time
step. In the context of free vaccines, we mainly focus on

psychological perceptions of influence risk. Here, an individual
will have a vaccination behavior if their vaccination opinion is
higher than a critical value. Given the general preference of
individuals for reliable information sources, we assume that
individuals make vaccination decisions based on local disease-
related information. Each individual updates his/her vaccination
opinion based on the weighted aggregation of the vaccination
behaviors of neighbors and then adjusts his or her vaccination
behavior at each time step. Specifically, the opinion weights
depict the perceptions of infection risk, which are related to
individual states. In addition, we study the dynamics of the
coupled model and analyze the vaccination coverage of the
proposed model in network models and real-world social networks.

The main contributions of our work are as follows: 1) we
propose a coupled disease–behavior model to study the dynamic
interactions between the spread of infectious diseases and the
vaccination behaviors of individuals. Vaccination behavior is
dominated by individuals’ bounded rationality about infection
risk, which is characterized by opinion weights. 2) The
vaccination opinion in the co-evolution model could exhibit
limited rationality. A relatively small infection fraction makes
individuals underestimate the infection risks, while a large
infection fraction leads individuals to “lie down” and be
unwilling to defend themselves against infectious diseases. The
phenomenon is verified with simulation results. 3) We find that
vaccination coverage will reach convergence, which is strongly
related to individual vaccination strategies. The opinion critical θ
for an individual to get vaccinated has a decisive effect on the
vaccination evolution game, leading to a clear phase transition in
vaccination coverage versus the opinion critical. The link density of a
network might influence vaccination coverage. Moreover, we
analyze the performance of three vaccination strategies by
administrators on the coupled model and find the advantage of
the random-first vaccination strategy in promoting group
vaccination. Compared with the random selection strategy, the
high-degree individual priority vaccination strategy and the low-
degree individual priority vaccination strategy exhibit low efficiency
and high social costs. The findings in this work provide some clues
for understanding the co-evolution of vaccination behavior and
epidemic spread.

The remainder of this paper is arranged as follows: Section 2
illustrates the disease–behavior-coupled model in detail, which
includes the dynamics of infectious disease spread and the
evolution of vaccination behavior. The vaccination coverage of
vaccination strategies by individuals and administrators is studied
in network models and real-world networks in Section 3. Section 4
provides the conclusion.

2 Disease–behavior coupled model

2.1 Notations and preliminaries

We use nodes to represent the individuals in society and edges to
indicate the interactions between members. A social interaction
network could be characterized by an adjacency matrix
A � [aij]N×N. aij = 1 if there is a link between nodes i and j;
otherwise, aij = 0. In this work, we focus on finite-size,
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undirected, and unweighted networks [37]. The disease–behavior
coupled model is composed of two parts: the
susceptible–infected–vaccinated (SIV) spread model [38] and the
evolution rules of vaccination behavior.

2.2 Spread of infectious diseases

We first introduce the SIV model, where individuals have three
possible states: susceptible (S), infected (I), and vaccinated (V). The
diagram of the state transition is depicted in Figure 1. A susceptible
individual i would like to be vaccinated at time t with a probability
fV
i (t). Without the loss of generality, we here assume that the

vaccine is fully immune and long-term effective; in other words,
vaccinated individuals will not be infected. An infected individual
infects susceptible neighbors with an infection probability β and
cures with a recovery probability γ [39]. Let the symbols pS

i (t),
pI
i (t), and pV

i (t) denote the probabilities of being susceptible,
infected, and vaccinated for individual i at time t, respectively.

Then, there is the equation pS
i (t) + pI

i (t) + pV
i (t) � 1. The

transition probability qSi (t) of susceptible individual i not being
infected by neighbors is defined as follows:

qSi t( ) � ∏N
j�1

1 − aij · pI
j t( ) · β( ). (1)

The continuous-time Markov approach can accurately
characterize the dynamics of infectious diseases [40]. However,
the state transition matrix is hardly available, especially for large-
scale networks [41]. Therefore, we use the microscopic Markov
chain approach [42, 43] to describe the probability of individual i
being susceptible, infected, and vaccinated at each moment as

pS
i t + 1( ) � pI

i t( ) · γ + pS
i t( ) · qSi t( ) − fV

i t( )( ),
pI
i t + 1( ) � pI

i t( ) · 1 − γ( ) + pS
i t( ) · 1 − qSi t( )( ),

pV
i t + 1( ) � pS

i t( ) · fV
i t( ) + pV

i t( ).

⎧⎪⎪⎨⎪⎪⎩ (2)

Notably, the dynamics will reach a steady state at the end of the
spread process. Then, the probabilities of individual i being

FIGURE 1
Transition of susceptible (S), infected (I), and vaccinated (V) states. S-individuals either remain susceptible or shift to be infected and vaccinated.
I-individuals have a probability γ of reverting to be susceptible. V-individuals stay vaccinated.

FIGURE 2
Convergence of vaccination coverage of the coupled model in the different networks. The ratio of initial vaccinees in the networks is 0.2. The red,
black, yellow, azure, and blue lines show vaccination coverage in scale-free networks, ER random networks, email network, Facebook network, and
LastFM network, respectively. The initial vaccinees are selected with (A) LFS, (B) SFS, and (C) RFS.
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susceptible, infected, and vaccinated no longer vary with time,
namely, pS

i (t + 1) � pS
i (t) � pS

i , pI
i (t + 1) � pI

i (t) � pI
i , and

pV
i (t + 1) � pV

i (t) � pV
i , respectively. Naturally, the proportions

of susceptible, infected, and vaccinated individuals in the
population remain constant. We obtain qSi (t + 1) � qSi (t) � qSi
according to Eq. 1. Since the infection and recovery probabilities
of infected individual are also constant, the transition probability of
susceptible individual i to be vaccinated is constant, that is,
fV
i (t + 1) � fV

i (t) � fV
i . Then, we rewrite Eq. 2 as

pS
i � pI

i · γ + pS
i · qSi − fV

i( ),
pI
i � pI

i · 1 − γ( ) + pS
i · 1 − qSi( ),

pV
i � pS

i · fV
i + pV

i .

⎧⎪⎪⎨⎪⎪⎩ (3)

Based on the expression pS
i + pI

i + pV
i � 1, we get Eq. 4 from

Eq. 3

pS
i �

γ · 1 − pV
i( )

1 + γ − qSi
,

pI
i �

1 − qSi( ) · 1 − pV
i( )

1 + γ − qSi
.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4)

Furthermore, there is pV
i � pS

i · fV
i + pV

i from Eq. 3. Therefore,
the necessary condition for the steady state of the coupled model is
pS
i · fV

i � 0. When pS
i � 0, we get pI

i � 0 according to Equation 3.
Therefore, there are only vaccinated individuals in the population,
that is, pV

i � 1. When fV
i � 0 and pS

i ≠ 0, individuals exist in
three states.

Let the symbols RS, RI, and RV denote the proportions of
susceptible, infected, and vaccinated individuals, respectively.
Naturally, the three proportions satisfy RS + RI + RV = 1 and are
calculated using the Eq. 5:

FIGURE 3
Influence of opinion critical on vaccination coverage in different networks. The vaccination coverages RV are obtained with three vaccination
strategies, i. e., LFS, SFS, and RFS in yellow dot-line, red line, and blue dots. (A) Erdos–Ranyi-4 network. (B) Erdos–Ranyi-8 network. (C) Erdos–Ranyi-16
network. (D) Scale-free-4 network. (E) Scale-free-8 network. (F) Scale-free-16 network. (G) Email network. (H) Facebook network. (I) LastFM network.
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RS � 1
N

∑N
i�1

pS
i ,

RI � 1
N

∑N
i�1

pI
i ,

RV � 1
N

∑N
i�1

pV
i .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

2.3 Evolution of vaccination behavior

The evolution process of vaccination behavior is the other
important component of the coupled model. Let the notations
yi(t) and Yi(t) denote the vaccination opinion and vaccination
behavior of individual i ∈ {1, 2, . . . , N} at time t, respectively.
The relationship between yi(t) and Yi(t) is defined as Eq. 6 that

Yi t( ) � Sgn yi t( ) − θ( ) � 1, yi t( )≥ θ,
−1, else ,

{ (6)

where the symbol θ indicates the opinion critical value for an
individual to get vaccinated and Sgn(.) is the sign function. When
Yi(t) = 1, individual i gets vaccinated at time t. Otherwise, i is out
of vaccination. Notably, the increase in yi(t) indicates the
enhancement of willingness for individual i to get vaccinated.
The transition probability fV

i (t) of being vaccinated for
susceptible individual i at time t equals to yi(t), when yi(t) ≥θ
at time t.

We use behavior vector Y(t) � [Y1(t), Y2(t), . . . , YN(t)]T to
represent behaviors of all individuals in the social network of size N
at time t. Correspondingly, there is an opinion vector
y(t) � [y1(t), y2(t), . . . , yN(t)]T. The proportion of vaccinated
individuals RV(t) at time t, named vaccination coverage, is
computed as Eq. 7 that:

FIGURE 4
Vaccination coverage for different Esc values. The vertical coordinate RV denotes the rate of finally vaccinated nodes in the network, and the
horizontal coordinate indicates the initially vaccinated degree. (A) Erdos–Ranyi-4 network. (B) Erdos–Ranyi-8 network. (C) Erdos–Ranyi-16 network. (D)
Scale-free-4 network. (E) Scale-free-8 network. (F) Scale-free-16 network. (G) Email network. (H) Facebook network. (I) LastFM network.
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RV t( ) � ∑N
i�1Yi t( ) +∑N

i�1 Yi t( )| |
2N

. (7)

A diagonal matrix Λ(t) = diag(λ11(t), λ22(t), . . ., λNN(t)) is
used to ensure that vaccinees cannot revert to being unvaccinated
during the evolution process. If individual i is vaccinated, the
element λii(t) = 0; otherwise, λii(t) = 1. In the disease–behavior-
coupled model, individuals obtain vaccination opinions based on
local information, namely, the perceptions of infection risk and
vaccination behaviors of their neighbors. Here, when the number
of infected neighbors increases, individuals perceive more disease
risk and mitigate their willingness to receive vaccines.
Meanwhile, when the number of infected nodes reaches a
rather large number, individuals may have group psychology
and give up vaccination. When the number of susceptible
neighbors increases, individuals lessen their fear of disease and
their inclination to receive vaccines. Individual vaccination
behavior can be influenced by herd mentality [44], which is
the tendency for people in a group to conform to the behavior
of others in the group rather than acting as individuals. When the
number of vaccinated neighbors increases, individuals are more
likely to get vaccinated due to the influence of herd mentality. To
simplify the complexity, we assume that individuals do not take
into account their own opinion of the previous moment. We
designed an opinion weight matrix W(t) � [wij(t)]N×N to
characterize the perceptions of infection risk. The symbol
wij(t) indicates the influence weight of individual j on i at
time t. The mathematical expression of opinion weight is
shown as follows:

wij t + 1( ) �

1

|NI
i t( )|, j ∈ NS

i t( ) or j ∈ NV
i t( ),

1

|NS
i t( )| + |NV

i t( )|, j ∈ NI
i t( ),

0, others,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where the symbols NS
i (t), NV

i (t), and NI
i (t) denote the set of

susceptible, vaccinated, and infected neighbors of individual i at time

t, respectively; and |.| represents the cardinality of a set. Let the symbol
Ni be the neighbors of individual i, thus
|Ni| � |NS

i (t)| + |NV
i (t)| + |NS

i (t)|. Particularly, for the extreme
cases that all neighbors of individual i are infected or not infected,
Eq. 8 is no longer applicable, and let the weightwij(t) = 1 if individuals i
and j are neighbors.

Hence, we get the expression of individual vaccination opinion
evolution equation as Eq. 9

yi t + 1( ) � λii t( ) ·∑n
j�1

wij t( ) · Yj t( ) + 1 − λii t( )( ) · Yi t( ), (9)

and the corresponding matrix form is

y t + 1( ) � Λ t( ) ·W t( ) · Y t( ) + E − Λ t( )( ) · Y t( )
� Λ t( ) ·W t( ) + E − Λ t( )( )[ ] · Y t( ) . (10)

If the individual i is vaccinated at time t, we get yi(t + 1) = Yi(t),
which indicates that a vaccinated individual will maintain their current
state. Otherwise, there is yi(t + 1) � ∑n

j�1wij(t) · Yj(t). The
vaccination opinion yi(t + 1) will be influenced by the vaccination
behaviors of neighbors of individual i at time t. Moreover, the
maximum number of possible neighbors for each node is N − 1 in
the connected network withN nodes. If the neighbor number of node i
is N − 1 and all neighbors are infected at time t, the minimum value of
yi(t) is obtained from Eq. 10, and yi(t) = −N + 1. If the neighbor number
of node i is N − 1 and all neighbors are vaccinated at time t, the
maximumvalue of yi(t) isN− 1. Hence, the bounds of yi(t), i ∈ {1, 2, . . . ,
N} in the coupled model are between −N + 1 and N − 1.

From Eq. 10, the opinion vector y(t) is related to Λ(0),W(t), and
Y(0). The opinion weight matrix W(t) depends on the degrees of
nodes in the network and the infection status of neighbors. The
values of Y(0) and Λ(0) depend on the initial vaccinees. Naturally,
y(t) is determined by the network structure, initial vaccinees, and
infection status of neighbors. Hence, changes in the value of θ reveal
the role of network structure, initial vaccinees, and size of infected
neighbors on vaccination behavior.

3 Evolutionary vaccination game in
network models and real-
world networks

We here study the vaccination coverage of the
disease–behavior-coupled model in network models and real-
world networks. Two types of vaccination strategies, namely,
strategies by individuals and strategies by administrators, are
studied. The individual vaccination strategy is based on the
perceptions of infection risk and vaccination behaviors of
neighbors, as introduced in Section 2. The vaccination
strategies by administrators are used to select initial vaccinees.
In this work, three vaccination strategies by administrators,
namely, largest-first strategy (LFS), smallest-first strategy
(SFS), and random-first strategy (RFS), were used. The LFS is
used to select the initially vaccinated nodes based on the nodal
degrees from large to small, and the SFS is the opposite.
Naturally, RFS is used to randomly adopt the initial vaccinees.
Notably, the network models are scale-free (SF) networks [45]
and Erdos–Ranyi (ER) networks [46] with N = 1,000 and the

TABLE 1 Minimum social cost for the three strategies to reach vaccination
coverage in networks with various typologies.

Network Largest-
first

Smallest-
first

Random-
first

Erdos–Ranyi-4 0.357 0.198 0.184

Erdos–Ranyi-8 0.293 0.217 0.191

Erdos–Ranyi-
16

0.251 0.225 0.209

Scale-free-4 0.472 0.190 0.179

Scale-free-8 0.435 0.204 0.189

Scale-free-16 0.401 0.236 0.215

Email 0.451 0.440 0.264

Facebook 0.514 0.479 0.295

LastFM 0.609 0.561 0.375

We use red bold to highlight the results of the best options.
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average degrees < k> � 4, < k> � 8, and < k> � 16,
respectively. The real social networks are email network [47],
Facebook friendship network [48], and LastFM users’ network
[49]. The email network, generated using email data from a large
European research institution, comprises 1,005 nodes and
25,571 edges. In the email network, users are represented as
nodes and communication between them is represented as
connected edges. The Facebook friendship network has been
collected from survey participants using the Facebook
application and consists of 4,039 nodes and 88,234 edges. The
Facebook network is composed of users as nodes and friend
relationships between them as edges. The LastFM users’ network,
consisting of 7,624 nodes and 27,806 edges, was collected from
the public API in March 2020. Nodes are LastFM users from
Asian countries, and edges are mutual follower relationships
between them. In addition, each simulation result is the
average of 50 times under the same parameters to avoid the
accidentality of a single simulation.

3.1 Convergence of vaccination coverage of
the coupled model

We first verify the convergence of the disease–behavior-coupled
model in network models and the real-world social networks
through Monte Carlo simulations. We attempt different
combinations of all parameters, where the effective spreading rate
β/γ ranges from 0.01 to 100, the opinion critical θ ranges from −N +
1 to N − 1, the number of initially infected nodes NI(0) ranges from
1 to N, and the number of initially vaccinated nodes NV(0) ranges
from 1 to N. Without the loss of generality, the initially infected
nodes are randomly selected since, in practice, infected individuals
appear by chance.

We find that the proportion of vaccinated individuals RV will
converge to a constant, regardless of the effective spreading rate,
opinion critical, and initially infected nodes. Hence, we give an
illustration with the effective spreading rate β/γ = 0.4, the number of
initially infected nodes NI(0) = 50, and opinion critical θ = 0. The

FIGURE 5
Vaccination coverage versus the effective spreading rate in the different networks. The ratio of initial vaccinees is 0.1, and the number of initial
infected nodes is 50. (A–C) Opinion critical is 0.1..(D–F) Opinion critical is 0. (G–I) Opinion critical is −0.1. The initial vaccinees are selected with the
largest-first strategy in (A, D, and G), with the smallest-first strategy in (B, E, and H), and with random-first strategy in (C, F, and I).
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convergence of the model with three strategies, i.e., LFS, SFS, and
RFS, are shown in Figure 2.

Vaccination coverage is influenced by the strategies by the
administrator, network topology, and link density of the network.
For the LFS, the vaccination coverage is the largest in the ER random
networks compared to that in the SF networks and real-world
networks. If the network topology and network size are given,
the vaccination coverage is larger when the link density of the
network is larger. However, the result is the opposite for SFS and
RFS. Moreover, Figure 2 shows that vaccination coverage for LFS
will converge to a smaller value than that for SFS and RFS.

3.2 Influence of opinion critical on
vaccination coverage

The vaccination opinion critical θ in the coupled model represents
the psychological threshold for vaccine acceptance. A higher opinion
critical indicates that individuals are less inclined to prefer vaccines. We
here study the role of opinion critical on vaccination coverage under the
conditions of the effective spreading rate β/γ = 0.4, the number of
initially infected nodes NI(0) = 50, and the initial vaccinee ratio RV(0) =
0.2. Figure 3 illustrates the variation of opinion critical θ from −1 to 1 in
different networks. Under the different network structures and initial
vaccination strategies, vaccination coverage decreases as the opinion
critical increases from negative to positive values. Figures 3A–C show
that in the Erdos–Ranyi networks, the SFS and LFS are both affected by
the link density. The link density is higher; the psychological threshold
for full vaccination coverage is lower with the SFS. However, with the
LFS, θ for full vaccination coverage increases with the link density.
Moreover, Figures 3D–F demonstrate that in the scale-free networks
with the SFS, the psychological threshold for full vaccination coverage
decreases with the increase in the link density. In contrast, the LFS
exhibits a higher psychological threshold for full vaccination coverage as
the link density of the network increases. The finding verifies the
opposing results presented in Figures 2A,B.

3.3 Comparison of the three vaccination
strategies

We further study the performances of the three vaccination
strategies on the social cost in different networks. In complex
network models such as Price’s model and BA model, the node
degree is used as an important indicator of the node’s attractiveness
to new nodes and ability to develop new links [50]. In this work, the
social influence or status of a node is related to the degree di �∑N

j�1aij of an individual i in the social networks. We assume that
persuading a more influential person to get vaccinated will cost more
socially. Hence, the social cost of initially vaccinated individuals is
given as Eq. 11,

Esc � ∑i∈NV 0( )di

∑N
j�1

dj

, (11)

where NV(0) is the set of initially vaccinated nodes and Esc is the
social cost of strategy. It should be noted that the vaccine is free for

individuals, but there is a social cost to the government in promoting
vaccination. We study the effect of the social cost of each strategy on
vaccination coverage. We conduct experiments under the same
initial conditions with the effective spreading rate β/γ = 0.4, the
number of initially infected nodes NI(0) = 50, and opinion critical
θ = 0. The vaccination coverage corresponding to each strategy at
one social cost is the average of the results of 50 simulation
experiments with the same parameters. We conducted the
simulation experiment by setting the social cost Esc values in 0.1,
0.02, 0.005, and 0.001 step sizes in turn. The approximate range of
the minimum social cost is first determined in large steps, and then
the step size of the experimental parameters is gradually reduced to
determine an accurate minimum social cost. The relationship
between social cost Esc and vaccination coverage RV is shown in
Figure 4. We find that vaccination coverage will be reached when the
social cost is greater than a threshold, which is listed in Table 1.

The results show that with the LFS, the minimum social cost Esc
for vaccination coverage decreases as the link density increases in the
same network topology. However, the social cost threshold for the
SFS and RFS gradually increases as the link density increases in the
same network topology. In addition, we compare the performance of
three strategies on the same network; surprisingly, RFS always needs
the minimum social cost for vaccination coverage, both in network
models and real-world networks. Then, the performance of the SFS
is superior to that of the LFS.

3.4 Role of the effective spreading rate

We then explore the effect of the effective spreading rate β/γ on
vaccination coverage under three vaccination strategies, i.e., LFS,
SFS, and RFS. Figure 5 demonstrates that the effective spreading rate
β/γ has a double-edged role in the diffusion of vaccination behavior
when the social cost Esc is less than the minimum social cost of the
three strategies, as shown in Table 1.

When the effective spreading rate increases from small to
large, vaccination coverage RV first increases and then decreases.
The phenomenon might be explained by the limited rationality of
vaccination opinions. When the effective spreading rate is small,
the number of infected individuals is also small. Therefore,
susceptible individuals tend to ignore the risk of disease and
refuse vaccination. However, when the effective spreading rate is
large, the number of infected individuals is large. A large number
of infected individuals leads to a tendency for susceptible
individuals to coexist with the virus rather than resist disease
transmission. The confidence of individuals in vaccines
crumbles, and many individuals shift toward abandoning self-
loathing due to the panic caused by rapid outbreaks of disease.
Only if the effective spreading rate is moderate, individuals are
not only aware of the risk of disease, but also inclined to accept
the vaccine. As a result, the proportion of vaccinees is higher than
that in the other two scenarios. Emphasizing the dangers of
infectious diseases and reducing panic are both essential to
increasing vaccination coverage in epidemic control. It is a
primary concern for government policymakers to promote
herd immunization when faced with the outbreak of
infectious diseases.
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4 Conclusion

In this work, we propose a coupled disease–behavior evolution
model, providing a new perspective on the interactions between
vaccination behavior and the spread of infectious diseases. We
portray the mental choices of individuals facing disease risk and
vaccination by the variable opinion weights, which capture the
vaccination behaviors of neighbors. The vaccination strategy by
individuals is based on their mental choices and exhibits limited
rationality about infection risk. A large infection fraction may lead
individuals to adopt negative strategies to resist infectious diseases,
while a relatively small infection fraction makes individuals adopt
positive strategies. A clear phase transition appears in the
vaccination coverage compared to the opinion critical θ of an
individual to be vaccinated. Meanwhile, the performance of three
vaccination strategies, namely, LFS, SFS, and RFS, by the
administrator is compared in this work. We find that with the
three initial vaccination strategies, vaccination coverage, which is
influenced by the link density of the network and network topology,
always converges to a constant. The vaccination coverage of RFS and
SFS is consistently higher than that of LFS. Persuading individuals
with high influence to get vaccinated at the initial time is not optimal
for promoting the diffusion of vaccination behavior. RFS has the best
performance on both network models and real-world networks
among the three strategies when studying the effect of the
opinion critical and the social cost. In addition, the role of the
effective spreading rate is not one-sided since the vaccination
opinion exhibits limited rationality. Vaccination coverage RV first
increases and then decreases as the effective spreading rate increases
from small to large. Controlling for outbreak information to make
individuals perceive a “false and appropriate effective spreading
rate” is an efficacious way to motivate individuals to be vaccinated.

The phenomena revealed by this work could provide a new
perspective for guiding group vaccination opinions and improving
vaccination coverage. The model introduced here also has some
limitations and challenges. We did not account for the variability of
opinion critical of different groups that belong to the same social
network. Individuals between different groups have a greater
difference in their opinion critical than individuals within a
group. As an individual acquires information, his or her opinion
critical may change. In addition, we focus on the neighbors’
influence, but the influence of non-neighboring individuals or
global information also merits further investigation.
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