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In this paper, we consider the following quasilinear Schrödinger system.

−Δu + u + k

2
Δ|u|2[ ]u � 2α

α + β
|u|α−2u|v|β, x ∈ RN,

−Δv + v + k

2
Δ|v|2[ ]v � 2β

α + β
|u|α|v|β−2v, x ∈ RN,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
where k < 0 is a real constant, α > 1, β > 1, and α + β < 2*. We take advantage of the
critical point theorem developed by Jeanjean (Proc. R. Soc. Edinburgh Sect A.,
1999, 129: 787–809) and combine it with Pohožaev identity to obtain the
existence of a ground-state solution, which is the non-trivial solution with the
least possible energy.
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1 Introduction

This article is concerned with the following quasilinear Schrödinger system:

−Δu + u + k

2
Δ|u|2[ ]u � 2α

α + β
|u|α−2u|v|β, x ∈ RN,

−Δv + v + k

2
Δ|v|2[ ]v � 2β

α + β
|u|α|v|β−2v, x ∈ RN,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1.1)

where k < 0 is a real constant.
Many scholars have made significant contributions to the study of the quasilinear

Schrödinger system. Wang and Huang proved the existence of ground-state solutions
for a class of systems by establishing a suitable Nehari–Pohožaev-type constraint set
and considering related minimization problems in [2]. The existence of infinitely
many solutions was established for the quasilinear Schrödinger system by the
symmetric Mountain Pass Theorem; see [3]. The existence of positive solutions
was obtained by using the monotonicity trick and Morse iteration in [4]. Chen and
Zhang proved the existence of ground-state solutions by minimization under a
convenient constraint and concentration compactness lemma in [5].

The quasilinear Schrödinger system (1.1) is in part motivated by the following
quasilinear Schrödinger equation:
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iϵ∂z � −ϵΔz +W x( )z − l |z|2( )z
− kϵΔh |z|2( )h′ |z|2( )z, for x ∈ RN,N> 2, (1.2)

where W(x) is a given potential, k is a real constant, and l and h are
real functions that are essentially pure power forms. The quasilinear
Schrödinger Equation 1.2 describes several physical phenomena
with different h; see [6–8].

Let the case h(s) � s, l(s) � μs
p−1
2 and k > 0. Setting z(t, x) =

exp(−iFt)u(x), one can obtain a corresponding equation of elliptic
type which has the formal variational structure:

ϵΔu + V x( )u − ϵk Δ |u|2( )( )u � μ|u|p−1u, u> 0 x ∈ RN,N> 2,

(1.3)
where V(x) = W(x) – F is the new potential function. The problem
(1.3) has been studied by many academics. In [9], the existence
results of multiple solutions were studied via dual approach
techniques and variational methods when k > 0 was small
enough. The existence of soliton solutions was established by a
minimization argument; see [10]. The Mountain Pass Theorem is
combined with the principle of symmetric criticality to establish the
multiplicity of solutions in [11]. In [12], the author proved the
existence of soliton solutions via making a change in variables and
creating a suitable Orlicz space. The minimax principles for lower
semicontinuous functionals were used to find solutions in [13].

In [14], the authors used the method developed by [1, 15] to
divide the energy functional into two parts and established the
existence of ground-state solutions for a type of quasilinear
Schrödinger equation like 1.3. Inspired by [14], we try to find
the existence of ground-state solutions for system 1.1. This
achievement can enrich the relatively few existing results
about this system.

The main result of this paper is the following:

Theorem 1.1. When k < 0, α > 1, β > 1, and α + β < 2*, then (1.1)
has a ground-state solution.

This paper is organized as follows. In Section 2, preparation
work is completed. In Section 3, we reformulate this problem and
prove Theorem 1.1. In this paper, C is defined as
different constants.

2 Reformulation of the problem and
preliminaries

First, we explain that Lq(RN) denotes the Lebesgue space with
the norm

u‖ ‖p � ∫
RN
|u|pdx( )1

p

,

where 1 ≤ p < ∞. Lq � Lq(RN) × Lq(RN) with the norm

u, v( )‖ ‖p � ∫
RN
|u|pdx( )1

p

+ ∫
RN

|v|pdx( )1
p

,

where 1 ≤ p < ∞.

H1 � u, v( ): u, v ∈ L2 RN( ),∇u,∇v ∈ L2 RN( ){ }

with norms

u, v( )‖ ‖ � u‖ ‖ + v‖ ‖

� ∫
RN

|∇u|2 + u2( ) dx( )1
2

+ ∫
RN

|∇v|2 + v2( ) dx( )1
2

and

u, v( )‖ ‖2 � u‖ ‖2 + v‖ ‖2.

The embedding H1-Lq is continuous and compact for q ∈
(2, 2*).

In (1.1), the Euler–Lagrange functional associated with Equation
1.1 is given by

I u, v( ) � 1
2
∫

RN
1 − ku2( )|∇u|2 dx + 1

2
∫

RN
|u|2 dx

+1
2
∫

RN
1 − kv2( )|∇v|2 dx + 1

2
∫

RN
|v|2 dx − 2

α + β
∫

RN
|u|α|v|β dx.

For (u, v), constructing the variable like [16, 17], we have

dz � ���−k√ ������
1 − ku2

√
du, z � h u( )

� 1
2

���−k√
u

������
1 − ku2

√ + 1
2
ln

���−k√
u + ������

1 − ku2
√( ),

dw � ���−k√ ������
1 − kv2

√
dv, w � h v( )

� 1
2

���−k√
v

������
1 − kv2

√ + 1
2
ln

���−k√
v + ������

1 − kv2
√( ).

Since h is strictly monotone, it has a well-defined inverse
function f and u = f(z), v = f(w). Note that

h u( ) ~
���−k√

u, |u|≪
���
1
−k

√
−k
2
u|u|, |u|≫

���
1
−k

√ ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ h′ u( ) � ���−k√ ������
1 − ku2

√

and

f z( ) ~
1���−k√ z, |z|≪

���
1
−k

√
�����
2

−k|z|
√

z, |z|≫
���
1
−k

√ ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f′ z( ) � 1

h′ u( ) �
1���−k√ ������
1 − kv2

√ � 1���−k√ ���������
1 − kf z( )2

√ .

Similarly, the same operation holds true for v = f(w).
Using the variable, (1.1) will become

−1
k
Δz + f z( )f′ z( ) � 2α

α + β
|f z( )|α−2f z( )|f w( )|β, x ∈ RN,

−1
k
Δw + f w( )f′ w( ) � 2β

α + β
|f z( )|α|f w( )|β−2f w( ), x ∈ RN,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2.1)

where f: [0,∞) → R and

f′ � 1���−k√ �������
1 − kf2

√
on [0,∞), f(0) = 0, and f(−t) = f(t) on [0,∞). From the above facts, if
(z, w) is a weak solution for (2.1), then (u, v) � (f(z), f(w)) is a
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weak solution for (1.1). The energy functional I(u, v) reduces to the
following functional:

ϕ z, w( ) � 1
2
∫

RN

1���−k√ |∇z|2 dx + 1
2
∫

RN
f2 z( ) dx

+1
2
∫

RN

1���−k√ |∇w|2 dx + 1
2
∫

RN
f2 w( ) dx − 2

α + β
∫

RN
|f z( )|α|f w( )|β dx.

(2.2)

There are some properties of f: R → R as follows, which are
proved in [16, 17].

Lemma 2.1. The function f(t) and its derivative satisfy the following
properties:

(i) f(t)
t → 1 as t → 0;

(ii) f(t) ≤ |t| for any t ∈ R;

(iii) f(t)≤ 2
1
4

��|t|√
for all t ∈ R;

(iv) f2(t)
2 ≤ tf(t)f′(t)≤f2(t) for all t ∈ R;

(v) there exists a positive constant C such that

|f t( )|≥
C|t|, if t≤ 1,

C|t|12, if t> 1;
⎧⎨⎩

(vi) |f(t)f′(t)|≤ 1�
2

√ for all t ∈ R.

3 Proof of theorem 1.1

In this section, we will complete the proof of Theorem 1.1. First,
we will recall the critical point theorem in [1], which is crucial for
proving Theorem 1.1.

Theorem 3.1. Let (X, ‖(·, ·)‖) be a Banach space and L ⊂ R+ an
interval. Consider the following family of C1-functionals on X:

Φλ z, w( ) � A z, w( ) + λB z, w( ), λ ∈ L,

with B being non-negative and either A(z, w) → +∞ or B(z, w) →
+∞ as ‖(z, w)‖ → ∞. Assume that there are two points (z1, w1), (z2,
w2) ⊂ X such that

cλ � inf
γ∈Γλ

max
t1 ,t2( )∈ 0,1[ ]× 0,1[ ]

Φλ γ t1, t2( )( )
>max Φλ z1, w1( ),Φλ z2, w2( ){ } for all λ ∈ L,

where Γλ = {γ ∈ C([0, 1] × [0, 1], X): γ(0, 0) = (z1, w1), γ(1, 1) = (z2,
w2)}. Then, for almost every λ ∈ L, there is a sequence {(zn, wn)} ⊂ X
such that

(i) (zn, wn) is bounded;
(ii) Φλ(z, w) → cλ;

(iii) Φλ′(zn, wn) → 0 in the dual X−1 of X.

Moreover, the map λ → cλ is non-increasing and continuous
from the left.

Let λ ∈ L be an arbitrary but fixed value where cλ′ exists, where cλ′
is the derivative of cλ with respect to λ. Let {λn} ⊂ L be a strictly

increasing sequence such that λn→ λ. To prove Theorem 3.1, we will
show the following lemmas:

Lemma 3.1. There exists a sequence of path {γn} ⊂ Γ and K �
K(cλ′)> 0 such that

(i) ‖γn(t1, t2)‖≤K if γn(t1, t2) satisfies

Φλ γn t1, t2( )( )≥ cλ − λ − λn( ); (3.1)

(ii) max(t1 ,t2)∈[0,1]Φλ(γn(t1, t2))≤ cλ + (−cλ′ + 2)(λ − λn).

Proof. The proof is standard; see [1].

Lemma 3.1. means that there exists a sequence of paths {γn} ⊂ Γ
such that

max
t1 ,t2( )∈ 0,1[ ]× 0,1[ ]

Φλ γn t1, t2( )( ) → cλ,

for all n ∈ N sufficiently large; starting from a level strictly below cλ,
all the “top” of the path is contained in the ball centered at the origin
of fixed radius K � K(cλ′)> 0. Now, for α > 0, we define

Fα � z, w( ) ∈ X: z, w( )‖ ‖≤K + 1 and |Φλ z, w( ) − cλ|≤ α{ },
where K is given in lemma 3.1.

Lemma 3.2. For all α > 0,

inf Φλ′ z, w( )���� ����: z, w( ) ∈ Fα{ } � 0. (3.2)

Proof. We assume that (3.2) does not hold. Then, there exists α >
0 such that for any (z, w) ∈ Fα, we obtain

Φλ′ z, w( )���� ����≥ α. (3.3)

Without loss of generality, we can assume that

0< α< 1
2

cλ −max Φλ z1, w1( ),Φλ z2, w2( ){ }[ ].

A classical deformation argument then says that there exists ϵ ∈
[0, α] and a homeomorphism η: X → X such that

η u( ) � u, if |Φλ z, w( ) − cλ|≥ α, (3.4)
Φλ η z, w( )( )≤Φλ z, w( ), ∀ z, w( ) ∈ X, (3.5)

Φλ η z, w( )( )≤ cλ − ϵ, ∀ z, w( ) ∈ X, satisfying z, w( )‖ ‖
≤K andΦλ z, w( )≤ cλ + ϵ. (3.6)

Let {γn} ⊂ Γ be the sequence obtained in lemma 3.1. We choose
and fix m ∈ N sufficiently large in order that

−cλ′ + 2( ) λ − λm( )≤ ϵ. (3.7)

By lemma 3.1 and (3.4), η(γm) ∈ Γ. Now if (z, w) = γm(t1,
t2) satisfies

Φλ z, w( )≤ cλ − λ − λm( ),
then (3.5) implies that

Φλ η z, w( )( )≤ cλ − λ − λm( ). (3.8)

If (z, w) = γm(t1, t2) satisfies

Φλ z, w( )> cλ − λ − λm( ),
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by lemma 3.1 and (3.7), we obtain (z, w) such that ‖(z, w)‖≤K with
Φλ(z, w) ≤ cλ + ϵ. From (3.6), we obtain

Φλ η z, w( )( )≤ cλ − ϵ≤ cλ − λ − λm( ). (3.9)

Combining (3.8) with (3.9), we obtain

max
t1 ,t2( )∈ 0,1[ ]× 0,1[ ]

Φλ η γm t1, t2( )( )( )≤ cλ − λ − λm( ),

which contradicts the variational characterization of cλ.
Next, we prove theorem 3.1.
Proof. Since lemma 3.2 is true, there exists a PS sequence for Φλ

at the level cλ ∈ R, which is contained in the ball of radius K + 1
centered at the origin. Hence, this is proved.

Let L � [12, 1], we define the following energy functional:

Φλ z, w( ) � 1
2
∫

RN

1���−k√ |∇z|2 + z2 + 1���−k√ |∇w|2 + w2( ) dx

− λ∫
RN

1
2

z2 − f2 z( ) + w2 − f2 w( )( ) + 2
α + β

|f z( )|α|f w( )|β( ) dx,

(3.10)

where λ ∈ L. Moreover, let

A z,w( ) � 1
2
∫

RN

1���−k√ |∇z|2 + z2 + 1���−k√ |∇w|2 + w2( ) dx

and

B z,w( ) � λ∫
RN

1
2

z2 − f2 z( ) + w2 − f2 w( )( ) + 2
α + β

|f z( )|α|f w( )|β( ) dx.

Letting ‖(z, w)‖ → +∞, then A(z, w) → +∞ and B(z, w) ≥ 0.
By a standard argument in [18, 19], we have the following

Pohožaev-type identity:

Lemma 3.3. If (z, w) ∈ H1 is a critical point of (3.10), then (z,w)
satisfies Pλ(z, w) = 0, where

Pλ z, w( ) ≔N − 2
2

∫
RN

1���−k√ |∇z|2 + |∇w|2( ) dx
+N
2
∫

RN
f2 z( ) + f2 w( )( ) dx − 2Nλ

α + β
∫

RN
|f z( )|α|f w( )|β dx.

(3.11)

Similar to [9], we obtain the following lemma:

Lemma 3.4. Φλ(z, w) meet the conditions as follows:

(i) there exists (z, w) ∈ H1 \{(0, 0)} such that Φλ(z, w) < 0 for all
λ ∈ L;

(ii) for cλ, we obtain

cλ � inf
γ∈Γ

max
t1 ,t2( )∈ 0,1[ ]× 0,1[ ]

Φλ γ t1, t2( )( )>max Φλ 0, 0( ),Φλ z, w( ){ },

for all λ ∈ L, where

Γ � γ ∈ C 0, 1[ ] × 0, 1[ ], H1( ): γ 0, 0( ) � 0, 0( ), γ 1, 1( ) � z, w( ){ }.
Proof. (i) Let (z, w) ∈ H1 \{(0, 0)} be fixed. For any λ ∈ L � [12, 1],

we obtain

Φλ z, w( )≤Φ1
2
z, w( )

� 1
2
∫

RN

1���−k√ |∇z|2 + |∇w|2( ) dx
+1
4
∫

RN
z2 + f2 z( ) + w2 + f2 w( )( ) dx − 1

α + β
∫

RN
|f z( )|α|f w( )|β dx.

As [20, 21], we consider ϕ,φ ∈ C∞
0 (R) such that 0 ≤ ϕ(x) ≤ 1, 0 ≤

φ(x) ≤ 1 and

ϕ x( ) � 1, if |x|≤ 1,
0, if |x|≥ 1,

{ φ x( ) � 1, if |x|≤ 1,
0, if |x|≥ 1.{

By Lemma 2.1 (ii) and (v), we obtain

|f tϕ( )|≥C|tϕ|≥Cf t( )ϕ.

By Lemma 2.1 (ii),

Φλ t1ϕ, t2φ( )≤ 1
2
∫

RN

1���−k√ |∇t1ϕ|2 + t21ϕ
2( ) dx

+1
2
∫

RN

1���−k√ |∇t2φ|2 + t22φ
2( ) dx

− 1
α + β

∫
RN
|f t1ϕ( )|α|f t2φ( )|β dx

≤
t21
2
∫

RN

1���−k√ |∇ϕ|2 + ϕ2( ) dx

+t
2
2

2
∫

RN

1���−k√ |∇φ|2 + φ2( ) dx

−C |f t1( )|α + |f t2( )|β( )
α + β

∫
RN
|ϕ|α|φ|β dx.

It follows thatΦλ(t1ϕ, t2φ)→ −∞ as (t1, t2)→ (+∞, +∞). Thus,
there exists (t3, t4) > 0 such that Φλ(t3ϕ, t4φ) < 0. Thus, taking (z,
w) = (t3ϕ, t4φ), we obtain Φλ(z, w) < 0 for all λ ∈ L.

(ii) As [20, 22], there exists C > 0 and ρ1 > 0 small enough
such that

∫
RN

1���−k√ |∇z|2 + f2 z( ) + 1���−k√ |∇w|2 + f2 w( )( ) dx≥C z, w( )‖ ‖,

for ‖(z, w)‖≤ ρ1. From Lemma 2.1 (iii) and Hölder inequality,
we obtain

Φλ z, w( ) ≥
1
2
∫

RN

1���−k√ |∇z|2 + f2 z( ) dx + 1
2
∫

RN

1���−k√ |∇w|2 + f2 w( ) dx

− 1
α + β

∫
RN

|f z( )|α|f w( )|β dx
≥C z,w( )‖ ‖ − 1

α + β
∫

RN
|f z( )|α|f w( )|β dx

≥C z,w( )‖ ‖ − C zα1‖ ‖p wβ1
���� ����p′ for all z, w( )‖ ‖≤ ρ1,

where α1 = α or α
2, β1 = β or β

2, and (1p + 1
p′) � 1. It can conclude that

Φλ has a strict local minimum at 0, and hence, cλ > 0.
By Theorem 3.1, it is easy to know that for every λ ∈ [12, 1], there

exists a bounded sequence (zn, wn) ⊂ H1 such that Φλ(zn, wn) → cλ
and Φλ′(zn, wn) → 0.

Lemma 3.5. If (zn, wn) ⊂H1 is the sequence obtained above, then for
almost every λ ∈ L � [12, 1], there exists (zλ, wλ) ∈ H1 \{(0, 0)} such
that Φλ(zλ, wλ) → cλ and Φλ′(zλ, wλ) → 0.

Proof. Since (zn,wn) is bounded inH
1, up to a subsequence, there

exists (zλ, wλ) ∈ H1 such that
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zn, wn( ). zλ, wλ( ) in H1,

zn, wn( ) → zλ, wλ( ) in Ls for all 2< s< 2*,

zn x( ), wn x( )( ) → zλ x( ), wλ x( )( ) a. e. in RN.

Since Φλ′(zn, wn) → 0, by the Lebesgue dominated convergence
theorem, it is easy to get Φλ′(zn, wn) → Φλ′(zλ, wλ), that is,
Φλ′(zλ, wλ) � 0, as shown in [23]. Similar to [22, 24, 25], there
exists C > 0 such that

∫
RN

1���−k√ |∇ zn − zλ( )|2 + f zn( )f′ zn( ) − f zλ( )f′ zλ( )( ) zn − zλ( )( ) dx

≥C zn − zλ‖ ‖2, (3.12)

∫
RN

1���−k√ |∇ wn − wλ( )|2 + f wn( )f′ wn( ) − f wλ( )f′ wλ( )( ) wn − wλ( )( ) dx

≥C wn − wλ‖ ‖2. (3.13)

By Hölder inequality and Lemma 2.1(ii) and (iv), we deduce that

2α
α + β

∫
RN

|f zn( )|α−2f zn( )f′ zn( )|f wn( )|β zn − zλ( ) dx

+ 2β
α + β

∫
RN

|f zn( )|α|f wn( )|β−2f wn( )f′ wn( )

× wn − wλ( ) dx≤ 2α
α + β

∫
RN

|zn|α−1|wn|β zn − zλ( ) dx

+ 2β
α + β

∫
RN

|zn|α|wn|β−1 wn − wλ( ) dx≤ 2α
α + β

∫
RN

|zn|1β|wn| 1
α−1 dx( ) α−1( )β

zn − zλ‖ ‖p1

+ 2α
α + β

∫
RN

|zn| 1
β−1|wn|1α dx( ) β−1( )α

wn − wλ‖ ‖p2 → 0,

(3.14)

where p1 � 1
(α−1)β and p2 � 1

(β−1)α. Similarly, we obtain

2α
α + β

∫
RN
|f zλ( )|α−2f zλ( )f′ zλ( )|f wλ( )|β zn − zλ( ) dx

+ 2β
α + β

∫
RN
|f zλ( )|α|f wλ( )|β−2f wλ( )f′ wλ( ) wn − wλ( ) dx → 0.

(3.15)
Following (3.12), 3.13, 3.14, and .3.15, we obtain

0 ← 〈Φλ′ zn, wn( ) −Φλ′ zλ, wλ( ), zn − zλ, wn − wλ( )〉
� ∫

RN

1���−k√ |∇ zn − zλ( )|2 + f zn − zλ( )f′ zn − zλ( ) zn − zλ( )( ) dx

+∫
RN

1���−k√ |∇ wn − wλ( )|2 + f wn − wλ( )f′ wn − wλ( ) wn − wλ( )( ) dx

− 2α
α + β

∫
RN

|f zn( )|α−2f zn( )f′ zn( )|f wn( )|β[
−|f zλ( )|α−2f zλ( )f′ zλ( )|f wλ( )|β] zn − zλ( ) dx
− 2β
α + β

∫
RN

|f zn( )|α|f wn( )|β−2f wn( )f′ wn( )[
−|f zλ( )|α|f wλ( )|β−2f wλ( )f′ wλ( )] wn − wλ( ) dx

≥ C zn − zλ‖ ‖2 + C wn − wλ‖ ‖2 + on 1( ),
(3.16)

which implies that (zn, wn)→ (zλ, wλ) in H1. Thus, (zλ, wλ) is a non-
trivial critical point of Φλ(z, w) with Φλ(zλ, wλ) = cλ.

Next, we prove Theorem 1.1.
Proof. At first, using Theorem 3.1, for arbitrary λ ∈ L � [12, 1],

there is a (zλ, wλ) ∈ H1 such that

zn, wn( ). zλ, wλ( ) ≠ 0, 0( ) inH1,

Φλ zn, wn( ) → cλ andΦλ′ zn, wn( ) → 0.

By Lemma 3.5, we obtain

Φλ zλ, wλ( ) → cλ andΦλ′ zλ, wλ( ) � 0.

Thus, there exists λn ⊂ [12, 1] such that

λn → 1, zλn, wλn( ) ∈ H1,

Φλn′ zλn, wλn( ) � 0 andΦλn zλn, wλn( ) � cλn.

Next, we prove that {(zλn, wλn)} is bounded in H1. From
Lemma 3.4

Φλn zλn, wλn( ) � c1
2
, Φλn′ zλn, wλn( ) � 0,

it follows that

c1
2
≥Φλn zλn , wλn( )
� Φλn zλn , wλn( ) − 1

N
Pλn zλn , wλn( )

� N − 2
2N

∫
RN

2
N − 2

1���−k√ |∇zλn |2 + |∇wλn |2( ) + f2 zλn( ) + f2 wλn( )( ) dx.

(3.17)

By Lemma 2.1 (v) and Sobolev inequality, it follows that

∫
|zλn |≤ 1

z2λn dx≤C∫
RN

f2 zλn( ) dx, ∫
|wλn |≤ 1

w2
λn
dx≤C∫

RN
f2 wλw( ) dx

and

∫
|zλn |> 1

z2λn dx≤∫
|zλn |> 1

z2*λn dx≤C ∫
RN
|∇zλn|2 dx( )2*

2

,

∫
|wλn |> 1

w2
λn
dx≤∫

|wλn |> 1
w2*

λn
dx≤C ∫

RN
|∇wλn|2 dx( )2*

2

.

Therefore,

∫
RN z2λn + w2

λn
( ) dx

� ∫|zλn |≤ 1
z2λn dx + ∫|zλn |> 1

z2λn dx + ∫|wλn |≤ 1
w2

λn
dx + ∫|wλn |> 1

w2
λn
dx

≤ C∫
RNf

2 zλn( ) dx + C∫
RN

f2 wλw( ) dx
+C ∫

RN
|∇zλn|2 dx( )2*

2

+ C ∫
RN
|∇wλn|2 dx( )2*

2

.

(3.18)
Combining (3.17) and (3.18), we infer that there exists C > 0

such that

∫
RN

z2λn + w2
λn

( ) dx≤C.

Thus, there exists C > 0 independent of n such that

zλn, wλn( )���� ����2 � ∫
RN

|∇zλn|2 + z2λn( ) dx + ∫
RN

|∇wλn|2 + w2
λn

( ) dx≤C.

Next, we can assume that the limit of Φλn(zλn, wλn) exists. By
Theorem 3.1, we know that λ→ cλ is continuous from the left. Thus,
we obtain

0≤ lim
n→∞Φλn zλn, wλn( )≤ c1

2
.

Then, by using the fact that

Φ zλn, wλn( ) � Φλn zλn, wλn( )
+ λn − 1( )

αβ
∫

RN

2
α + β

|f zλn( )|α|f wλn( )|β dx
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and

〈Φ′ zλn , wλn( ), ϕ, ψ( )〉 � 〈Φλn′ zλn , wλn( ), ϕ, ψ( )〉
+ λn − 1( )

β
∫

RN

2
α + β

|f zλn( )|α−1f′ zλn( )ϕ|f wλn( )|β dx
+ λn − 1( )

α
∫

RN

2
α + β

|f zλn( )|α|f wλn( )|β−1f′ wλn( )ψ dx,

for any ϕ, ψ ∈ C∞
0 (RN) and ‖(zλn, wλn)‖≤C, it follows that

lim
n→∞

Φ zλn, wλn( ) � c1, lim
n→∞

Φ′ zλn, wλn( ) � 0.

Up to a subsequence, there exists a subsequence (zλn, wλn)
denoted by (zn, wn) and (z0, w0) ∈ H1 such that (zn, wn) . (z0,
w0) in H1. Using the same method as Lemma 3.5, we will obtain the
existence of a non-trivial solution (z0, w0) for Φ and Φ′(z0, w0) = 0
and Φ(z0, w0) = c1.

To find ground-state solutions, we need to define that

m ≔ inf Φ z, w( ): z, w( ) ≠ 0, 0( ),Φ′ z, w( ) � 0{ }.
By Lemma 3.3, it follows that

P z,w( ) � P1 z, w( ) � 0.

According to (3.17), we have m ≥ 0. Let (zn, wn) be a sequence
such that

Φ′ zn, wn( ) � 0 andΦ zn, wn( ) → m.

Similar to Lemma 3.5, we can prove that there exists (z′,w′) ∈H1

such that

Φ′ z′, w′( ) � 0 andΦ z′, w′( ) � m,

which implies that (u′, v′) � (f(z′), f(w′)) is a ground-state
solution of (1.1). The proof is complete.
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