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Unsupervised physics-informed deep learning can be used to solve
computational physics problems by training neural networks to satisfy the
underlying equations and boundary conditions without labeled data.
Parameters such as network architecture and training method determine the
training success. However, the best choice is unknown a priori as it is case
specific. Here, we investigated network shapes, sizes, and types for unsupervised
physics-informed deep learning of the two-dimensional Reynolds-averaged flow
around cylinders. We trained mixed-variable networks and compared them to
traditional models. Several network architectures with different shape factors and
sizes were evaluated. The models were trained to solve the Reynolds-averaged
Navier-Stokes equations incorporating Prandtl’s mixing length turbulencemodel.
No training data were deployed to train themodels. The superiority of themixed-
variable approachwas confirmed for the investigated high Reynolds number flow.
The mixed-variable models were sensitive to the network shape. For the two
cylinders, differently deep networks showed superior performance. The best
fitting models were able to capture important flow phenomena such as
stagnation regions, boundary layers, flow separation, and recirculation. We
also encountered difficulties when predicting high Reynolds number flows
without training data.
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1 Introduction

Neural networks (NNs) can be used to approximate arbitrary nonlinear function and its
derivatives [20]. However, deep learning (DL) requires large data sets to train these
networks [28]. Physics-informed neural networks (PINNs) have attracted a growing
interest, as the required amount of training data can be significantly reduced by
deploying physics-informed DL. PINNs are NNs that are trained to respect given laws
of physics by utilizing a composed loss function that considers residuals of the underlying
physics equations and boundary conditions. Physics-informed DL has been demonstrated
by Lagaris et al. [13] who used PINNs to solve different differential equations. Later, Raissi
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et al. [22–24] extended this research further and trained several
partial differential equations without relying on training data. These
studies proved the effectiveness of PINNs and motivated a growing
number of investigations in all fields of computational physics.

In the field of fluid dynamics, a variety of research has been
carried out. Many investigations focused on laminar flows at low
Reynolds numbers [9, 14, 18, 25, 27]. Several investigations covered
turbulent flows at high Reynolds numbers, and PINNs were trained
to solve the Reynolds-averaged Navier-Stokes (RANS) equations.
High Reynolds number flows are important research objects for
physics-informed DL as most technical flows are subject to high
Reynolds numbers and additional turbulence modeling equations,
strong convection, as well as high gradients impose challenges to the
training success. RANS solutions obtained by PINNs could be
applied to surrogate modeling [6] or optimization problems [7]
to replace traditional computational fluid dynamics (CFD)
calculations of the RANS equations. Several RANS-PINN studies
have been conducted for high Reynolds number flows incorporating
turbulence models such as Prandtl’s mixing length model [7, 21], the
k-ϵmodel [5], the k-ωmodel [21], the Spalart-Allmaras (SA) model
[19], as well as equation-free modeling approaches [3, 21, 36]. This
encouraging research, which demonstrated the capabilities of
PINNs, incorporated labeled training data into the training
routine of the PINN [5, 19, 21, 36], trained parts of the complete
flow field using unsupervised DL [3, 36], or trained flows without
separation without using training data [7]. Hence, the evaluation of
unsupervised physics-informed DL methods applied to complete
flow fields featuring flow separation at elevated Reynolds numbers
remains an open question.

Rao et al. [26] presented a mixed-variable approach of superior
accuracy for a low Reynolds number flow around a cylinder without
using training data. Motivated by their results, we evaluated the
unsupervised mixed-variable method applied to a high Reynolds
number flow considering RANS turbulence modeling. To conduct a
comparative study, we trained several PINNs to predict the two-
dimensional Reynolds-averaged turbulent flow field around two
cylinders. We compared the mixed-variable method to traditional
PINNs and evaluated various network architectures to identify the
most accurate network shape and size. We used the PINNs to solve
the RANS equations and applied Prandtl’s mixing length model to
model turbulence. The PINN predictions were compared with CFD
results as well as experimental measurements. To our knowledge,
this is the first detailed report of unsupervised physics-informed DL

learning of the RANS equations for a complete flow field featuring
flow separation at an elevated Reynolds number. The motivation of
this work was to explore and evaluate unsupervised DLmethods and
network architectures with respect to their prediction accuracy of
Reynolds-averaged flows when no training data are provided.

2 Materials and methods

2.1 Geometry

We investigated the two-dimensional flow around a circular
cylinder as well as a square cylinder. Figure 1 illustrates the cylinder
geometries. We considered a fluid with a density ρ of 1 kg/m3 and an
inlet velocity of 1 m/s. Dimensions and inlet velocity were chosen to
yield a scaled problem with network inputs and outputs ranging
between −1 and +1 as closely as possible. The resulting flow fields
featured important phenomena, such as stagnation points, high
gradient boundary layers, flow separation, and wakes. The two
geometries exemplified curved and cornered obstacles that
impose different flow separation mechanisms triggered at the
rounded or cornered walls. We employed three different versions
of the cylinder geometries as presented in Table 1. Geometries
G1 and G2 were used to evaluate the effect of network architecture,
network shape, and PINN methods for different cylinder shapes at
an elevated Reynolds number. The large scale of the cylinders
allowed more accurate and spatially detailed PINN predictions.
This set up represented a channel flow and allowed comparison
to a PINN study of Rao et al. [26]. Geometry G3 was selected to
facilitate a comparison of the PINN method with the experimental
results of Lyn et al. [17] as well as a PINN study of Ang et al. [1]. Due
to the small scale of the square cylinder, blockage ratio effects of
geometry G3 were negligibly small; however, the spatial accuracy of
the PINN method was reduced.

2.2 Governing equations and PINN method

The associated flow field is governed by the continuity Eq 1 and
the two-dimensional incompressible Reynolds-averaged Navier-
Stokes Eq. 2

∂ui

∂xi
� 0 (1)

FIGURE 1
Geometries of the circular cylinder (left) and the square cylinder (right).
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+ μ
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∂2ui
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(2)

with Reynolds-averaged velocities and pressure ui, uj, and �p,
constant density ρ, and constant dynamic viscosity μ. In the
RANS equations, the second order moments of the turbulent
velocity fluctuations, ui′, and uj′, represent the Reynolds stresses τij′

∂τ ij′
∂xj

� uj′
∂ui′
∂xj

(3)

The Reynolds stresses are modeled using the Boussinesq hypothesis

τ ij′ � −ui′uj′ � μt
ρ

∂ui

∂xj
+ ∂uj

∂xi
( ) − 2

3
kδij (4)

where μt is a turbulent viscosity representing the effects of the
turbulent eddies on the mean flow, k is the turbulent kinetic energy,
and δij is the Kronecker delta. The approach of modeling turbulence
via an eddy viscosity is based on the gradient diffusion hypothesis
and, hence, assumes an alignment of the turbulent transport with the
negative gradient of the mean flow. The application of an isotropic
turbulent viscosity, μt, facilitates modeling of turbulent stresses in
the same way as viscous stresses. A turbulence model is required to
calculate the turbulent viscosity. Here, Prandtl’s mixing-length
model was selected as applied in [7] due to its stability and
robustness. For this model, the turbulent viscosity is estimated
using a mixing length, lm, that represents the size of the
characteristic eddies as follows:

μt � ρl2m
�
S

√
(5)

where S represents the modulus of the mean rate of strain tensor. For
the two-dimensional flow considered here, S reads

S � 2
∂�u

∂x
( )2

+ 2
∂�v

∂y
( )2

+ ∂�u

∂y
+ ∂�v

∂x
( )2

(6)

The mixing length lm is calculated as follows:

lm � min κd, 0.09dmax( ) (7)
where d is the distance from the wall, κ ≈ 0.4 is the von Kármán
constant, and dmax is a characteristic maximal length scale, here
taken as the maximum wall distance of 1.0 m. Using the eddy
viscosity approach, a resulting viscosity, μres, is calculated and
deployed in the RANS equations

μres � μ + μt (8)

Two physics-informed DL methods were compared. The
corresponding models were trained by minimizing a composed
loss function L(θ):

L θ( ) � Lb θ( ) + Le θ( ) (9)
where Lb is the loss on the boundary conditions, and Le is the loss
for the RANS equations. The individual loss terms were calculated
using the mean squared error:

Lb � 1
Nb

∑Nb

n�1
|Un

b − ~U
n

b|2 (10)

Le � 1
Ne

∑3
k�1

∑Ne

n�1
|εnk|2 (11)

where Nb and Ne represent the number of points for which the
boundary conditions and RANS equations were trained. Un

b �
[unb, vnb] are the given velocity and pressure conditions for points
n on the boundaries. ~U

n
b and ~U

n
d represent the output of the PINN at

the corresponding training points and εnk is the residual of the kth
equation at point n.

For the first method, a traditional PINN was trained to predict
the Reynolds-averaged velocity and pressure fields. The PINN reads
as follows:

NNθ
x
y

( ) �
u
v
p

⎛⎜⎝ ⎞⎟⎠ (12)

where θ are the trainable parameters (weights and biases) of the NN.
Hence, for the traditional PINN approach, the model maps the input
coordinates x and y to the output solution field components u, v, and
p. The Navier-Stokes Eqs 1, 2 were used as the residual functions
as follows:

εk�1 � ∂ui

∂xi
(13)

εk�2,3 � uj
∂ui

∂xj
+ 1
ρ

∂�p

∂xi
− μres

ρ

∂2ui

∂xj∂xj
(14)

For the second method, a mixed-variable approach as presented
by Rao et al. [26] provided a system of equation that can be learned
more easily by the PINN. The correspondingly simplified RANS
equations read as follows:

uj
∂ui

∂xj
� 1
ρ

∂σ ij
∂xj

(15)

Using this method, the stress tensor σij is utilized

σ ij � −pδij + μres
∂ui

∂xj
+ ∂uj

∂xi
( ) (16)

The pressure p can be calculated as the trace of σ

p � −1
2
σ ii (17)

TABLE 1 Parameters of the investigated geometries.

Label Cylinder Cylinder size D Blockage (%) Reference data Reynolds number Objective

G1 Circular 0.40 m 20 CFD 4.00 × 105 Network study

G2 Square 0.40 m 20 CFD 4.00 × 105 Network study

G3 Square 0.14 m 7 Experiments 2.14 × 104 Validation
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As suggested by Rao et al. [26], the stream variable ψ was used to
represent the velocity field. This automatically satisfies the
continuity Eq 1 and amplified the learning success of the NN.
The velocity components can be retrieved using

u
v
0

⎛⎜⎝ ⎞⎟⎠ � ∇ ×
0
0
ψ

⎛⎜⎝ ⎞⎟⎠ (18)

where ∇ is the Nabla operator. A feedforward NN was trained to
predict ψ, p, and the stress components σxx, σxy = σyx, and σyy. The
network takes the coordinates x and y as inputs and passes the
velocity components, the pressure, and the stress components back.
The model reads as follows:

NNθ
x
y

( ) �

ψ
p
σxx
σxy
σyy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (19)

In agreement with Eqs 15–17, the residuals εk are computed as

εk�1,2 � uj
∂ui

∂xj
− ∂σ ij
∂xj

(20)

εk�3,4,5 � −p + μres
∂ui

∂xj
+ ∂uj

∂xi
( ) − σ ij (21)

εk�6 � p + 1
2
σ ii (22)

For the traditional approach, the two input neurons were fed
into a single fully connected feed-forward network with three output
neurons as determined by Eq 12. For the mixed-variable approach,
the two input neurons were fed into a single fully connected feed-
forward network with five output neurons as defined by Eq 19.
Figure 2 shows the two methods that were compared here.

For all networks, a tanh activation function was deployed. In a
first step, the PINNs were trained using the Adam optimizer for
100,000 iterations with a decaying learning rate. The initial learning
rate was set to 0.001 and was reduced by a factor of 0.9 every
2,000 iterations. In a second step, the models were trained using the
L-BFGS optimizer under the predefined default settings. No loss
weigthing factors were defined. The training was conducted using
the tensorflow-based library DeepXDE [16] on a 16 GB NVIDIA
Quadro RTX 5000.

2.3 Reference data

The capability of the PINN to represent the solution of the RANS
equations under consideration of the mixing length model was
evaluated and compared with CFD simulations for geometries
G1 and G2. For the CFD calculations, the element-based finite
volume flow solver MAYA included in the Simcenter software was
used. The MAYA solver provided the mixing length model with Van
Driest damping. Unstructured meshes featuring prism layers on the
cylinders were defined. The second order upwind discretization
scheme was deployed. The incompressible calculations were carried
out until reaching the minimal achievable residuals. A grid sensitivity
analysis was carried out to verify the models. For the grid study, three
grids were generated using a refinement factor of 1.3. Excellent
agreement between all three grids was found and, consequently,
the reference solution was concluded to be grid independent.

The PINN predictions for geometry G3 were compared with
experimental results of Lyn et al. [17] who conducted two-
component laser-Doppler measurements for a square cylinder
inside a closed water channel at a Reynolds number of 2.14 ×
104. The time averaged data were obtained from the ERCOFTAC
validation database [4].

FIGURE 2
Tested physics-informed deep learning methods. 1) Traditional fully-connected feed-forward architecture; 2) Mixed-variable fully connected feed-
forward architecture.
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2.4 Study design

This study, comprising three parts, compared the traditional
method with the mixed-variable method, investigated effects of
network shape and size for different geometries, and compared
the predictions with measurements. For both PINN methods,
several network architectures were compared. The network sizes
were chosen to yield the same number Nθ of trainable parameters θ
(weights and biases) inside the network, where Nθ is defined
as follows:

Nθ � NinNn +N2
n Nl − 1( ) +NoutNn +NnNl (23)

Here, Nout represents the number of output neurons and Nin the
number of input neurons. The number of neurons per layer, Nn,
and the number of hidden layers, Nl, were set to yield a
progressing series of shape factor values, λ. The shape factor
was defined as follows:

λ � Nn

Nl
(24)

A low value of λ represented a deep but narrow network architecture
featuring comparatively few neurons per layer and many hidden
layers. An elevated result for λ corresponded to a shallow but wide
network consisting of a high amount of neurons per layer and few
hidden layers.

In the first part of our study, the traditional method was tested
using geometry G1. This part documented limitations of the
traditional PINN method when applied to high Reynolds number

flows. Table 2 lists the tested networks of the first part. In the
second part, the best fitting network shapes and sizes for mixed-
variable PINN models were evaluated and the results for
geometry G1 and G2 were compared. The purpose of this part
was to find appropriate network shapes, outline differences
between the two geometries, and document capabilities and
limitations of unsupervised mixed-variable models when
applied to high Reynolds number flows. A total of five
network architectures were deployed with corresponding shape
factors ranging from 4.08 × 10−1 to 1.34 × 102. Table 2 lists the
evaluated networks. Furthermore, after selecting the network
shapes giving the most accurate results, several networks
featuring a constant shape factor and a progressing number of
trainable parameters θ were defined and tested. Different shape
factors were chosen for the circular cylinder and the square
cylinder. Table 2 lists the networks evaluated in the second
step. 10,000 randomly distributed training points were used
on the boundaries as well as inside the flow domain for
geometries G1 and G2. This represented 1,250 points per m2

of the flow domain and 754 points per m of the boundaries. The
number of points was evaluated in a prior sensitivity analysis
conducted for the circular cylinder G1 using the mixed-variable
PINN N50L30. The evaluation revealed no increase in accuracy
by increasing the number of points, as shown in Figure 3. The
density of points deployed here was 3.87 times greater than used
in a study of Ang et al. [1] who reported no change in accuracy
beyond 323 points per m2 of the scaled flow domain for a laminar
flow field.

TABLE 2 Network architectures using the traditional PINN method evaluated in the three parts.

Label (L) Neurons p. l Layers Shape factor Parameters Geometry Methods

N3175 31 76 4.08 × 10−1 74,586 G1 Traditional

N5030 50 30 1.67 × 100 74,250 G1 Traditional

N2682 268 2 1.34 × 102 73,700 G1 Traditional

N3175 31 76 4.08 × 10−1 74,648 G1 and G2 Mixed-variable

N5030 50 30 1.67 × 100 74,350 G1 and G2 Mixed-variable

N8112 81 12 6.75 × 100 73,710 G1 and G2 Mixed-variable

N1355 135 5 2.70 × 101 74,520 G1 and G2 Mixed-variable

N2682 268 2 1.34 × 102 74,236 G1 and G2 Mixed-variable

N2012 20 12 1.67 × 100 4,780 G1 Mixed-variable

N4024 40 24 1.67 × 100 38,040 G1 Mixed-variable

N5030 50 30 1.67 × 100 74,350 G1 Mixed-variable

N6036 60 36 1.67 × 100 128,580 G1 Mixed-variable

N542 54 2 2.70 × 101 3,402 G2 Mixed-variable

N1084 108 4 2.70 × 101 36,180 G2 Mixed-variable

N1355 135 5 2.70 × 101 74,520 G2 Mixed-variable

N1626 162 6 2.70 × 101 133,326 G2 Mixed-variable

N5030 50 30 1.67 × 100 74,350 G3 Mixed-variable
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In the third part, geometry G3 was considered and an
unsupervised PINN was compared with the experimental
results of Lyn et al. [17]. A search for the most suitable
network shape was conducted in the same way as described
above for part two. As the general method and behavior of the
PINN was equivalent, the detailed results of this study are not
presented here. Model N50L30 was identified as the most suitable
architecture for geometry G3. The corresponding settings of the
network are listed in Table 2. To account for the small scale of the
cylindrical body contained in geometry G3, the number of
training points inside the domain was increased to 80,000.
The purpose of this part was to get an impression of the

validity of the mixed-variable PINN method when no labeled
training data are provided.

3 Results

3.1 Performance of the traditional method

The traditonal PINNs failed to capture the flow field,
independent of network architecture. Figure 4 displays
comparative predictions for the velocity field around the circular
cylinder. As a reference, the CFD results are shown as well. Several

FIGURE 3
Global mean squared errors obtained for the large scale circular cylinder G1 using different quantities of training points. For visualization purposes,
the data points are connected by straight lines.

FIGURE 4
Predicted axial velocities around the circular cylinder obtained by the traditional PINN method.
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models are exhibited that represent high, moderate, and low shape
factors. From the shown models, N31L76 and N268L2 both failed to
capture the reference flow field accurately. Model N50L30 provided
the best representation of the flow field but the wake length was
overestimated and the velocity of the high speed region at the lateral
sides of the cylinder was underestimated and the region separated
from the cylinder wall. Overall, the flow field was not captured
accurately by the traditional PINN method, neither quantitatively
nor qualitatively.

3.2 Effect of network architecture using the
mixed-variable method

The mixed-variable approach was observed to be sensitive to the
network shape. Too deep as well as too wide networks failed to
capture the flow field. Figures 5, 6 display predicted axial velocities of
several models together with comparative CFD data. From the
shown models, N31L76 and N268L2 represent low and high
shape factors, respectively. Both architectures failed to capture

FIGURE 5
Predicted axial velocities around the circular cylinder obtained from the mixed-variable PINN method.

FIGURE 6
Predicted axial velocities around the square cylinder obtained from the mixed-variable PINN method.
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the reference flow field accurately. For the circular cylinder, model
N50L30 obtained the most accurate predictions, capturing the
stagnation region, the thin boundary layer on the cylinder, as
well as the wake. However, the wake length was overestimated
compared with the reference solution and the high speed region
on the lateral sides of the cylinder was deformed. The length of the
wake defined as the downstream distance behind the cylinder until
60% of the inlet velocity was recovered was predicted to be 1.32 m
while the reference CFD simulation yielded a wake length of 0.27 m.
Correspondingly, the PINN predicted a recirculation length of
0.16 m while the CFD computation featured a shorter
recirculation region of 0.02 m. For the square cylinder, model
N135L5 exhibited the most accurate results. The stagnation
region, the cylinder wake, and the small area of flow separation
and recirculation at the lateral sides of the cylinder was captured.
However, the size of the low velocity stagnation region upstream of
the cylinder was overpredicted when compared with the reference
solution. For the square cylinder, the wake length was predicted
more accurately by the mixed-variable PINN than for the circular
cylinder as the PINN featured a wake length of 2.72 mwhile the CFD
solution gave a length of 2.49 m. The recirculation length as
predicted by the PINN was 0.52 m and the reference simulation
featured a recirculation length of 0.38 m.

Figure 7 compares axial velocities of the different mixed-
variable PINN models with the CFD calculations for the circular
cylinder. The results are shown along several vertical lines. At
x = 0, the high gradients as well as the overshoot of the
developing boundary layer were best captured by N50L30 and
N81L12. All models predicted a prolonged wake behind the
cylinder. This resulted in a greater velocity deficit at x = 1 m and
x = 2 m, accompanied by a higher free stream velocity at the
lateral sides due to volume flow and momentum balances. Model
N50L30 captured the reference flow most accurately. Figure 7
also displays the predicted velocity close to the square cylinder.
Except for model N268L2, all models showed close agreement.
At x = 0 m, model N135L5 accurately captured the recirculating
flow on the cylinder surface featured by the reference solution.
Furthermore, the velocity overshoot of the developing and
separating boundary layer was captured. However, the
thickness of the recirculating flow was slightly overestimated
and, consequently, the velocity overshoot of the separating
boundary layer was overestimated as well. All models
accurately predicted the wake behind the square cylinder.

The trends observed for the axial velocity were also observed for
the pressure field. Figures 8, 9 exhibit the pressure predictions and
comparative CFD data. For the circular cylinder G1, model

FIGURE 7
Axial velocities around the circular cylinder (top row) and the square cylinder (bottom row) at x = 0 m (left), x = 1 m (middle), and x = 2 m (right).
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N31L76 predicted pressure values close to zero and did not capture
the pressure field. For the square cylinder G2, model
N31L76 predicted inaccurate results as well. Similarly, model
N268L2 did not predict the pressure field accurately. For the
circular cylinder, the positive pressure in the stagnation region of
the reference solution was underestimated and a moderate negative
pressure was predicted around the cylinder. For the square cylinder,
model N268L2 predicted a dislocated region of positive pressure at
the upstream side of the cylinder. For the circular cylinder, the best

fitting model N50L30 captured the positive pressure region at the
upwind side of the cylinder as well as the negative pressure at the
lateral sides. However, the positive pressure on the downwind side
was not predicted. For the square cylinder, the best fitting model
N135L5 captured the positive pressure of the stagnation region as
well as a negative pressure field around the square cylinder.
However, size and magnitude of the positive pressure region as
well as the negative pressure region at the upstream corners were
underestimated.

FIGURE 8
Predicted pressure around the circular cylinder obtained by the mixed-variable PINN method.

FIGURE 9
Predicted pressure around the square cylinder obtained by the mixed-variable PINN method.
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The pressure values on the cylinder surface are shown in
Figure 10. The deep but narrow model N31L76 predicted a
vanishing pressure distribution around the entire cylinder. All
models failed to predict the positive pressure region on the
downstream side of the cylinder that was present in the CFD
reference data. From all mixed-variable models, N50L30 provided
the best representation of the reference solution. The minimum
pressure peaks were more pronounced and the pressure on the
downwind side of the cylinder was increased. Furthermore, the
asymmetry associated with the other architectures was reduced.
Figure 10 also exhibits a comparison between the pressure
distributions on the square cylinder surface. Models N31L76 as
well as N268L2 predicted inaccurate results. All other models
captured the shift from positive to negative pressure. All
networks underestimated the negative pressure maxima at the
square edges that were featured by the CFD reference data.
Models N50L30 and N81L12 better predicted the sharp shift
from positive to negative pressure while model N135L5 more
accurately matched the positive pressure magnitude at the
upstream side of the square.

For the circular cylinder G1, the best fitting PINN
N50L30 predicted a drag of 0.272 N while the reference CFD
yielded 0.135 N. The overestimation of the drag force correlated
with an underestimation of the pressure in the wake at the
downwind side of the cylinder when compared to the pressure
distribution of the CFD reference solution. For the square cylinder, a
drag force of 0.242 N was predicted by the best fitting model
N135L5 while the reference solution featured a drag of 0.473 N.
The underestimation of the drag correlated with an underestimation
of the pressure values on the upwind side of the square.

The correlation of shape factor andmean squared error (MSE) is
shown in Figure 11 for the circular cylinder G1. As seen, the axial
velocity in the x-direction achieved the highest overall MSE. The

relationship between MSE and shape factor was similar for all flow
field variables. As λ tended to zero, the error increased markedly. For
the networks with shape factors above 1.67 × 100, the error grew with
a decreasing slope. The obtained data suggests an optimal network
shape for networks with shape factors close to 1.67 × 100. For the best
fitting model, N50L30, the losses for the two momentum equations
were 9.23 × 10−6 and 6.99 × 10−6 for the x- and y-directions,
respectively. The achieved losses indicate that the governing
equations were satisfied. The correlation between MSE and shape
factor was different for the two cylinder geometries. Figure 11 also
displays the MSE of the different network shapes for the square
cylinder G2. As seen, the error tended to a minimum for shape
factors between 6.75 × 100 and 2.70 × 101. For the square cylinder,
the best shape factor was greater than for the circular cylinder.
Furthermore, close to its minimum, the growth of the MSE was less
and featured a broader region of minimal MSE. However, the
models featuring the lowest NMSEs, i.e., N50L30 and
N81L12 also featured artificial velocity peaks at the upstream
corners of the square and, hence, were discarded. For model
N135L5, featuring a shape factor of 2.70 × 101, the achieved
losses for the momentum equations were 3.23 × 10−5 and 2.47 ×
10−5. The minimal global MSEs for u, v, and p were lower for the
square cylinder while the corresponding losses of the best model
were lower for the circular cylinder.

Figure 12 exhibits the MSEs obtained by the different network
sizes featuring the best fitting shape factor 1.67 × 100 for the circular
cylinder. As seen, the network N20L12, featuring 4,780 trainable
parameters, yielded the greatest errors. The corresponding
predictions of the velocity field were inaccurate and comparable
to that of model N268L2 shown in Figure 5. The other models,
featuring a greater number of trainable parameters, yielded similar
errors. Model N50L30, featuring 74,350 trainable parameters, was
well within the size independent range and neither a reduction nor

FIGURE 10
Pressure distributions on the circular cylinder (top) and the square cylinder (bottom).
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an increase of the number of trainable parameters led to a further
reduction of the global MSE, indicating the superiority of this
architecture. Figure 12 also exhibits the results of the evaluation
of the network size for the square cylinder. In contrast to the circular
cylinder, the global MSEs decreased over the entire range of tested
network sizes. For model N54L2, featuring 3,402 trainable
parameters, the highest errors were recorded, and the
corresponding predictions were comparable to that of model
N31L76 shown in Figure 6. Increasing the number of trainable
parameters from 74,520 to 133,326 led to a reduction of 20%–30% of
the global NMSE for model N162L6. However, the predictions
showed no qualitative improvement and featured artificial
velocity peaks at the upstream corners of the square. Hence, the
larger model did not lead to more favorable predictions of the
flow field.

3.3 Validation of the mixed-variable method
against measurements

Figure 13A) exhibits the axial velocity field for geometry G3 as
predicted by model N81L12. As seen, the PINN captured a
stagnation region of lower velocity at the upwind edge of the
square as well as a wake at the downwind side of the cylinder.
Furthermore, the high velocity areas extending from the upwind
corners of the square were captured. Overall, the flow field was

well captured. A comparison of the axial velocity as predicted by
the PINN and the values obtained from the time averaged laser-
Doppler measurements is shown in Figure 13B) for several
vertical lines in the wake of the square cylinder. In the PINN
predictions, the velocity deficit inside the wake was less
pronounced at x/c = 1.0 and, due to momentum and mass
conservation, a lower velocity was predicted at the outer
extent of the shear layer at y/c = 1.0. Overall, there was a
favorable agreement between the PINN predictions and the
measured results, considering the small scale of the cylinder,
the three-dimensional nature of the reference flow, and the
absence of any simulated or measured data during training of
the neural net.

4 Discussion

The traditional PINNs failed to yield acceptable predictions for
the elevated Reynolds number flow investigated here. For lower
Reynolds number flows, successful training was reported by Ang
et al. [1]. A major challenge of high Reynolds number flows is the
increasing complexity of the optimization problem as the nonlinear
convective momentum terms of the RANS equations become
dominant, shear leayer gradients become steeper, and turbulence
models increase the complexity of the RANS equations. Utilizing the
mixed-variable approach advanced the training success of the PINN

FIGURE 11
Global mean squared errors for the circular cylinder (top) and the square cylinder (bottom) obtained by the tested mixed-variable network
architectures featuring progressing shape factors. For visualization purposes, the data points are connected by straight lines.
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method. The success of the mixed-variable method can be attributed
to the simplification of the complex optimization problem [26]. In
contrast to the traditional method, no second-order derivatives of
the velocities needed to be considered in the governing equations of
the mixed-variable method. This was the crucial factor in attaining a
more easily solvable optimization problem. The usage of the stream
function further assisted the training by automatically enforcing the
continuity equation. Nevertheless, accurate results can also be
obtained without the usage of the stream variable. Due to the
remaining complexity of the optimization problem, there were
still deviations from the reference solution. This contrasts the
excellent results of Rao et al. [26], obtained for a laminar low
Reynolds number flow. Increasing errors associated with higher
Reynolds numbers were also reported by Sun et al. [27] and
Harmening et al. [6]. Consequently, numerous studies were
conducted incorporating measured or simulated training data to
support training of the PINN [3, 5, 8, 10, 19, 21, 35, 36], while
investigations focusing unsupervised physics-informed DL of high
Reynolds number flows without training data remain sparse [7].

The traditional models required significantly more
computational time for training. The advantage of the mixed-
variable method was between 90.6% and 161.2%, depending on
the model. For the best fitting model N135L5, the traditional PINN
method took 3.7 h which represents 105.5%more training time than
necessary for the mixed-variable model. Besides, the two PINN

methods featured comparable graphic memory requirements which
were also depending on the network architecture. For model
N135L5, 3.6 GB were consumed. For model N50L30, the mixed-
variable model took 10.1 GB of graphic memory while the
traditional model required 11.1 GB.

For the circular cylinder G1, the high gradients of the flow
were not successfully learned by most network architectures.
Only models N50L30 and N81L12 captured the boundary layer
on the cylinder at x = 0. Furthermore, the wake length was
predicted more accurately by model N50L30. For the square
cylinder G2, models N135L5 and N81L12 exhibited superior
performance. The flow separation and recirculation that was
present on the lateral sides of the cylinder at x = 0 was best
captured by model N135L5. However, model N81L12 achieved
the lowest overall MSE. As the corresponding shape factors
varied by up to one order of magnitude, distinct network
architectures were necessary to capture the flow fields around
the two geometries most accurately. These results imply that
networks yielding accurate predictions in certain cases might
significantly deviate from networks suitable for other cases. More
work is needed to further investigate the best architectures for
more complex geometries.

The superiority of the N50L30 architecture to predict the flow
around the circular cylinder G1 as well as the square cylinder of
geometry G3 agreed favorably with a study of Ang et al. [1], who

FIGURE 12
Global mean squared errors for on the circular cylinder (top) and the square cylinder (bottom) obtained by themixed-variable network architectures
featuring a constant shape factor of 2.70×101 and a progressing number of trainable parameters. For visualization purposes, the data points are connected
by straight lines.
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identified a traditional PINN with 50 neurons per layer and a
minimum of 20 hidden layers most suitable for a low Reynolds
number flow around a circular cylinder. This corresponds to
shape factors below 2.5 × 100. Rao et al. [26] studied a laminar low
Reynolds number flow and used a mixed-variable PINN
comprising 40 neurons per hidden layer with a total of eight
hidden layers. The network featured a shape factor of 5.0 × 100

and comprised 15.9% of the trainable parameters contained in
the N50L30 model used here. We investigated this architecture in
preparation of our study as well; however, the model yielded
unfavorable results similar to our models N268L2 or N20L12.
Eivazi et. al [3] applied a network architecture of 20 neurons per
layer and eight layers using the traditional PINN approach. The
shape factor of this model was 2.5 × 100 and featured 4.2% of the
trainable parameters of the N50L30 model. Eivazi et. al reported
good results for fractions of flow fields at elevated Reynolds
numbers without using training data in the flow domain.
However, for the flow we investigated, the architecture also
exhibited unfavorable results similar to the high shape factor
model N268L2 or the smaller model N20L12. As discussed above,
network architectures and types that proved to be suitable for
specific cases can not readily be applied to other cases and,

consequently, a comprehensive screening of the best shape
and size needs to be carried out.

The results revealed effects of the network shape as well as
effects of the network size. The small models N20L12 and
N54L2 yielded inferior results. An explanation is that the
expressiveness was restricted by the limited number of the
tuneable parameters. Consequently, the prediction accuracy
increased with network size and the high gradients were
captured more accurately. However, for the circular cylinder
G1, the prediction accuracy stagnated for the large model
N60L36, indicating an increasing relevance of other error
sources. A different correlation was observed for the network
shape and neither extremely deep nor extremely wide networks
showed to be suitable. This suggests that a minimal depth was
required to model the nonlinear high gradient solution field and
the extremely deep and wide networks were less suitable due to an
excessive complexity or limited representational capacity.
However, a more precise explanation remains an open
question due to the black box character of the neural
network approach.

While preparing this study, methods including non-adaptive
loss weighting for the traditional approach, hard boundary

FIGURE 13
Predicted axial velocities compared with experimental results for geometry G3. (A) Contour plot of the predicted velocity obtained by the mixed-
variable PINN; (B) Comparison with experimental data along several vertical lines in the wake of the square cylinder.
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constraints [27], vorticity formulation of the RANS equations
(9), Helmholtz decomposition [19], residual neural networks,
and Fourier feature networks [32] were tested. However, these
methods did not exhibit favorable results and, therefore, they are
not discussed here in detail. Other turbulence models, such as an
equation-free modeling approach [3, 21, 36], Prandtl’s one
equation k model, and the k-ω model of Wilcox [33], were
tested as well in preparation of this study. However, the
traditional turbulence models suffered from stability issues
during the training process, while the equation-free approach
did not capture the flow field accurately. Applying the mixed-
variable approach, considering the mixing length turbulence
model in combination with networks featuring proper shape
factors and sufficient trainable parameters, was the only
method that was capable of capturing the stagnation points,
high gradient boundary layers, and flow separation of the
investigated high Reynolds number flow fields. Nevertheless,
an extensive search for the best network shapes was necessary
to obtain these results.

Yet, the effect of the shape factor and the network size on the
prediction accuracy was limited. A remaining bias error
regarding the wake length behind the circular cylinder, an
overestimation of the stagnation region size for the square
cylinder, as well as an underestimation of the pressure peaks
on the cylinder surfaces was observed, documenting the
difficulties associated with predicting high Reynolds number
flows using PINNs. Hence, more work is needed to further
increase the prediction accuracy of the mixed-variable
method. The deviations between the mixed-variable
predictions and the CFD reference solution were attributed to
training or optimization errors, generalization errors, and
approximation errors. Here, the approximation error is
defined as the deviation between the target function or
reference solution and the closest neural network function of a
given architecture. The generalization error is a measure for the
accuracy of the prediction for unseen data, here coordinates. The
training or optimization error is then defined as the deviation
between the closest network function attainable with the given set
of training coordinates and the network function obtained after
training under the given optimization algorithm settings. A
modeling error concerning the RANS turbulence model also
contributed to the differences between the PINN predictions
and the measured velocities. As reported by Harmening et al. [6],
the network and training related errors could be reduced to a
minimum by introducing training data. Other potential methods
to improve the accuracy include curriculum learning [12],
adaptive loss weighting [15, 30, 32, 34], convolutional or
U-Net PINNs [11, 18, 29, 31, 37], and distributed PINNs [2],
among others. The geometries investigated here should serve as a
benchmark case to evaluate such methods because the
corresponding high Reynolds number flow fields feature a
number of important flow phenomena that any reliable PINN
methodology must be capable to capture.

The method investigated here may be used with and without
labeled training data. As the mixed-variable approach yielded
favorable results without using any training data, the required

data quantities to train mixed-variable models agreeing with
CFD or experimental studies can be expected to be minimal. The
method may be used for improved interpolations and
extrapolations between data points. The method without
training data can be applied for comparative studies and
optimization processes [7]. However, then the demonstrated
limitations of the PINN models need be taken into account.

4.1 Summary and conclusion

We compared different network architectures using mixed-
variable physics-informed deep learning and traditional PINNs
with CFD and measured reference data. The models were trained
to solve the two-dimensional RANS equations for a turbulent
flow around a circular cylinder and a square cylinder. The mixing
length turbulence model was deployed. The main findings are
summarized as follows:

• For the elevated Reynolds number flow considered here, the
superiority of the mixed-variable approach of Rao et al. [26]
was confirmed. The traditional PINNmethod failed to capture
the flow field accurately, independent of the network
architecture.

• For the flow around the large scale circular cylinder, the deep
architecture with a shape factor of 1.67 × 100 outperformed the
other architectures. The steep gradients of the boundary layers
were predicted more accurately and the prolonged wake was
reduced. For the flow around the large scale square cylinder,
the wide network with a shape factor of 2.70 × 101 captured the
reference solution best. The model with a shape factor of
6.75 × 100 worked well for both geometries.

• For the geometries investigated, different mixed-variable
network architectures with factors varying by one order of
magnitude were suitable. This demonstrates that depending
on the case, it might be necessary to distinctly vary the shape
factor of a PINN to find the best fitting model. However, using
extremely high or low shape factors proved to be
inappropriate.

• Despite inevitable deviations from the reference flow fields,
the physics-informed mixed-variable method applied with
a proper network architecture was able to predict
stagnation points, high gradient boundary layers, flow
separation, recirculation areas, and wakes at an elevated
Reynolds number without requiring training data. In
contrast, regular neural nets are not capable to predict
plausible flow fields without providing extensive training
data inside the domain.

• The mixing length model proved to be a reliable and stable
model for physics-informed deep learning when no simulated
or measured data were considered.

• More work needs to be done concerning physics-informed
deep learning of the RANS equations. Future work should
consider other turbulence models and methods to further
increase the accuracy of predicted high Reynolds
number flows.
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