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We report theoretical results for the electronic contribution to thermal and
electrical transport for chiral superconductors belonging to even or odd-
parity E1 and E2 representations of the tetragonal and hexagonal point groups.
Chiral superconductors exhibit novel properties that depend on the topology of
the order parameter and Fermi surface, and—aswe highlight—the structure of the
impurity potential. An anomalous thermal Hall effect is predicted and shown to be
sensitive to the winding number, ], of the chiral order parameter via Andreev
scattering that transfers angular momentum from the chiral condensate to
excitations that scatter off the random potential. For heat transport in a chiral
superconductor with isotropic impurity scattering, i.e., point-like impurities, a
transverse heat current is obtained for ] � ±1, but vanishes for |]|> 1. This is not a
universal result. For finite-size impurities with radii of order or greater than the
Fermi wavelength, R≥ Z/pf , the thermal Hall conductivity is finite for chiral order
with |]|≥ 2, and determined by a specific Fermi-surface average of the differential
cross-section for electron-impurity scattering. Our results also provide
quantitative formulae for analyzing and interpreting thermal transport
measurements for superconductors predicted to exhibit broken time-reversal
and mirror symmetries.
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1 Introduction

The remarkable properties of the spin-triplet, p-wave phases of superfluid 3He have
stimulated research efforts to discover and identify electronic superconductors with novel
broken symmetries and non-trivial ground-state topology [1–6], driven in part by
predictions of novel transport properties. Chiral superfluids and superconductors are
topological phases with gapless Fermionic excitations that reflect the momentum-space
topology of the condensate of Cooper pairs. The A-phase of superfluid 3He was definitively
identified as a chiral p-wave superfluid by the observation of anomalous Hall transport of
electrons moving through a quasiparticle fluid of chiral Fermions [7, 8]. A chiral d-wave
state was proposed for doped graphene [9, 10], while a chiral p-wave state is proposed for
MoS [11]. There is evidence from μSR of broken time-reversal symmetry onsetting at the
superconducting transition for the pnictide SrPtAs [12], and a chiral d-wave state has been
proposed as the ground state [13]. Recent μSR experiments also provide evidence for chiral
d-wave superconductivity in the pnictide LaPt3P [14]. The perovskite, Sr2RuO4, has been
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studied extensively and was proposed as a promising candidate for
chiral p-wave superconductivity (Eu pairing with �Δ � d̂(px + ipy)),
in part based on similarities of its normal-state Fermi-liquid
properties with those of liquid 3He [15, 16]. Evidence of broken
time-reversal symmetry from both μSR and Kerr rotation
measurements support an identification of Sr2RuO4 as a chiral
superconductor [17, 18]. However, experiments designed to detect
the theoretically predicted chiral edge currents [19], or to test for
the two-dimensionality of the Eu representation that is a necessary
requirement to support a chiral ground state, are so far inconclusive,
or report null results [20–23]. Recent transport measurements also
appear to conflict with the chiral p-wave identification based on
the Eu representation; i.e., thermal conductivity measurements at
low temperatures and as a function of magnetic field, which
probe the low-energy quasiparticle excitation spectrum, are
consistent with the nodal line structure of a d-wave order
parameter, and inconsistent with the gap structure expected
based on the Eu representation [24, 25]. The possibility that
Sr2RuO4 is an even parity chiral superconductor has so far not
been ruled out (see, e.g., Refs. [26–30]).

The first superconductor reported to show experimental
evidence of broken time-reversal symmetry was the heavy
fermion superconductor, UPt3, based on μSR linewidth
measurements [31]. This experiment followed theoretical
predictions of broken time-reversal symmetry in the B-phase
of UPt3, i.e., the lower temperature superconducting phase [32].
Another notable signature of broken time-reversal symmetry is
the onset of Kerr rotation as UPt3 enters its low-temperature
B-phase [33]. More recently, a neutron scattering experiment,
using vortices as a probe for the superconducting state in the
bulk, offers yet another piece of evidence for broken time-
reversal symmetry in UPt3 [6]. These results support the
identification of a chiral superconducting phase of UPt3, and
they also support the basic theoretical model of a multi-
component order parameter belonging to a two-dimensional
representation of the hexagonal point group, D6h, in which a
weak symmetry breaking field lifts the degeneracy of the two-
component order stabilizing two distinct superconducting
phases in zero magnetic field [32, 34]. In this theory the
predicted A phase of UPt3 is time-reversal symmetric with
pronounced anisotropic pairing correlations in the hexagonal
plane [35, 36], is preferentially selected by the symmetry
breaking field, and nucleates at Tc1 � 560 mK as the first
superconducting phase. The B-phase develops as the sub-
dominant partner of the two-dimensional representation
nucleates at Tc2 ≈ 470 mK, such that the low-temperature
superconducting phase spontaneously breaks both time-
reversal and mirror-reflection symmetries, the latter defined
by a plane containing the chiral axis which is aligned parallel (or
anti-parallel) to the c-axis of UPt3.

There are four two-dimensional representations of D6h: two
even-parity representations, E1g and E2g, and two odd-parity
representations, E1u and E2u, all of which allow for chiral ground
states [37, 38]. The chiral ground states belonging to the E1 and E2

representations are defined by zeroes of the Cooper pair amplitude
at points p � ±pfẑ on the Fermi surface that are protected by the
topology of the orbital order parameter in momentum space,
i.e., Δ(p) � |Δ(p)| ei] ϕp , where ϕp is the azimuthal angle defining

a point p on the Fermi surface, and ] � ±1 (] � ±2) for the E1 (E2)
representations1 The bulk of the experimental
evidence—thermodynamic, H-T phase diagram [37, 39, 40],
thermal transport [41, 42], ultra-sound [43], Josephson tunneling
[3], SANS [5] and optical spectroscopy measurements [33]—
supports the identification of UPt3 as an odd-parity
superconductor with an order parameter belonging to the E2u

representation, and a chiral B-phase order parameter of the form,
�Δ±(p) � ΔB(T)d̂p̂z(p̂x ± ip̂y)2 ~ d̂e±i2ϕp . The vector d̂ is the
quantization axis along which the spin-triplet Cooper pairs have
zero spin projection, i.e., an equal-spin-pairing (ESP) state [39]. A
key feature of the E2u chiral order parameter is the winding number
] � ±2. The Josephson interference experiment described in Ref. [3]
can discriminate between |]| � 1 and |]| � 2 chiral ground states.
Indeed the report of a π phase shift in the Fraunhofer pattern for the
corner-SQUID geometry, combined with the observations of broken
time-reversal symmetry [31, 33], provides strong evidence in favor a
|]| � 2(E2u) chiral B-phase of UPt3. However, conclusive evidence
for bulk chiral superconductivity remains elusive. A zero-field Hall
transport measurement is an ideal experiment to confirm broken
time-reversal and mirror symmetries in the bulk of a chiral
superconductor candidate.

2 Anomalous Hall transport

The winding number of the order parameter for a chiral
superconductor reflects the topology of the superconducting
ground state. For a fully gapped chiral superconductor ] is
related to the Chern number defined in terms of the Bogoliubov-
Nambu Hamiltonian in 2D momentum space, or for chiral
superconductors defined on a 3D Fermi surface the effective two-
dimensional spectrum at fixed pz ≠ 0, C(pz) � 1

2π ∫ d2pΩz(p),
where Ωz(p) is the Berry curvature [44]. The result for the Chern
number is C(pz) � ], which provides topological protection for a
spectrum of chiral Fermions.

For 2D chiral phases there is a spectrum of massless chiral
Fermions confined on the boundary (edge states) with the zero-
energy state enforced by the bulk topology. However, for a chiral
order parameter defined on a closed 3D Fermi surface there is also a
bulk spectrum of gapless Weyl-Majorana Fermions with momenta
near the nodal points pz � ±pf, in addition to a spectrum of massless
chiral Fermions confined on surfaces normal to the [1,0,0] and
[0,1,0] planes [45].

2.1 Anomalous edge transport

For a fully gapped chiral p-wave ground state in two
dimensions the spectrum of chiral edge Fermions is predicted
to give rise to quantized heat and mass transport in chiral

1 More complex chiral order parameters with large winding numbers are

allowed by the point group symmetry, c.f. Ref. [51]; ] � ±1, ±2 are the

loweset order harmonics consistent with the E1 and E2 representations,

respectively.
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superfluids and superconductors [45–49]. In particular, an
anomalous thermal Hall conductance is predicted to be
quantized, Kxy/kBT � π

12kB/Z based on the low-energy effective
field theory of the chiral edge states [46, 50]. This result is also
obtained from the topology of the bulk order parameter
combined with linear response theory based on the
Bogoliubov Hamiltonian for 2D px + ipy topological
superconductors [49].

For a chiral superconductor defined on a 3D Fermi surface an
anamolous thermal Hall current is predicted, but is not quantized in
units of a fundamental quantum of conductance. Based on the linear
response theory of Qin et al. [50] Goswami and Nevidomsky
obtained a result for the anomalous thermal Hall conductivity of
the B-phase of UPt3 for T≪Tc2 [44],

κxy/kBT � ]
π

6
kB
Z

Δp
2πZ
( ). (1)

The anomalous thermal Hall conductivity reflects the number of
branches of chiral Fermions confined on the [1,0,0] or [0,1,0] surface,
i.e., |]| � 2 for the E2u chiral ground state. The non-universality of the
thermal Hall conductivity is reflected by the term Δp, which is the
“distance” between the two topologically protected ] � 2 Weyl points
at p̂z � ±1 on a projected surface containing the chiral axis; e.g., Δp �
2pf for a spherical Fermi surface [44].

Thus, heat transport experiments could decisively identify the
broken symmetries and topology of superconductors predicted to
exhibit chiral order. The thermal conductivity depends on both the
topology of the order parameter and the Fermi surface. The
anomalous thermal Hall effect, in which a temperature gradient
generates heat currents perpendicular to it, results from broken
time-reversal and mirror symmetries—a direct signature of chiral
pairing2. A zero-field thermal Hall experiment can also be used as a
signature of chiral edge states. However, zero-field thermal Hall
transport has remained elusive thus far.

2.2 Impurity-induced anomalous transport

Here we consider zero-field Hall transport resulting from
electron-impurity interactions in the bulk of the superconductor,
which we show are easily several orders of magnitude larger than the
edge contribution [52]. There are earlier theoretical predictions for
impurity-induced anomalous thermal Hall effects in chiral
superconductors based on point-like impurities by several
authors [53–55]. As we show, the point-like impurity model,
which includes only s-wave quasiparticle-impurity scattering,
predicts zero Hall response except for Chern number ] � ±1 [52],
i.e., only for chiral p-wave superconductors [53].

In the following we present a self-consistent theory
incorporating the effects of finite-size impurities and show that

such effects are essential for a quantitative description of Hall
transport in chiral superconductors. Experimental observation of
an impurity-induced anomalous thermal Hall effect would provide a
definitive signature of chiral superconductivity. The bulk effect can
easily dominate the edge state contribution to the anomalous Hall
current, except in ultra-pure fully gapped chiral superconductors.

3 Transport theory

We start from the Keldysh extension [56] of the transport-like
equations originally developed by Eilenberger, Larkin and Ovchinnikov
for equilibrium states of superconductors [57, 58], and extended by
Larkin and Ovchinnikov to describe superconductors out of equilibrium
[59]. This formalism is referred to as “quasiclassical theory”. For reviews
see Refs. [61–63]. The quasiclassical theory is formulated in terms of
4 × 4 matrix propagators for Fermionic quasiparticles and Cooper pairs
that describe the space-time evolution of the their non-equilibrium
distribution functions, as well as the dynamical response of the low-
energy spectral functions and the superconducting order parameter.
Here we are interested in the response to static, or low-frequency,
thermal gradients and external forces that couple to energy, mass and
charge currents. We follow as much as possible the notation and
conventions of theory developed for thermal transport in
unconventional superconductors by Graf et al. [64].

3.1 Keldysh-Eilenberger equations

The quasiclassical transport equations are matrix equations in
particle-hole (Nambu) space which describe the dynamics of
quasiparticle excitations and Cooper pairs. Physical properties,
such as the spectral density, currents or response functions are
expressed in terms of components of the Keldysh matrix
propagator,

�G p, ε; r, t( ) � ĝR ĝK

0 ĝA( ), (2)

where ĝR,A,K(p, ε; r, t) are the 4 × 4 retarded (R), advanced (A) and
Keldysh (K) matrix propagators.

The nonequilibrium dynamics is described by a transport
equation for the Keldysh propagator,

Ĥ
R
◦ĝK p, r; ε, t( ) − ĝK◦Ĥ

A
p, r; ε, t( ) + ĝR◦Σ̂K

p, r; ε, t( )
−Σ̂K

◦ĝA p, r; ε, t( ) + ivp · ĝK p, r; ε, t( ) � 0, (3)
as well as transport equations for the retarded and advanced
propagators,

Ĥ
R,A

, ĝR,A[ ]
◦
+ ivp · ĝR,A p, r; ε, t( ) � 0, (4)

where

Ĥ
R,A

p, r; ε, t( ) � ετ̂3 − v̂ p, r; t( ) − Σ̂R,A
p, r; ε, t( ) (5)

is defined in terms of the excitation energy, ε, the coupling to
external fields, v̂, and the self-energies, Σ̂R,A

. Pairing correlations, as
well as effects of scattering by impurities, phonons and
quasiparticles are described by the self-energies, Σ̂R,A,K

. The

2 Note that time-reversal and mirror symmetries need not be broken

simultaneously. For example, a three-band superconductor may break

timereversal symmetry when the order parameter defined on each band

has a different phase [60]. Mirror symmetry is however preserved and Hall

effects are therefore not expected in this system.
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convolution product (◦-product) appearing in Eqs. 3, 4, in the
mixed energy-time representation, is defined by,

Â◦B̂ ε; t( ) � e
i
2 ∂Aε ∂

B
t −∂At ∂Bε[ ]Â ε; t( )B̂ ε; t( ). (6)

Note that ε is the excitation energy and t is the external time variable.
The operator expansion for the convolution product is particularly
useful if the external timescale, t ~ ω−1 is slow compared to the
typical internal dynamical timescales, Z/Δ and τ, i.e., ω≪ |ε|~ Δ and
ω≪ 1/τ. In this limit we can expand Eq. 6,

Â◦B̂ ε; t( ) ≈ Â ε; t( )B̂ ε; t( ) + i

2
∂Â

∂ε

∂B̂

∂t
− ∂Â

∂t

∂B̂

∂ε
[ ]. (7)

The quasiclassical transport equations are supplemented by the
normalization conditions [57, 58],

ĝR,A ○ ĝR,A � −π2 1̂ (8)
ĝR ○ ĝK − ĝK ○ ĝA � 0. (9)

3.2 Quasiclassical propagators

The quasiclassical propagators are 4 × 4-matrices whose
structure describes the internal quantum-mechanical degrees
of freedom of quasiparticles and quasiholes. In addition to
spin, the particle-hole degree of freedom is of fundamental
importance to our understanding of superconductivity. In the
normal state of a metal or Fermi liquid there is no quantum-
mechanical coherence between particle and hole excitations. By
contrast, the distinguishing feature of the superconducting state
is the existence of quantum mechanical coherence between
normal-state particle and hole excitations. Particle-hole
coherence is the origin of persistent currents, Josephson
effects, Andreev scattering, flux quantization, and all other
nonclassical superconducting effects. The quasiclassical
propagators are directly related to density matrices which
describe the quantum-statistical state of the internal degrees of
freedom. Nonvanishing off-diagonal elements in the particle-
hole density matrix are indicative of superconductivity, indeed
the onset of non-vanishing off-diagonal elements is the signature
of the superconducting transition.

The Nambu matrix structure of the propagators and self
energies is

ĝR,A,K � gR,A,K + gR,A,K · σ (fR,A,K + fR,A,K · σ)iσy
iσy(�fR,A,K + �f

R,A,K · σ) �gR,A,K − �gR,A,K · σyσσy( ). (10)

The 16 matrix elements of ĝR,A,K are expressed in terms of four spin-
scalars (gR,A,K, �gR,A,K, fR,A,K, �f

R,A,K
) and four spin-vectors (gR,A,K,

�gR,A,K, fR,A,K, �f
R,A,K

). All matrix elements are functions of p, ε, r and
t. The spin scalars gR,A,K, �gR,A,K determine spin-independent
properties such as the charge, mass and heat current densities,
je(r, t), jm(r, t) and jq(r, t), as well as the local density of states

N ε; r, t( ) � Nf∫ dp −1
π
Im

1
2
Tr τ̂3ĝ

R p, ε; r, t( ){ }[ ], (11)

where Nf is the normal-state density of states at the Fermi energy.
The integration is over the Fermi surface weighted by the angle-
resolved normal density of states at the Fermi surface, n(p),
normalized to

∫dp . . .( ) ≡ ∫dSpn p( ) . . .( )with∫dSpn p( ) � 1. (12)

The current densities are determined from Fermi-surface
averages over the elementary currents, [evp], mass, [mvp], and
energy, [εvp], weighted by the scalar components of the diagonal
Keldysh propagator. In particular, the charge and heat current
densities are given by

j e( ) r, t( ) � Nf ∫ dp ∫ dε

4πi
evp[ ]Tr τ̂3 ĝ

K p, ε; r, t( ){ }, (13)

j q( ) r, t( ) � Nf ∫ dp ∫ dε

4πi
εvp[ ]Tr ĝK p, ε; r, t( ){ }. (14)

The off-diagonal components, fR,A,K and fR,A,K, are the
anomalous propagators that characterize the pairing
correlations of the superconducting state. Spin-singlet
pairing correlations are encoded in fK, while fK is the
measure of spin-triplet pairing correlations. Pair correlations
develop spontaneously at temperatures below the
superconducting transition temperature Tc. The anomalous
propagators are not directly measurable, but the correlations
they describe are observable via their coupling to the “diagonal”
propagators, gR,A,K and gR,A,K, through the transport equations.

3.3 Coupling to external and internal forces

The couplings of low-energy excitations to electromagnetic
fields are defined in terms of the scalar and vector potentials,

v̂EM � e φ r, t( )τ̂3 + e

c
vp · A r, t( )τ̂3. (15)

Note that eτ̂3 encodes the charge coupling of both particle and
hole excitations to the electromagnetic field. The magnetic field
also couples to the quasiparticles and pairs via the Zeeman
energy, v̂Z � γ Ŝ · B(r, t), where B �  × A, γ is the
gyromagnetic ratio of the normal-state quasiparticles, and Ŝ �
1
2 (1̂ + τ̂3)σ − 1

2 (1̂ − τ̂3)σyσσy is the Nambu representation of the
Fermion spin operator.

3.3.1 Mean-field self-energies
Superconductors driven out of equilibrium are also subject

to internal forces on quasiparticles and Cooper pairs,
originating from electron-electron, electron-phonon and
electron-impurity interactions. These interactions enter the
quasiclassical theory as self-energy terms, Σ̂R,A,K

, in the
transport Eqs. 3, 4, 5. We include self-energies that
contribute to leading order in expansion parameters,
s � {1/kfξ, kBTc/Ef, 1/kfℓ, Z/τEf, Δ/Ef . . .}≪ 1, that define the
low-energy, long-wavelength region of validity of Landau
Fermi-liquid theory, and its extension to include BCS
condensation [61, 63, 65].

The leading order contributions to the self-energy from
quasiparticle-quasiparticle interactions correspond the mean-field
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self-energies, Σ̂R,A,K
mf , in the particle-hole (Landau) and particle-

particle (Cooper) channels, and are represented by Eqs. 16, 17,
respectively,3

Σ̂ p( ) � ∫ dp′�∫ dε′
4πi

As p, p′( )gK p′, ε′( )1̂ + Aa p, p′( ) gK p′, ε′( ) · σ[ ],
(16)

Δ̂ p( ) � ∫ dp′�∫ dε′
4πi

λs p,p′( )fK p′, ε′( ) iσy + λt p, p′( ) fK p′, ε′( ) · iσσy[ ].
(17)

Note that Σ̂ and Δ̂ represent the upper row of the Nambu matrix,
Σ̂mf . Since the mean-field self-energies are independent of ε,
Σ̂R
mf � Σ̂A

mf � Σ̂mf , and Σ̂K
mf � 0. The interaction vertices, As,a(p, p′),

in Eq. 16 represent the quasiparticle interactions in the particle-hole
channel. In the non-relativistic limit these interactions are spin-
rotation invariant, in which case there are two real amplitudes:
the spin-independent quasiparticle-quasiparticle interaction,
As(p, p′), the exchange term, Aa(p, p′), describing the spin-
dependent quasiparticle-quasiparticle interaction. These
interactions are defined by the renormalized four-point vertex in
the forward-scattering limit for quasiparticles with momenta and
energies confined to the Fermi surface, i.e., |p| � |p′| � pf and
ε � ε′ � 0, which is a good approximation in the Fermi-liquid
regime far from a quantum critical point. Thus, the propagator is
integrated over the low-energy bandwidth defined by
�∫(. . .) ≡ ∫ +εc

−εc (. . .), and the corresponding self-energies depend
on the direction of the quasiparticle momentum on the Fermi
surface, but are independent of ε.

In the Cooper channel themean-field self energy from quasiparticle
interactions is given by Eq. 17. The interaction vertex separates in terms
of an even-parity, spin-singlet interaction, λs(p, p′), and an odd-parity,
spin-triplet interaction, λt(p, p′), the latter resulting from exchange
symmetry in the non-relativistic limit.4 In a rotationally invariant Fermi
liquid like liquid 3He, the interactions in the Cooper channel further
separates according to the irreducible representations of the rotation
group in three dimensions, SO(3)L,

λs t( ) p, p′( ) � ∑even (odd)

l

λl ∑+l
m�−l

Yl,m* p̂( )Y l,m p̂′( ), (18)

which are labeled by the orbital angular momentum quantum
number l ∈ {0, 1, 2, . . . }, with the basis functions given
by the spherical harmonics {Ylm(p̂)}, normalized to∫ dpYlm(p̂)Yl′m′(p̂′) � δll′δmm′. The Cooper instability occurs
in the pairing channel defined by the most attractive
interaction, λl, which for 3He is the odd-parity, spin-triplet
(S � 1), l � 1 (p-wave) channel. For strongly correlated
materials Cooper pairing is mediated by quasiparticle-
quasiparticle interactions. This is necessarily the case in a
single-component Fermi system like liquid 3He, and is
prevalent in strongly correlated electronic compounds such as

the heavy-fermion superconductors, UPt3 and URu2Si2, and
unconventional superconductors like Sr2RuO4, all of which
exhibit experimental signatures of broken time-reversal symmetry by
the superconducting state. For these superconductors the pairing
channel belongs to an irreducible representation of the crystal
point group. Eq. 18 holds with l summed over the irreducible
representations of the point group, the second sum m is over the
set of orthogonal basis functions, {Ylm(p)|m ∈ irrepl}, that span the
irrep labeled by l. For materials with hexagonal point symmetry, e.g.,
UPt3, we consider the four two-dimensional “E-reps”: even parity
E1g and E2g representations and odd-parity E1u and E2u. All four
E-reps allow for a chiral ground state with minimum Chern
numbers of ] � ±1 (E1g(u)) or ] � ±2 (E2g(u)).

3.3.2 Impurity self-energy
The effects of impurity disorder originate from the quasiparticle-

impurity interaction, �u(p, p′), which corresponds to the transition
matrix element for elastic scattering of a quasiparticle with
momentum p to the point p′ on the Fermi surface. Multiple
scattering of quasiparticles and quasiholes by an impurity is
described by the Bethe-Salpeter equation,

�t p′, p; ϵ( ) � �u p′, p( ) +Nf ∫ dp″ �u p′, p″( ) �g p″; ϵ( )�t p″, p; ϵ( ),
(19)

where �t(p′, p; ε) is the t-matrix for quasiparticle-impurity
scattering, and �g(p; ε) is the quasiclassical Keldysh matrix
propagator for particles, holes and Cooper pairs. The leading-
order contribution to the configurational-averaged self energy is
then determined by scattering of quasiparticles off an uncorrelated,
random distribution of statistically equivalent impurities with
average density, nimp,

�Σimp p; ϵ( ) � nimp �t p, p; ϵ( ) � Σ̂R

imp Σ̂K

imp

0 Σ̂A

imp

⎛⎝ ⎞⎠, (20)

where �t(p, p; ε) is the t-matrix evaluated self-consistently in the forward-
scattering limit. Thus, the Nambu-matrix components of the impurity
Keldysh self energy, Σ̂R,A,K

imp (p, r; ε, t) � nimp t̂
R,A,K(p, p, r; ε, t), are

determined by the corresponding components of the t-matrix,

t̂
R,A

p′, p, r; ε, t( ) � u p′, p( ) +Nf ∫ dp″ u p′, p″( ) ĝR,A p″, r; ε, t( )
◦t̂R,A p″, p, r; ε, t( ) (21)

t̂
K

p′, p, r; ε, t( ) � Nf ∫dp″ t̂R p′, p″, r; ε, t( )◦ĝK p″, r; ε, t( )
◦t̂A p″, p, r; ε, t( ). (22)

Before proceeding to non-equilibrium quasiparticle transport we
need to discuss the equilibrium state, including the effects of
impurity scattering, on the equilibrium states of chiral
superconductors and superfluids.

4 Equilibrium

For homogeneous systems in equilibrium the transport
equations for the retarded and advanced propagators reduce to

3 The sign in Eq. (17) is such that λs(t) > 0 corresponds to an attractive pairing

interaction.

4 This separation does not apply to superconducting materials without an

inversion center, i.e. non-centrosymmetric superconductors.
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ετ̂3 − Δ̂ p( ) − Σ̂R,A

imp p; ε( ), ĝR,A p; ε( )[ ] � 0, (23)

where Δ̂(p) is the mean-field order parameter and Σ̂R,A
imp(p; ε) are the

equilibrium self-energies resulting from quasiparticle-impurity
scattering. We consider the low-temperature limit in which the
thermal populations of quasiparticles and phonons are
sufficiently small that we can neglect quasiparticle-
quasiparticle scattering and quasiparticle-phonon scattering
contributions to the self energy. Thus, we retain only the
mean-field pairing self energy and impurity self energy
resulting from elastic quasiparticle-impurity scattering. The
propagator is also constrained by the normalization condition,
which for equilibrium reduces to matrix multiplication,

ĝR,A p, ε( )[ ]2 � −π2 1̂. (24)

A chiral superconducting ground state is defined by
spontaneous breaking of time-reversal and mirror symmetries by
the orbital state of the Cooper pairs. We restrict our analysis to
unitary superconductors in which the 4 × 4 Nambu matrix order
parameter obeys the condition,

Δ̂ p( )2 � −|Δ p( )|2 1̂. (25)
Unitary states preserve time-reversal symmetry with respect to the
spin-correlations of the pairing state. In the clean limit |Δ(p)| is the
energy gap for quasiparticles with momentum p near the Fermi
surface, i.e., the Bogoliubov quasiparticle excitation energy is
doubly degenerate with respect to spin and given by
Ep �

����������
ξ2p + |Δ(p)|2

√
, with ξp � vf(|p| − pf) and Δ(p) defined for

p on the Fermi surface. The unitarity condition is necessarily
satisfied by spin-singlet pairing states, and is also the case for all
known spin-triplet superconductors in which the parent state in
zero external field is non-magnetic.5 An important class of
unitary triplet states are the equal-spin-pairing (ESP) states
defined by the 2 × 2 spin-matrix order parameter,
Δ̂(p) � Δ(p)d̂ · (iσσy), in which d̂ is the direction in spin

space along which the Cooper pairs have zero spin projection.
Equivalently, this state corresponds to equal amplitudes for the
spin projections Su � +1 and Su � −1 with û ⊥ d̂. For the chiral
A-phase of 3He, the direction d̂ can be controlled by a small
magnetic field, B, through the nuclear Zeeman energy that
orients d ⊥ B. For chiral superconductors spin-orbit coupling
and the crystalline field typically lock d along a high-symmetry
direction of the crystal.

We consider four classes of chiral ground states
corresponding to the even-parity, spin-singlet, E1g and E2g,
and odd-parity, spin-triplet, E1u and E2u representations of the
hexagonal point group, D6h. These representations all allow for
chiral ground states with principle winding numbers, ] � ±1
(] � ±2) for the E1 (E2) representations.6 Table 1 provides
representative basis functions for these two-dimensional
representations.

For even-parity, spin-singlet pairing the Nambu-matrix order
parameter has the form, Δ̂(p) � (Δ(p)τ̂++ Δ*(p)τ̂−) ⊗ (iσy),
where τ̂± � (τ̂1 ± iτ̂2)/2 and {1̂, τ̂1, τ̂2, τ̂3} are 2 × 2 matrices
spanning particle-hole (Nambu) space. The spin-singlet correlations
are represented by the Pauli matrix iσy, which is anti-symmetric under
exchange. The orbital order parameter, Δ(p), is symmetric under
exchange implying Δ(−p) � +Δ(p). The general form of the orbital
order parameter is spanned by the two-dimensional space of E1(2)g basis
functions. For E1g the chiral basis {Y](p)|] � ± 1} can be constructed
from the 2D vector representation: Y](p) � Yzx(p) + i]Yzy (p) �
sin(pzaz)(p̂x + i]p̂y) � sin(pzaz) ei]ϕp , where the latter two forms
correspond to E1g basis functions defined on a cylindrical Fermi surface
with ϕp corresponding to the azimuthal angle of p. Note that chiral E1g
pairing also breaks reflection symmetry in the plane normal to the chiral
axis, and has a line of nodes in the energy gap for momenta in the plane
pz � 0. Thus, E1g pairing is not realized in 2D, but is defined on a 3D
Fermi surface.

TABLE 1 Representative orbital basis functions, expressed in the chiral basis, for the point groups D4h and D6h.

Point group Irrep Γ Basis functions ηΓ,](p̂) Winding number ] Parity

D4h Eg p̂z(p̂x ± ip̂y)∝Y±1
2 (p̂) ±1 +

Eu p̂x ± ip̂y ∝Y±1
1 (p̂) ±1 −

D6h E1g p̂z(p̂x ± ip̂y)∝Y±1
2 (p̂) ±1 +

E2g (p̂x ± ip̂y)2 ∝Y±2
2 (p̂) ±2 +

E1u p̂x ± ip̂y ∝Y±1
1 (p̂) ±1 −

E2u p̂z(p̂x ± ip̂y)2 ∝Y±2
3 (p̂) ±2 −

5 The A1 phase of superfluid 3He, which is stabilized by an externally applied

magnetic field, is a non-unitary spin-triplet state [66]. The Uranium-based

ferromagnetic superconductors are also believed to be non-unitary, spin-

polarized, triplet superconductors.

6 D∞h, chiral ground states with any integer winding number ]∈ Z are

possible. For the discrete point group D6h higher winding numbers with

] = ±1 + mod(6) (E1) or (ν = ±2) + mod(6) (E2) are possible for pairing

basis functions exhibiting strong hexagonal anisotropy, but in general

the chiral basis functions with higher winding numbers will mix with

] = ±1 ] = ±2.
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For chiral E2g pairing the basis functions can be defined as
Y](p) � Yx2−y2(p) + isgn(])Yxy(p) � (p̂x + isgn(])p̂y)|]| � ei]ϕp ,
with ] � ±2. The latter two forms correspond to E2g pairing defined on a
cylindrical Fermi surface. Note that the chiral ground state for E2g also
breaks reflection symmetry in one or more planes containing the chiral
axis, ℓ̂ � ẑ, but, in contrast to E1g, preserves reflection symmetry in the
plane normal to the chiral axis. Thus, a fully-gapped chiral ground state is
possible in 2D, as well as a 3D Fermi surface that is open in the pz

direction. For a 3D Fermi surface that is closed in the pz direction, the
chiral E2g ground state has topologically protected nodal points of Δ(p)
at p± � ± pfẑ, and a corresponding spectrum of massless chiral
Fermions in the bulk phase [44].

For odd-parity, ESP triplet states the Nambu-matrix order
parameter takes the form, Δ̂(p) � (Δ(p) τ̂+− Δ*(p) τ̂−) ⊗ (σx),
where we have chosen the ESP state with d̂ � ẑ.7 The ESP
triplet-correlations are represented by the symmetric Pauli
matrix σx, and the odd-parity orbital order parameter, Δ(p),
which is necessarily anti-symmetric under exchange,
i.e., Δ(−p) � −Δ(p). For E1u pairing the chiral basis {Y](p)|] �
± 1} is constructed from the odd-parity 2D vector
representation: Y](p) � Yx(p) + i]Yy(p) � (p̂x + i]p̂y) � ei]ϕp ,
the latter two forms correspond to E1u basis functions
defined on a cylindrical Fermi surface with ϕp corresponding
to the azimuthal angle of p. In contrast to E1g, the E1u chiral
ground states are fully gapped in 2D, and in 3D for an open
Fermi surface in the pz direction. For chiral E2u pairing the basis

functions are constructed from those of E2g by multiplying by odd-
parity function ofpz. Thus,Y](p) � Yz(x2−y2) (p) + isgn(])Yz(xy)(p)
� sin(pzaz)(p̂x + isgn(])p̂y)2 � sin(pzaz) ei]ϕp , with ] � ±2. These
chiral states correspond to the E2u pairing model for the
B-phase of UPt3.

4.1 2D chiral superconductors

Here we consider the fully gapped E1u and E2g chiral ground states
defined on a 2D cylindrical Fermi surface. These two cases illustrate
nearly all of the key physical phenomena responsible for anomalous
thermal and electrical transport mediated by non-magnetic impurity
scattering in chiral superconductors. At low temperatures, thermally
excited quasiparticles and phonons are dilute, therefore quasiparticles
interact predominantly with quenched defects. For randomly distributed
impurities, the self-energy is given by Σ̂imp(p̂; ε) � nimp t̂(p̂, p̂; ε), where
nimp is the mean impurity density and t̂(p̂, p̂; ε) is the forward scattering
limit of the single-impurity t-matrix in the superconducting state. This
t-matrix can be expressed in terms of the normal-state t-matrix, and the
latter can be expressed in terms of scattering phase shifts for normal-state
quasiparticle-impurity scattering,

t̂
R,A

p̂′, p̂; ε( ) � t̂
R,A
N p̂′, p̂( ) +Nf〈t̂R,AN p̂′, p̂″( ) ĝR,A p̂″; ε( ) − ĝR,A

N[ ]
×t̂R,A p̂″, p̂; ε( )〉p̂″, (26a)

t̂
K

p̂′, p̂; ε( ) � Nf〈t̂R p̂′, p̂″; ε( )ĝK p̂″; ε( )t̂A p̂″, p̂; ε( )〉p̂″, (26b)

where Nf is the normal-state density of states per spin at the
Fermi surface and 〈. . .〉p̂ represents averaging over the Fermi-
surface—for an isotropic 2D Fermi surface,
〈. . .〉p̂ � ∫2π

0
dϕp̂/(2π)(. . .). The superscripts denote three

types of quasiclassical propagators: retarded (R), advanced
(A) and Keldysh (K). In deriving Eq. 26, the bare electron-
impurity interaction is eliminated in favor of the normal-state
propagator, ĝN � −πgNτ̂3 with gR

N � (gA
N)* � i, and the normal-

state t-matrix,

t̂N p̂′, p̂( ) � −1
πNf

∑+∞
m�−∞

eim ϕ−ϕ′( )
cot δm − gNτ̂3

(27)

FIGURE 1
Impurity cross sections and critical temperature versus hard-disc
radius for chiral states: ] � 1 (solid) and ] � 2 (dashed). For hard-disc
radius kfR ≈ 3.05, pair-breaking cross sections and critical
temperature of the two states coincide (filled circles). (Upper)
Total cross section (black), transport cross section (solid purple) and
pair-breaking cross section (purple). (Lower) Critical temperature for
various impurity densities: γ0/2πTc0 ≡ nimpξ0/kf (see legend). Figure
reproduced from Ref. [52] with permission of the American Physical
Society (APS) and the authors.

FIGURE 2
Density of states for chiral order ] � 1 (left) and ] � 2 (right),
various impurity densities normalized by ξ2Δ � (πNfΔ)−1 (see color bar),
and impurity radii: kfR � 1 (top) and 2.5 (bottom). Figure reproduced
from Ref. [52] with permission of the APS and the authors.

7 Results for heat and charge transport in zero field do not depend on the

choice for the direction of d̂
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with δm the scattering phase shift in the mth cylindrical harmonic.8

Here and in the following, the directions (p̂, p̂′, p̂″, . . .) on the Fermi
surface and their corresponding azimuth angles (ϕ, ϕ′, ϕ″, . . . ) are
used interchangeably.

The mean field order parameter for unitary chiral states can be
expressed in the following form, Δ̂S(p) � ÛSΔ̂(p)Û†

S , where ÛS is
the unitary matrix for singlet (S � 0) or triplet (S � 1) pairing,

Û0 � iσy 0
0 1

( ), Û1 � d̂ · iσσy 0
0 1

( ), (28)

in which case Δ̂(p) reduces to

Δ̂ p( ) � Δ ei]ϕp τ̂3 iτ̂2( ) � 0 Δ ei]ϕp

−Δ e−i]ϕp 0
( ), (29)

for both S � 0 and S � 1. Thus, in the absence of external magnetic
fields, magnetic impurities or spin-dependent perturbations, the
spin structure of the order parameter can be transformed away by a
unitary transformation, and as previously noted the quasiparticle
excitation spectrum is doubly degenerate with respect to the
quasiparticle spin.

This representation of the mean-field order parameter extends
to the off-diagonal components of the impurity self energy. In Eq. 29
we chose Δ to be real. In this gauge the off-diagonal impurity self-
energies reduce to

Δ̂R,A

imp p; ε( ) � ΔR,A
imp ε( ) ei]ϕp τ̂3 iτ̂2( ), (30)

with the gauge condition, ΔR,A
imp(ε) � ΔR,A

imp(−ε)*. The Nambu-matrix
impurity self energy can then be expressed in terms of
three functions

Σ̂R,A

imp p; ε( ) � DR,A
imp ε( )1̂ + ΣR,A

imp ε( )τ̂3 + ΔR,A
imp ε( ) ei]ϕp τ̂3 iτ̂2( ). (31)

The term proportional to the unit Nambu matrix, DR,A
imp(ε)1̂, drops

out of Eq. 23 for the equilibrium propagators, ĝR,A, and thus plays no

role in determining the equilibrium properties of the
superconductor. However, the unit-matrix term does contribute
to the linear response of the superconductor, e.g., the a.c.
conductivity [67].

The diagonal term proportional to τ̂3 can be combined with the
excitation energy and expressed as

~εR,A ε( ) � ε − ΣR,A
imp ε( ), (32)

and similarly the impurity renormalized off-diagonal self energy is
given by

~ΔR,A
ε( ) � Δ + ΔR,A

imp ε( ) (33)

Thus, for any of the chiral, unitary states described by Eq. 30, the
equilibrium propagators that satisfy the transport equation and
normalization condition, Eqs. 23, 24, are given by

^gR,A p; ε( ) � −π ~ε
R,Aτ̂3 − ~ΔR,A

ei]ϕp τ̂3 iτ̂2( )��������������
~ΔR,A( )2 − ~εR,A( )2√ (34)

≡ − π gR,A ε( )τ̂3 + fR,A ε( ) ei]ϕp τ̂3 iτ̂2( )[ ]. (35)

Note that the functions gR,A and fR,A satisfy the symmetry relations:
gA � (gR)* and fA � (fR)*. In equilibrium, the Keldysh
propagator is determined by the spectral functions for
quasiparticles and Cooper pairs, and the thermal distribution of
excitations,

ĝK p; ε( ) � ĝR p; ε( ) − ĝA p; ε( )[ ]tanh ε

2T
. (36)

4.1.1 Gap equation: mean-field order parameter
The pairing interaction combined with the off-diagonal

component of the Keldysh propagator determines the mean-field
pairing self-energy for any of the unitary chiral states is given by the
“gap equation,”

Δ p( ) � ∫dp′ λ p, p′( ) �∫ dε′
4πi

fK p′; ε′( ) (37)

FIGURE 3
Longitudinal thermal conductivity versus temperature for chiral superconductors with ] � 1 (left) and ] � 2 (right), impurity radius kfR � 1, and
normal-state transport lengths listed in the legend. The normal-state thermal conductivity is shown in black. Figure reproduced from Ref. [52] with
permission of the APS and the authors.

8 The summation overm is truncated as a defect with characteristic radius R

leads to rapidly decaying phase shifts for |m|≳ kf R.
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where the pairing interaction in any of the two-dimensional E-reps
defined on a cylindrical Fermi surface has the form

λ p, p′( ) � λ|]| e−i]ϕp e+i]ϕp′ + e+i]ϕp e−i]ϕp′( ) � 2λ|]| cos ] ϕp − ϕp′( )[ ].
(38)

Thus, projecting out the amplitude of the chiral mean-field order
parameter we obtain the gap equation,

Δ � λ|]| �∫ dε

4πi
π( ) fR ε( ) − fA ε( )[ ]tanh ε

2T
. (39)

In practice the pairing interaction strength λ|]| is eliminated in favor
of the critical temperature.

The equilibrium retarded and advanced propagators are given by

ĝR,A p̂; ε( ) � −π ~ε
R,A ε( )τ̂3 − ~ΔR,A

ε( )eiτ̂3]ϕ iτ̂2( )
CR,A ε( )

� −π g ε( )τ̂3 + f ε( )eiτ̂3]ϕ iτ̂2( )[ ], (40)

where g � ~ε/C, f � −~Δ/C and C � [~Δ(ε)2 − ~ε(ε)2]1/2.9 The
equilibrium spectrum is renormalized by interactions with
impurities, i.e., ~ε � ε − Σimp and ~Δ � Δ + Δimp, where Δ is the
mean-field excitation gap from Eq. 39, and Σimp and Δimp are
the diagonal and off-diagonal terms in the impurity self energy,
Eq. 31.10 The self-energy is obtained from the equilibrium
t̂ matrix,

FIGURE 4
Longitudinal (top) and transverse (bottom) thermal conductivity vs. temperature for chiral order ] � 1 (left) and ] � 2 (right), normal-state transport
length LN/ξ0 � 7.5, and various impurity radii (see legend). Normal-state thermal conductivity shown in black. Figure reproduced from Ref. [52] with
permission of the APS and the authors.

FIGURE 5
Thermal Hall transport length at ε � 0 for chiral order ] � 1 (left) and ] � 2 (right), and varying impurity radii (see legend). Low-temperature transport
requires quasiparticles states at ε � 0, formed only with adequate impurity density. But high impurity density destroys superconductivity and thus rules out
any anomalous Hall effects.

9 Hereafter the retarded (R) and advanced (A) superscripts are not shown for

g(ε), f(ε) etc., but are implied.

10 Despite its absence from spectral renormalization, DR,A(ε) encodes

particle-hole asymmetry, e.g. the difference in scattering lifetimes for

particles and holes which could have implications for transport properties

[68], especially in thermoelectric responses [70].
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t̂ p̂′, p̂; ε( ) � −1
πNf

t p̂′, p̂; ε( ) a p̂′, p̂; ε( )
− a p̂′, p̂; ε( ) t p̂′, p̂; ε( )( )

� −1
πNf

∑
m

eim ϕ−ϕ′( ) tm ε( ) ei]ϕa−m ε( )
−e−i]ϕa m ε( ) t −m ε( )( ). (41)

Upon solving Eq. 26, we obtain

tm ε( )
t m ε( ){ } � sin δm cosδm+] ± g ε( )sinδm+][ ]

cos δm − δm+]( ) ∓ g ε( )sin δm − δm+]( ) (42a)

am ε( )
a m ε( ){ } � f ε( )sin δm sinδm−]

cos δm − δm−]( ) ∓ g ε( )sin δm − δm−]( ). (42b)

The diagonal terms tm and t m are the amplitudes for quasi-
particles and quasi-holes scattering off an impurity with relative
angular momentum m. The off-diagonal terms, am and a m, are the
amplitudes for branch conversion scattering in which a quasi-
particle (quasi-hole) scatters off an impurity and also converts to
a quasi-hole (quasi-particle). The branch conversion process is
accompanied by the creation (destruction) of a Cooper pair. In a
chiral superconductor the Cooper pairs have angular momentum
]Z, and thus branch conversion scattering requires a corresponding
change in the angular momentum of the scattered excitation, e.g.,
m → m − ] for an incident quasi-particle scattering with relative
angular momentum mZ converting to a quasi-hole and a Cooper
pair of angular momentum ]Z. Thus, for branch conversion
scattering to occur the quasiparticle-impurity potential must
support amplitudes, am, and thus non-vanishing phase shifts δm
with |m| ∈ {0, 1, . . . , |]|}, as can be seen from Eq. 42b. A direct
consequence is that isotropic impurity scattering from point-like
impurities does not support branch conversion scattering in chiral
superconductors since the incoming and outgoing scattering states
are limited to the s-wave (m � 0) scattering channel. As we show in
what follows, the ionic radius of the impurity and branch conversion

scattering are central in determining themagnitude and temperature
dependence of anomalous Hall transport in chiral superconductors.
Finally we note that the propagators, t-matrix and self-energies must
be computed self-consistently with the gap equation, Eq. 39. In
Section 4 we summarize results for thermal transport in 2D fully
gapped chiral superconductors with a random distribution of finite
size impurities.

4.2 3D chiral superconductors

Here we consider chiral superconductors in 3D belonging
to the two-dimensional E-representations of the tetragonal
(D4h) and hexagonal (D6h) point groups, both even- and
odd-parity E1 and E2 representations. These groups describe
the discrete point symmetries of Sr2RuO4 and UPt3,
respectively. See Table 1.

4.2.1 Symmetries of the order parameter
The mean-field pairing self-energy, after factoring the spin-

structure using the unitary transformation in Eq. 28, has
the structure,

Δ̂R,A
p̂( ) � 0 Δ p̂( )

−Δ p̂( )* 0
( ). (43)

The weak-coupling mean-field order parameter, “gap function”, is
independent of energy and related to the equilibrium Keldysh pair
propagator by the BCS gap equation,

Δ p̂( ) � �∫ dε

4πi
〈λ p̂, p̂′( )fK p̂′; ε( )〉p̂′, (44)

where λ(p̂, p̂′) provides the pairing interaction and the energy
integral is over the bandwidth of attraction, εc, p̂ and p̂′ are the
directions of the relative momentum of pairs of Fermions with zero
total momentum, and 〈 . . . 〉p̂ is an average over the Fermi surface.
The pairing interaction respects the maximal symmetry of the point
group and can be expressed as a sum over bi-linear products of basis
functions of the irreducible representations analogous to Eq. 18. We
assume the irreducible representation, Γ, with the most attractive
pairing interaction, λΓ, dominates, in which case we can ignore the
sub-dominant pairing channels,

λ p̂, p̂′( ) � λΓ ∑dimΓ

]
ηΓ,] p̂( )ηΓ,] p̂′( )*, (45)

where the interaction amplitude λΓ determines the critical
temperature and ηΓ,](p̂) denotes the basis functions for the
irreducible representation, Γ, of the relevant point group. Table 1
summarizes the basis functions, expressed in chiral basis, for the
point groups D4h and D6h, and which are relevant for Sr2RuO4 and
the heavy-fermion compound UPt3, respectively.11 For a chiral
superconductor the order parameter is proportional to one of the
chiral basis functions, e.g., Δ(p̂)∝ ηΓ,](p̂) for a chiral ground state

FIGURE 6
(Upper) Total cross section (black) and pair-breaking cross
section (purple) versus hard-sphere radius for pairing with total
angular momentum J � 1 (solid) J � 2 (dashed) and J � 3 (dotted).
Note that the transport cross section is σtr � σJ�1pb . Inset: Scattering
cross sections in units of 4πR2. (Lower) Critical temperature versus
impurity radius for the same pairing states shown in the top panel for
various impurity densities shown in the legend where γ0 � nimp/πNf .

11 A comprehensive set of tables of basis functions for the tetragonal,

hexagonal and cubic point groups is provided in Ref. [69]
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belonging to the irrep Γ with winding number ]. For the analysis
to follow it is sufficient to consider pairing of states near a 3D
spherical Fermi surface, in which case the mean-field pairing self-
energy is proportional to the spherical harmonic,
i.e., ηΓ,](p̂) � Y]

l (p̂), where l is the orbital angular momentum
corresponding to the irrep Γ,

Δ p̂( ) � Δ ~Y
]
l p̂( ), (46)

where Δ is the maximum value of the order parameter, and the
normalized spherical harmonics are related to the standard spherical
harmonics Ym

l (p̂) via ~Y
m
l (p̂) � Ym

l (p̂)/maxp̂|Ym
l (p̂)|.

4.2.2 Impurity self-energy
In the low temperature limit quasiparticle scattering from

thermally excited quasiparticles and phonons is negligible
compared to scattering off the random impurity potential. For
a homogeneous uncorrelated random distribution of impurities
the corresponding self-energy is a product of the mean impurity
density nimp and the forward scattering limit of the single
impurity t-matrix,

Σ̂R,A

imp p̂; ε( ) � nimp t̂
R,A

p̂, p̂; ε( ), (47)

where the t-matrices are obtained as a solution of the
integral equation,

t̂
R,A

p̂′, p̂( ) � t̂
R,A
N p̂′, p̂( )
+Nf〈t̂R,AN p̂′, p̂″( ) ĝR,A p̂″( ) − ĝR,A

N[ ]t̂R,A p̂″, p̂( )〉p̂″.
(48)

The Keldysh component of the t-matrix then given by

t̂
K

p̂′, p̂( ) � Nf〈t̂R p̂′, p̂″( )ĝK p̂″( )t̂A p̂″, p̂( )〉p̂″. (49)

Note that t̂
A

can be obtained from the symmetry relation,
t̂
A(p̂′, p̂) � τ̂3t̂

R(p̂, p̂′)†τ̂3. In Eqs. 48, 49 we eliminated the
electron-impurity matrix element, û, in favor of the normal-state
quasiparticle propagator, ĝN � −πgNτ̂3 with gR

N � (gA
N)* � i, and

the normal-state t-matrix,

t̂N p̂′, p̂( ) � −1
πNf

∑
l≥0

∑+l
m�−l

Ym
l p̂′( )Ym

l p̂( )*
cot δl + ĝN/π , (50)

where δl is the phase shift in the relative angular momentum
channel, l. The normalization of the spherical harmonics is given by

〈Ym
l p̂( )*Ym′

l′ p̂( )〉p̂ � δmm′δll′. (51)

An important feature of scattering theory by central force potentials,
in this case the quasiparticle-impurity potential, is that the
characteristic range R of the potential leads to phase shifts δl that
decay rapidly to zero for l≳ kfR, effectively truncating the
summations over m and l.

4.2.3 Equilibrium properties
Below we present the framework for determining the self-

consistent equilibrium propagators. To highlight the effects of
chiral phase winding we consider systems that are gauge-rotation
invariant, i.e., invariant under a rotation around the chiral axis
combined with a specific element of the U(1). As a result the
diagonal equilibrium propagator depends on p̂ only through the
polar angle θp measured from the chiral axis, g(p̂; ε) � g(θp; ε). The
azimuth angle ϕp appears only in the phase factor of the pair
propagator, i.e., f(p̂; ε) � ei]ϕpf(θp; ε), where ] is winding
number of the chiral order parameter. Thus we parametrize the
propagators as

ĝR,A p̂; ε( ) � −π gR,A θp; ε( )τ̂3 + fR,A θp; ε( )ei]τ̂3ϕp iτ̂2( )[ ], (52)
where the quasiparticle and pair propagators read

gR,A � ~εR,A θ; ε( )
CR,A θ; ε( ) and fR,A � −~Δ

R,A
θ; ε( )

CR,A θ; ε( ), (53)

with

CR,A θ; ε( ) �
�������������������
~ΔR,A

θ; ε( )2 − ~εR,A θ; ε( )2
√

. (54)

The equilibrium Keldysh propagator is determined by ĝR,A and the
Fermi distribution function,

FIGURE 7
The quasiparticle density of states N(ε) (top) and spectral function along the direction of gap maximumA(p̂; ε) (bottom) are shown for hard-sphere
impurities with radius, kfR � 1.5, for impurity densities shown in the legend where γ0 � nimp/πNf . The four pairing states correspond to the chiral ground
states of the irreducible representations E1u, E2g, E1g and E2u (left to right) of the hexagonal point group D6h . Scattering resonances appears as impurity-
induced sub-gap bands which depend on the topology of the order parameter and the structure of the scattering potential.
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ĝK � ĝR − ĝA( )tanh ε

2T
. (55)

Note that the retarded and advanced propagators are related by the
symmetry relation, ĝA � τ̂3(ĝR)†τ̂3. The excitation energy and
order parameter are renormalized by impurity scattering through
the impurity self-energies, Σimp and Δimp, via

~εR,A θ; ε( ) � ε − ΣR,A
imp θ; ε( )

~ΔR,A
θ; ε( ) � Δ ~Θ]

l θ( ) + ΔR,A
imp θ; ε( ), (56)

where ~Θ]
l (θ) is the polar-angle dependence of the normalized

spherical harmonics. The functions Σimp and Δimp are defined
such that

Σ̂R

imp p̂; ε( ) � DR θp; ε( )1̂ + ΣR
imp θp; ε( )τ̂3 + ΔR

imp θp; ε( )eiτ̂3]ϕp iτ̂2( ).
(57)

The function D(ε) encodes the asymmetry in scattering rates for
particles and holes, which has implications for the thermoelectric
response of chiral superconductors [70].

Since the scattering potential is rotationally invariant we can
expand the t-matrix Equation 48 into a set of decoupled equations
for each cylindrical harmonic channel. Thus, we parametrize the
t-matrix as follows

t̂
R
p̂′, p̂( ) �∑

m

eim ϕp−ϕp′( ) t̂
R
m θp′, θp( ) + ei]τ̂3ϕp′ âRm θp′, θp( )[ ], (58)

where the diagonal part of the t-matrix is given by

t̂
R
m θp′, θp( ) � tRm θp′, θp( ) 0

0 t Rm θp′, θp( )⎛⎝ ⎞⎠, (59)

and the off-diagonal part is given by

âRm θp′, θp( ) � 0 aRm θp′, θp( )
−a R

m θp′, θp( ) 0
⎛⎝ ⎞⎠. (60)

Thus, by factoring out the dependence on the azimuth angle as
shown in Eq. 48, we obtain integral equations for the cylindrical
harmonics of the t-matrix,

t̂
R
m θp′, θp( ) � t̂

R
N,m θp′, θp( ) + 〈t̂RN,m θp′, θp″( )[ gR θp″( ) − gR

N( )τ̂3 t̂Rm θp″, θp( )
+fR θp″( ) iτ̂2( ) âRm θp″, θp( )]〉p″ (61)

âRm θp′, θp( ) � 〈t̂RN,m−]τ̂3 θp′, θp″( )[fR θp″( ) iτ̂2( )t̂Rm θp″, θp( )
+ gR θp″( ) − gR

N( ) τ̂3âRm θp″, θp( )]〉p″, (62)

where t̂N,m−]τ̂3 � Diag(tN,m−], t N,m+]). The off-diagonal t-matrix âm
describes Andreev scattering in which an incoming particle branch
converts into an outgoing hole and vice versa. This process relies on
the creation and destruction of a Cooper pair. For chiral pairing, the
conservation of angular momentum implies that the cylindrical
harmonics of incoming and outgoing scattering states must differ by
the orbital angular momentum quantum number of a Cooper pair,
hence the phase winding factor in front of âm in Eq. 58. Since branch
conversion scattering requires two distinct angular momentum
channels, branch conversion scattering is absent for point-like
impurities which support only s-wave (l � 0) scattering.
Equations 61, 62 are solved for the 3D Fermi surface by
expanding in the spherical harmonic basis functions, Θm

l (θ). For
cylindrical Fermi surfaces the dependence on θ drops out and the
t-matrices are obtained by matrix inversion as described
in Section 4.1.

5 Linear response theory

For small departures from equilibrium driven by a small
temperature bias between different edges of the
superconductor the heat current is proportional to the
temperature gradient,

j q( ) � −κ↔ · T, (63)
where κ

↔
is the thermal conductivity tensor which is constrained by

the chiral symmetry of the ground state. To obtain these transport
coefficients, κij, we determine the self-consistent, equilibrium
propagators and their first-order non-equilibrium corrections to
linear order in T. The equilibrium propagators encode information
about the bound and unbound quasiparticle pair spectrum, and are
key inputs to the determination of the linear-response functions.

FIGURE 8
Same description as that in Figure 7, but for kfR � 2.5.
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The heat current is computed from the non-equilibrium Keldysh
propagator in Eq. 14.

Here we consider the linear response functions for a static and
homogeneous thermal gradient. For convenience we separate the
Keldysh response into a spectral and anomalous part. The
anomalous response encodes information about the non-
equilibrium distribution function and is defined by,

δx̂a ε( ) � δx̂K ε( ) − tanh ε/2T( ) δx̂R ε( ) − δx̂A ε( )[ ], (64)

where x̂ stands for the propagator (x̂ → ĝ) or self-energy (x̂ → Σ̂).
We focus on the anomalous functions because the spectral response
functions, δx̂R,A, do not contribute to the thermal conductivity
tensor in linear response theory to leading order in the
quasiclassical expansion parameters [64]. For a uniform thermal
gradient the anomalous propagator is obtained from the solution of
the linearized transport equations (see Ref. [64] for the
general solution),

δĝa �−C
a
+ĝ

R
eq/π+Da

−
Ca

+( )2 + Da
−( )2 ĝR

eq − ĝA
eq( ) ivp̂ ·∇Φ( )+ ĝR

eqδΣ̂
a −δΣ̂a

ĝA
eq( )[ ],
(65)

where ∇Φ = ∇ tanh[ε/2T(r)] is the gradient of the local
equilibrium distribution function. We added the subscript
“eq” to denote the equilibrium propagators. We also adopt the
shorthand notation,

Ca
+ � CR + CA and Da

− � DR −DA, (66)
withC andD defined in Eqs. 54, 57, respectively. It is also efficient to
express the response functions as column vectors whose elements
correspond to those of their corresponding matrices in particle-
hole space,

δg p̂; ε( )∣∣∣∣ 〉 � δg p̂; ε( ), δ g p̂; ε( ), δf p̂; ε( ), δ f p̂; ε( )( )T, (67)
δΣ p̂; ε( )∣∣∣∣ 〉 � δϵ p̂; ε( ), δ ϵ p̂; ε( ), δΔ p̂; ε( ), δ Δ p̂; ε( )( )T. (68)

The expression for the anomalous propagator (Eq. 65) can then be
recast as

δga p̂; ε( )∣∣∣∣ 〉 � La p̂; ε( ) ψa p̂; ε( )∣∣∣∣ 〉 + δσa p̂; ε( )∣∣∣∣ 〉[ ], (69)
where the static thermal gradient leads to the perturbation,

ψ p̂; ε( )∣∣∣∣ 〉 � ivp̂ · ∇Φ 1, 1, ·, ·( )T ≡ ψ p̂; ε( ) 1, 1, ·, ·( )T. (70)

The linear-response matrix L(p̂; ε) is defined in terms of the
equilibrium propagators,

La ε( ) � −Ca

1 + |g|2 −|f|2 −gRfA −fRgA

−|f|2 1 + |g|2 fRgA gRfA

gRfA −fRgA 1 − |g|2 −|f|2
fRgA −gRfA −|f|2 1 − |g|2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−Da

gR − gA · fA −fR

· −gR + gA −fR fA

−fA fR gR + gA ·
fR −fA · −gR − gA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (71)

where |g|2 � gRgA, |f|2 � fRfA and

Ca ε( ),Da ε( ){ } � 1
2

ReCR ε( ), i ImDR ε( ){ }
ReCR ε( )[ ]2 − ImDR ε( )[ ]2. (72)

5.1 Self-energy—vertex corrections

The r.h.s. of Eq. 69 consists of two terms. The first is the
contribution that is explicitly proportional to the external field,
vp ·T. This term contributes only to the longitudinal thermal
conductivity. Indeed the anomalous Hall conductivity arises
solely from the non-equilibrium self-energy term. The self-energy
corrections are the vertex corrections in the field-theoretical
formulation based on Kubo response theory. These terms
describe the response to perturbations by long-wavelength
collective excitations of the interacting Fermi system [63]. In the
context of the linear response theory developed for disordered chiral
superconductors, the vertex corrections resulting from interactions
of Bogoliubov quasiparticles with static impurities are obtained from
the linear response corrections to the equilibrium t-matrix Eqs. 48,
49 obtained from the first-order non-equilibrium corrections to the
full t-matrix Eqs. 21, 22. For the anomalous self-energy expressed in
Nambu matrix form,

δΣ̂a

imp p̂( ) � nimpNf〈t̂Req p̂, p̂′( )δĝa p̂′( )t̂Aeq p̂′, p̂( )〉p̂′, (73)

can be recast in column vector form as defined by Eq. 68,

|δΣa p̂( )〉 � − nimp

πNf
〈Ta p̂, p̂′( ) δga p̂′( )∣∣∣∣ 〉〉p̂′, (74)

where the impurity vertex-correction operator is given by

Ta p̂, p̂′( ) � tRtA −aRa A −tRa A −aRtA
−a RaA t Rt A −a Rt A −t RaA
tRaA aRt A tRt A −aRaA
a RtA t Ra A −a Ra A t RtA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (75)

FIGURE 9
The components of the thermal conductivity tensor, κxx (top) and
κxy (bottom), for T ≪ γ* as a function of impurity density and hard-
sphere radii (legend) for the pairing states, E1u (left) and E2g (right) of
D6h . The filled circles mark the critical impurity concentrations
nc
imp above which superconductivity breaks down. The dotted curves

in the top panels trace the maximum value of κxx , while the dashed
lines in the bottom panels show the Berry-phase contribution to the
anomalous thermal Hall conductivity (Eq. 114). All results
assume kf ξ0 � 100.
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The retarded [advanced] t-matrix elements are evaluated at (p̂, p̂′; ε)
[(p̂′, p̂; ε)], and the equilibrium t-matrix elements, t and a, are
defined such that

t̂
R,A
eq p̂′, p̂( ) � tR,A p̂′, p̂( ) aR,A p̂′, p̂( )

−a R,A p̂′, p̂( ) t R,A p̂′, p̂( )( ). (76)

In general the mean-field pairing self-energy also contributes
a vertex correction (i.e., δΣ̂ � δΔ̂ + δΣ̂imp). These terms play a
central role in collective mode response of the condensate,
however, in the present context they contribute only to the
retarded and advanced self-energies. The vertex correction
contributing to anomalous heat transport arises only from the
impurity-induced self-energy.

For point-like impurities, the vertex correction, and thus the
anomalous Hall current, vanishes in all but chiral p-wave states.
This can be shown by noting that for isotropic impurity
scattering the vertex correction from Eq. 73,
δΣ̂(ε)∝ 〈δĝ(p̂; ε)〉p̂, is obtained from the isotropic
components of the anomalous propagator. The diagonal
components of the equilibrium propagators are isotropic, and
thus their contribution to the linear response function involves
momentum dependence only from the perturbation,
ψ(p̂)∝ vp̂;ε · Φ. This p-wave term vanishes when averaged
over the Fermi-surface, and as a result does not contribute a
vertex correction. On the other hand, the off-diagonal
components of the equilibrium propagators acquire the phase
factor e±i]ϕ, reflecting the angular momentum of the chiral
Cooper pairs. The linear response functions from these terms
include a phase factor ei(±]+1)ϕ, which contributes a vertex
correction only when |]| � 1, i.e., for chiral p-wave pairing.
This is a non-universal result specific to point-like impurities.
For finite-size impurities vertex corrections and thus anomalous
Hall effects result for chiral superconductors with |]|> 1 with
results varying with the ionic radius of the impurity.

5.2 Cylindrical harmonic decomposition for
2D chiral superconductors

For chiral superconductors with cylindrically symmetric Fermi
surfaces and pairing interactions we can parametrize the non-
equilibrium corrections to the propagators and self-energies in
terms of cylindrical harmonics,

δĝ p̂; ε( ) � −π∑
n

einϕ
δgn ε( ) ei]ϕδfn ε( )

−e−i]ϕδf
n
ε( ) δg

n
ε( )( ),

δΣ̂ p̂; ε( ) �∑
n

einϕ
δϵn ε( ) ei]ϕδΔn ε( )

−e−i]ϕδΔ n ε( ) δϵ n ε( )( ) .
(77)

The response in different cylindrical harmonic channels can
decoupled such that Eq. 69 reduces to

|δga
n ε( )〉 � La ε( ) |ψa

n ε( )〉 + |δΣa
n ε( )〉[ ], (78)

where |δgn〉 � (δgn, δg n
, δfn, δf n

)T, |δΣn〉 � (δϵn, δϵ n, δΔn,
δΔ n)T, and the temperature gradient along the x-axis generates
the perturbation

|ψa
n ε( )〉 � δ|n|,1ψa

1 ε( ) 1, 1, ·, ·( )T (79)
with ψa

1(ε) � −i εvf4T2 sech
2( ε

2T) ∂xT. The impurity self-energy
correction from Eq. 74 becomes

|δΣa
n ε( )〉 � − nimp

πNf
Ta

n ε( )|δga
n ε( )〉, (80)

where the vertex-correction operators are given by

Ta
n ε( ) � 〈〈Yn p̂( )*Ta p̂, p̂′; ε( )Yn p̂′( )〉p̂〉p̂′, (81)

with Yn(p̂) � einϕDiag(1, 1, ei]ϕ, e−i]ϕ). Substituting Eq. 80 into Eq.
78 results in a linear matrix equation for the cylindrical harmonics of
the anomalous response.

5.3 Spherical harmonic decomposition for
3D chiral superconductors

To exploit the axial symmetry of the Fermi surface and chiral
symmetry of the order parameter, we write the anomalous
propagator (δx → δg) and self-energy (δx → δΣ) as a sum of
spherical harmonic components

|δx p̂; ε( )〉 �∑
l

∑
m

Ym
l p̂( )|δxl;m ε( )〉 (82)

with

Yl
m p̂( ) ≡ Diag Ym

l p̂( ), Ym
l p̂( ), Ym+]

l p̂( ), Ym−]
l p̂( )[ ]. (83)

The spherical harmonic components are then given by

|δxl;m ε( )〉 � 〈Ym
l p̂( )* δx p̂; ε( )∣∣∣∣ 〉〉p̂. (84)

The anomalous response in Eq. 69 can now be expressed in
terms of solutions for each cylindrical harmonic component,

|δga
l;m ε( )〉 �∑

l′
La

ll′;m ε( ) |ψa
l′;m ε( )〉 + |δΣa

l′;m ε( )〉[ ], (85)

FIGURE 10
Same plots as Figure 9 but for the pairing states E1g (left) and E2u
(right). The diamond symbols in the top panels show the values for the
“universal limit” for the thermal conductivity in the point-like impurity
model [64].
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where the perturbation is

ψa
m;l ε( )〉

∣∣∣∣∣ � 〈Ym
l p̂( )* ivp̂ · ∇Φ( )〉p̂ 1, 1, ·, ·( )T (86)

and the linear response matrix is given by

La
ll′;m ε( ) � 〈Ym

l p̂( )*La p̂; ε( )Ym
l′ p̂( )〉p̂. (87)

Similarly the vertex correction, Eq. 74, is recast as

δΣa
l;m, 〉

∣∣∣∣∣ � − nimp

πNf
∑
l′
Ta

ll′;m δga
l′;m〉

∣∣∣∣∣ , (88)

where

Ta
ll′;m � 〈〈Ym

l p̂( )*Ta p̂, p̂′( )Ym
l′ p̂′( )〉p̂〉p̂′. (89)

Finally we use Eq. 88 to eliminate the self-energy term from Eq.
85, yielding

∑
l′

1δll′ + nimp

πNf
∑
k

La
lk;mT

a
kl′;m

⎡⎣ ⎤⎦ δga
l′;m

∣∣∣∣∣ 〉 �∑
l′
La

ll′;m ψa
l′;m

∣∣∣∣∣ 〉. (90)

This equation is solved by matrix inversion.

6 Results for 2D chiral superconductors

To quantify the effects of finite-size impurities, we consider
hard-disc scattering for which the scattering phase shifts are given by
tan δm � J|m|(kfR)/N|m|(kfR) [71], where R is the hard-disc radius
and, Jm(z) and Nm(z) are Bessel functions of the first and second
kind, respectively. Results presented in this section were reported in
Ref. [52]. They are included here to highlight the effects of disorder
on fully gapped topological chiral superconductors and to compare
with new results for 3D nodal chiral superconductors. We start with
the effects of impurities on the equilibrium properties and the sub-
gap excitation spectrum.

6.1 Suppression of Tc and pair-breaking

For temperatures approaching the critical temperature, Tc, from
below temperature the order parameter approaches zero
continuously at the second order transition. The resulting
linearized gap equation yields the transition temperature in terms
of the pairing interaction, λ, bandwidth of attraction (“cutoff”), εc,
and the pair-breaking effect of quasiparticle-impurity scattering.
The pairing interaction and cutoff can be eliminated in favor of the
clean-limit transition temperature, Tc0, with the result being a
transcendental equation for the suppression of Tc from
quasiparticle scattering off the random distribution of impurities.
The resulting critical temperature is given by.12

ln
Tc0

Tc
� Ψ 1

2
+ 1
2
ξ0σpbnimp

Tc/Tc0

( ) − Ψ 1
2
( ), (91)

where Ψ(x) is the digamma function, Tc0 is the critical temperature
and ξ0 � vf/2πTc0 is the coherence length in the clean limit. The
effects of pair-breaking by impurity scattering is determined by the
pair-breaking cross section

σpb � 2
kf
∑
m

sin2 δm − δm+]( ), (92)

for a chiral order parameter with winding number ]. For s-wave
pairing (] � 0), σpb � 0 and consequently Tc � Tc0 as expected from
Anderson’s theorem [72]. In Figure 1, we see that σpb is generally
different from the total cross section σtot � (4/kf)∑m sin2δm. The
two cross sections approach one another only in the point-like
impurity limit kfR≪ 1. Furthermore, σpb and Tc both depend on the
ionic radius and the winding number. A feature of the hard-disk
scattering model is that σpb for ] � 2 and ] � 1 cross at kfR ≈ 3.05.
For radii smaller (larger) than this value, pair breaking is stronger
and Tc is lower for ] � 2 (] � 1).

6.2 Density of states

The quasiparticle spectrum, N(ε) � NfImgR(ε), also depends
sensitively on the winding number, ], as shown in Figure 2. Note the
existence of multiple sub-gap impurity bound states, which are
broadened into bands with increasing impurity density. These
states are generated by the combination of potential scattering by
impurities and multiple Andreev scattering by the chiral order
parameter. As a result, the number of bound states and their
sub-gap energies are determined by not only the impurity
potential, e.g., the ionic radius, but also the winding number ].
The impurity-induced sub-gap spectrum has important
implications for all quasiparticle transport processes. In the low-
temperature limit,T≪ |Δ|, the thermal conductivity is dominated by
excitations at energies well below the clean limit gap edge. Diffusion
within the lowest energy band of sub-gap states near the Fermi level
determines the low temperature heat current as we discuss below.

FIGURE 11
The anomalous thermal Hall conductivity versus temperature for
hard-sphere radii kfR � 0.7, 1, 1.5, 2.0, and for chiral order parameters
belonging to the E1u, E2g, E1g and E2u irreducible representations of the
hexagonal point group. The Berry phase contribution is shown
for comparison (dashed curves). Results are shown for a transport
mean free path is LN/ξ0 � 7.5 and coherence length of ξ0 � 100 k−1f .
Figure reproduced from Ref. [52] with permission of the APS and
the authors.

12 Similar results were derived for the suppression of Tc by non-magnetic

disorder in p-wave superconductors and superfluid 3He in aerogel

[73, 74].
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6.3 Thermal conductivity and the anomalous
Thermal Hall effect

In normal metals the thermal conductivity is limited by the
transport mean free path for quasiparticles scattering off the random
distribution of impurities, κN � (π2/3)NfvfLNT, where LN �
1/(σtr nimp) is determined by the transport cross-section.13

σ tr � 2/kf( )∑
m

sin2 δm − δm+1( ). (93)

In the superconducting state the thermal conductivity depends on both
the mean impurity density as well as the impurity cross-section via,

κ
xx

xy
{ } T( ) � Nfvf ∫ dε

ε

2T
sech

ε

2T
( )2L

xx

xy
{ } ε( ), (94)

where we define the thermal transport lengths for the longitudinal
and transverse currents by

Lxx ε( ) ≡ Re
vfδga

1 ε( )
−2ψa

1 ε( ) and Lxy ε( ) ≡ Im
vfδga

1 ε( )
−2ψa

1 ε( ) . (95)

Figure 3 shows the temperature dependence of longitudinal thermal
conductivity for fully gapped chiral superconductors with ] � 1, 2. Note
that the presence of impurities generally enhances the low-temperature
thermal conductivity through the formation of sub-gap states, but the
enhancement depends on winding number of the chiral order. For
impurities with kfR � 1 note that a band of Andreev bound states
with a finite density of states at ε � 0 develops for a chiral order
parameter with ] � 2, but not for ] � 1 as shown in Figure 2. This is
because the state with ] � 2 has more phase space for scattering on the
Fermi surface with a nearly perfect sign change that leads to maximal
pairbreaking (i.e., scattering with δϑ ≈± π/2) compared to the state with
] � 1 (scattering with δϑ ≈ π). Thus, for ] � 2 a gapless, diffusive,
“metallic” band results in a low-temperature thermal conductivity
which is linear in temperature as T → 0, i.e., κxx(T → 0)∝T. We
also note that for ] � 1, such behavior only occurs for sufficiently large
impurity densities where the impurity bands broaden to close the gap
at ε � 0.

Figure 4 illustrates perhaps the most pronounced effects of finite-
size impurities on transport properties. Although the longitudinal
conductivity is relatively insensitive to the impurity size or the
winding number, the Hall conductivity depends strongly on both R
and ]. For point-like impurities with radii smaller than the Fermi
wavelength, kfR≲ 1, the thermal Hall conductivity is finite for ] � 1,
but is dramatically suppressed for chiral states with |]|> 1, as is clear in
the comparison between ] � 1 and ] � 2 for kfR � 0.2 shown in the
lower two panels of Figure 4. This supports our previous argument that
Hall currents vanish for point-like impurities, i.e., kfR≪ 1, for all chiral
winding numbers except |]| � 1. Also note that as we increase the
radius of the impurities such that kfR≳ 1, the Hall conductivity for
] � 2 increases dramatically and can be substantially larger than that for
] � 1. Furthermore, for a fixed normal-state transport mean free path,
the Hall conductivity exhibits a non-monotonic dependence on
impurity size, reaching maximum at an intermediate radius. Thus,

the details of the impurity potential, and thus the sub-gap spectrum, are
of crucial importance for a quantitative understanding of anomalous
Hall effects in chiral superconductors.

It is also instructive to compare the low-temperature limit of
thermal Hall transport originating from the bulk topology in the
form of chiral edge states with the bulk thermal Hall conductance
from the random distribution of impurities embedded in the bulk of the
superconductor. For chiral p-wave pairing the edge-state contribution
to the thermal Hall conductanceKedge

xy /T � πk2B/6Z is universal [46, 75,
76]. By contrast the bulk impurity contribution to the low-temperature
thermal Hall conductance can be expressed as Kbulk

xy � kfLε�0xy × Kedge
xy

[see Eq. 94], where Lε�0xy is the effective transport length, which is non-
universal and depends on the impurity density and scattering cross-
section. Furthermore, Lε�0xy is finite in a finite range of impurity density
for which there is a finite density of states at ε � 0, but not so disordered
as to destroy superconductivity, as shown in Figure 5. At sufficiently low
impurity density the spectrum is gapped at ε � 0 and so the edge
contribution, which is linear in T can dominate at sufficiently low
temperatures.While above a critical impurity density superconductivity
is destroyed and with it the Hall transport. However, over a significant
range of impurity density both the edge and bulk impurity
contributions are present for all T<Tc.

To compare the edge and bulk contributions to Kxy when both
are present we consider typical values of the coherence length to
Fermi wavelength, kfξ0, and the relative impurity size, kfR. For
example, taking kfξ0 � 100, ] � 1 and kfR � 0.5 we find
Kbulk

xy ≈ 35Kedge
xy at the value of nimp that maximizes Lxy as shown

in Figure 5. In general we find that the bulk contribution to the
anomalous thermal Hall conductivity is generally dominant over
most of the temperature range.

7 Results for chiral superconductors
in 3D

We have extended the analysis for chiral states in 2D to chiral
states defined on closed 3D Fermi surfaces which often include
symmetry enforced line and point nodes of the excitation gap. The
results reported here include anomalous thermal Hall effects in
candidates for 3D chiral superconductors belonging to tetragonal
and hexagonal crystalline point groups, particularly the perovskite
Sr2RuO4 and the heavy-fermion superconductor UPt3. To
investigate the effects of ionic radius and the dependence on the
ionic cross-section, we use the hard-sphere impurity potential for
which the scattering phase shifts are analytically given in terms of
the hard-sphere radius, R, and the Fermi wavevector [77],

tan δl �
jl kfR( )
nl kfR( ), (96)

where jl(z) and nl(z) are spherical Bessel functions of the first and
second kind, respectively [78].

7.1 Critical temperature

For 3D chiral superconductors we obtain a result of the same
form as Eq. 91 for the suppression of Tc by disorder, but with a pair-

13 The transport and pair-breaking cross sections are different except for

|]| = 1, c.f. Eq. (92).
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breaking cross-section appropriate for scattering of a 3D Fermi
surface with finite-size impurities in 3D,

ln
Tc0

Tc
� Ψ 1

2
+ nimpξ0σpb

2Tc/Tc0

( ) − Ψ 1
2
( ), (97)

where the pair-breaking cross section is given by,

σpb � 4π

k2f

1
2
∑
ll′
sin2 δl − δl′( ) 2l + 1( ) 2l′ + 1( )

2J + 1
〈l, 0; l′, 0|J, 0〉2, (98)

with 〈l, m; l′, m′|L,M〉 are Clebsch-Gordan coefficients and J � |]|
is the Cooper pair angular momentum quantum number. For
s-wave pairing (J � 0) the Clebsch-Gordan coefficient vanishes
unless l � l′, and thus σpb � 0 and Tc � Tc0, consistent with
Anderson’s theorem [72]. Note also that the pair-breaking cross-
section is in general different from both the total cross-section and
transport cross section, which are defined by

σ tot � 4π

k2f
∑
l

2l + 1( )sin2δl (99)

σ tr � 4π

k2f
∑
l

l + 1( )sin2 δl+1 − δl( ) � σJ�1pb , (100)

which determine the quasiparticle scattering lifetime and transport
mean-free path, respectively. For point-like impurities all of the
above cross sections coincide except for pairing in the s-wave
channel, in which case σtot � σtr, but σpb � 0.

In the limit kfR≪ 1 the total cross-section and pair-breaking
cross-section both approach σtot � σpb � 4πR2, i.e., four times the
geometric cross section of the hard sphere impurity. However, for
kfR≳ 1 the pair-breaking cross section is typically smaller than the
total cross section as shown in Figure 6. In the limit kfR≫ 1 σtr and
σJpb approach the geometric limit, πR2. However, in general the pair-
breaking cross section is dependent on the topology of the order
parameter. Chiral states with higher angular momentum are subject
to stronger pair-breaking effects as we show for hard-sphere
impurities. In the lower panel of Figure 6 we show the pair-
breaking effects of impurity size and concentration on the critical
temperature Tc as described by Eqs. 97, 98.

7.2 Quasiparticle spectrum

Central to the interplay between chiral symmetry, topology and
disorder is the impact of impurity scattering on pair-breaking and
the resulting sub-gap quasiparticle spectrum. Distinct from fully
gapped 2D topological states, 3D chiral ground states support
symmetry protected nodes of the order parameter which leads to
quasiparticle states over the entire energy range from the maximum
gap on the Fermi surface down to the Fermi energy. The
quasiparticle spectral function defines the angle-resolved
quasiparticle density of states is determined by the retarded
diagonal propagator,

A p̂; ε( ) � ImgR p̂; ε( ). (101)
The local density of states is the Fermi-surface average of the
spectral function,

N ε( ) � Nf〈A p̂; ε( )〉p̂, (102)

where Nf is the normal-state density of states at the Fermi level.
Figures 7, 8 show the effects of impurity induced scattering on
the quasiparticle spectrum. The coherence peak at the maximum
gap edge is broadened by impurity scattering. The spectral
weight is redistributed to sub-gap energies by the formation
of sub-gap resonances. The formation of sub-gap impurity bands
is clearly visible in the spectral function for positions on the
Fermi surface corresponding to the maximum gap as shown in
the bottom panel of Figures 7, 8. These resonances correspond to
Andreev bound states that hybridize with continuum states near
nodal regions of the order parameter (c.f. Ref. [8]). Impurity-
induced sub-gap states are formed by multiple Andreev
scattering from the combined potential scattering and
branch-conversion scattering by the phase-winding of the
order parameter on the Fermi surface. The spectrum depends
on the structure of the scattering potential as well as the
topological winding number of the order parameter. These
impurity-induced sub-gap states play a central role in
determining the magnitude and temperature dependence of
the anomalous thermal Hall conductivity because these states
couple to the chiral condensate is the source of broken time-
reversal and mirror symmetries.

7.3 Thermal conductivity tensor for chiral
superconductors

The heat current density in Eq. 14 for chiral ground states with
embedded impurity disorder reduces to

j
q( )
x

y
{ } � vfNf�

6
√ Im

Re
{ }∫dε ε δga

1;1 ε( ), (103)

where δga
l;m(ε) is the spherical harmonic component of gK(p̂; ε)* �

−gK(p̂; ε) with angular momentum quantum numbers l, m. In
deriving this formula we used the symmetry relation
δga

l;−m(ε) � −(−1)m δga
l;m(ε)*. We also note that in linear

response theory a thermal gradient does not generate a spectral
response, in which case the anomalous response is equal to the
Keldysh propagator, δga = δgK. From j(q) � −κ↔ · ∇T, we can express
the longitudinal and transverse components of the thermal
conductivity tensor as

κ
xx

xy
{ } � 4

3
NfvfT∫ dε

2T
ε

2T
sech

ε

2T
( )2L

xx

xy
{ } ε( ), (104)

where the spectral resolved transport mean free paths are defined by

Lxx ε( ) ≡ Re
vfδga

1;1 ε( )
−2ψa

1;1 ε( ) and Lxy ε( ) ≡ Im
vfδga

1;1 ε( )
−2ψa

1;1 ε( ) (105)

with ψa
1;1(ε) � 〈Y1

1(p̂)*(ivp̂ · ∇Φ)〉p and the thermal gradient is
chosen to be along the x-axis, ∇Φ � x̂∇xΦ. In Eq. 104 the
derivative of the Fermi distribution leads to the factor
(ε/2T)2sech2(ε/2T) which confines the quasiparticle contribution
to the heat current to excitations with |ε|≲T. Thus, if the transport
mean free paths, Lxx,xy(ε), vary with ε on a scale γ*≫T, then they
may be approximated by Lxx,xy(ε � 0), in which case the integration
over the spectrum and thermal distribution yields,
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κ
xx

xy
{ } T( ) ≃ 2π2

9
NfvfL xx

xy
{ } ε � 0( ) × T, T≪ γ*. (106)

In the normal state, γ* ~ Ef ≫T, and the above formula yields the
well known result for the normal-state thermal conductivity with
Lxx(0) given by the transport mean-free path. In particular, in the
normal state the matrices that determine the anomalous response
and vertex corrections are

Ta
m;ll′ � 1δll′

k2f
4π

σ tot − σ tr( )

La
m;ll′ � 1δll′

−2/vf
σ totnimp

,

(107)

where σtot and σtr given by Eqs. 99, 100. Then Eq. 90 yields the
anomalous response function,

|δga
m;l〉 � δl,1δ|m|,1

−2/vf
σ trnimp

|ψa
m;1〉. (108)

Combining Eqs. 105, 106 yields the normal-state thermal
conductivity

κxx ≡ κN � 2π2

9
NfvfLN × T, (109)

where Lxx ≡ LN � 1
nimpσ tr

, (110)

is the transport mean free path. Furthermore, the normal state does
not break time-reversal and mirror symmetries and thus
Lxy vanishes.

In the chiral superconducting phase, γ* is a low energy scale set
by the width of the impurity band at the Fermi level, ε � 0. When it
exists a metallic-like band develops which at very low temperature in
the superconducting state gives rise to diffusive heat transport that is
again linear in temperature for T< γ*, now for both the longitudinal
and Hall conductivities. This regime is shown in Figure 9 for both
components of the conductivity tensor for the pairing states E1u and
E2g, i.e., the states with Δp̂ ∝ ei]ϕp with ] � 1 and 2, respectively. For
these states, low-energy excitations are located around the point
nodes at p̂ � ± ẑ (in the clean limit), and therefore do not contribute
to low-temperature transport in the basal plane. Instead low-
temperature transport relies on the impurity-induced sub-gap
bands (see Figures 7, 8). The linear regime onsets for κxx and
κxy at a threshold impurity density above which the impurity-
induced resonances broaden sufficiently to generate a finite
density of state at ε � 0. The longitudinal conductivity increases
with the impurity density as more states become available at the
Fermi level even as the impurity scattering rate goes up. This
behavior is due to the fact that the total cross section, which
characterizes spectral broadening, is greater than the transport
cross section as seen in Figure 6. Above a critical impurity
density, ncimp � e−γE /(2ξ0σpb), where γE ≈ 0.577 is the Euler-
Mascheroni constant, the number of available states no longer
depends on impurity scattering, i.e., N(ε � 0) � Nf. Thus,
increasing the density of impurities only decreases the thermal
current by reducing the transport mean free path, LN � 1/nimpσtr,
and thus κN � LN × k2fT/9. At nimp � ncimp the zero-temperature
limit of κxx/T is proportional to the ratio of the pair-breaking and
transport cross sections, κcxx/T∝ σpb/σtr. As a result the p-wave

pairing state has a universal upper bound for κxx/T, i.e., independent
of the structure of the impurity potential, because σpb � σtr for J � 1
(Eq. 100),

lim
T→0

κxx
T

≤
2eγEk2B
9Z

k2fξ0, for p − wave pairing E1u( ). (111)

The thermal Hall conductivity κxy/T also initially increases with
the impurity concentration above the lower threshold density shown
in Figure 9. However, κxy/T peaks below ncimp as the Hall response
must vanish when disorder destroys the condensate and restores
time-reversal and mirror symmetries. The thermal Hall
conductivity also depends strongly on the topology of the
order parameter and the structure of impurity potential. The
latter is highlighted by the comparison between the thermal Hall
currents for the E1u and E2g states with decreasing impurity size.
The state with ] � 2 is severely suppressed kfR< 1. This behavior
results from the suppression of branch-conversion scattering
which couples impurity scattering to the order parameter of
the chiral condensate. In the limit of pure s-wave impurity
scattering only the chiral states with Δp̂ ∝ e±iϕp can support a
finite Hall conductivity (see Section 5.1).

Figure 10 shows the thermal conductivity in the zero-
temperature limit for the states E1g and E2u, i.e., with
Δp̂ ∝ p̂ze

i]ϕp with ] � 1 and 2, respectively. The presence of the
line node at p̂z � 0 guarantees the availability of low-energy
quasiparticles for transport in the basal (x, y) plane even in the
clean limit. Consequently the low-temperature limit of κxx/T does
not rely solely on impurity-induced sub-gap states at the Fermi level,
and is finite even for nimp → 0 as shown in the upper panels of
Figure 10. Indeed κxx/T approaches universal values, identical to
those obtained for point-like impurities by Ref. [64], shown as the
diamond symbols in Figure 10. However, the thermal Hall
conductivity, limT→0κxy/T does not onset at nimp � 0. A finite
impurity density is still essential for a non-vanishing anomalous
thermal Hall conductance, κxy/T, at low temperatures. The reason is
that the transverse component of the heat current is generated by
branch-conversion scattering induced by potential scattering off the
distribution of impurities. For this process to generate a finite
limT→0κxy/T the sub-gap Andreev resonances must be sufficiently
broadened to generate a finite density of states at the Fermi level.

7.4 Comparison with the anomalous thermal
Hall conductivity from Berry curvature

Anomalous Hall transport in ultra-clean topological
superconductors with broken time-reversal and mirror
symmetries was predicted by several authors [44, 46, 50]. In
particular, anomalous Hall conductance originating from the
gapless edge spectrum confined on the boundary of a topological
chiral superconductor is predicted to be quantized,
κxy/kBT � π

12kB/Z. This edge contribution to the anomalous
thermal Hall conductance can be computed from the Berry
curvature Ω(n)

kx,ky
via the formula [44, 50],

κedgexy � 1
VT

∑
n,k

Ω n( )
kx,ky

k( )∫∞

Ek,n

dεε2f′ ε( ), (112)
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where f(ε) � 1
2 (1 − tanh ε

2T) denotes the Fermi-Dirac distribution,
Ek,n, the quasiparticle spectrum with n being the band index and V the
volume of the system. In the superconducting state energy eigenstates of
the Bogoliubov Hamiltonian separates into two bands: above (n � +1)
and below (n � −1) the Fermi level with eigenenergies Ek,± �
±

��������
ξ2k + |Δk |2

√
where ξk � vf(|k| − kf) is the normal-state excitation

energy measured from the Fermi level. The Berry curvature reflects the
topology of the order parameter, and thus decays rapidly away from the
Fermi surface (c.f. Ref. [79]). In the limit |Δ|≪Ef the Berry curvature
confines the summation over k to the Fermi surface,

lim
|Δ|/T→0

Ω ±1( )
kx,ky

k( ) � ± ]k−1f δ |k| − kf( ), (113)

where as before ] is the phase winding of the order parameter about
the kz-axis. The resulting Berry phase contribution to the anomalous
thermal Hall conductance for isotropic Fermi surfaces in d
dimensions is

κedgexy � − ]
2πZT

kf
π

( )d−2〈∫+Δp̂

−Δp̂

dε ε2f′ ε( )〉
p̂

� ]
πk2B
6Z

( ) kf
π

( )d−2
T,

(114)
in the low-temperature limit.

In Figures 9, 10 we compare the our results for the impurity-
induced thermal Hall conductivity with the prediction of the edge
contribution based on the Berry curvature in the low temperature
limit (T → 0) for four different chiral ground states. The
comparison is based on a typical coherence length scale
kfξ0 � 100. For all four chiral states the Berry phase
contribution is dominant at impurity densities below the
threshold for impurity-induced transverse transport in the
limit T → 0. However, above this threshold the impurity-
induced Hall conductivity is comparable to or much larger
than the Berry phase contribution. For example, for the chiral
E1u state (bottom left panel of Figure 9), the impurity-induced
Hall effect yields transverse heat currents in the zero temperature
limit which are approximately an order of magnitude larger than
the Berry phase contribution for typical impurity dimensions.

Figure 11 depicts the zero-field thermal Hall conductivity as a
function of temperature for chiral states belonging to the spin-
triplet, odd-parity E1u and E2u representations and the spin-singlet,
even-parity E1g and E2g representations of the hexagonal D6h point
group, and the Eu and, Eg representations of D4h. Almost all
proposed chiral superconductor candidates, including the
perovskite Sr2RuO4 and the heavy-fermion superconductor UPt3,
belong to one of these representations. The results show that the
impurity-induced anomalous Hall effect (solid lines) dominates the
Berry curvature contribution [44, 50] (dashed lines) over the full
temperature range in all four chiral pairing states for impurities with
kfR≳ 1.5. In this context it is worth reiterating our earlier estimate of
the magnitude of the impurity-induced anomalous thermal Hall
conductivity for the chiral phase of UPt3 [52]. Namely, for
kf � 1Å

−1
, ξ0 � 100Å and Tc � 0.5K, representative of UPt3 [38]

we estimate κxy > 3 × 10−3 WK−1m−1 for T ≃ 0.75Tc for the chiral
E2u state with ] � 2 and impurity radius kfR � 1.5 (Figure 11).
Compared to the normal-state thermal conductivity at Tc, κN(Tc),
one needs sensitivity to transverse heat currents at the level of
0.01 − 0.03 κN(Tc) as shown in Figure 4.

8 Summary and outlook

We presented the theoretical framework for understanding
disorder-induced anomalous Hall transport in chiral
superconductors, and we reported quantitative predictions for the
thermal conductivity and the anomalous thermal Hall conductivity
in superconductors with phase winding ] for chiral superconducting
ground states belonging to the 2D irreducible representations of the
hexagonal and tetragonal point groups. We highlight the role of
quasiparticle-impurity scattering by finite-size impurities, i.e., kfR≳ 1.
Our analysis demonstrates that an anomalous thermal Hall effect is
obtained for chiral superconductors with winding ], provided the
ionic radius of the impurities satisfies kfR≳ |]| − 1. Thus, for point-
like impurities with kfR≪ 1 the anomalous thermal Hall current
vanishes for all but chiral p-wave ground states. We also
discussed the spectrum of impurity-induced Andreev bound
states, which are formed via multiple Andreev scattering. The
spectrum depends sensitively on the winding number of the
chiral order parameter as well as the structure of the impurity
potential. Our results also show that the impurity-induced
anomalous thermal Hall transport dominates the edge state
contribution by an order of magnitude or more over most of
the temperature range below Tc. The impurity- and edge
contributions to the thermal Hall effect both depend on
broken time-reversal and mirror symmetries. Thus, they are
equally good signatures of chiral superconductivity. The bulk
impurity effect is likely more accessible experimentally; it
produces larger Hall currents, and it is insensitive to the
quality of the surfaces of a sample. In summary this work
provides the theoretical framework for computing and
analyzing experiments seeking to identify broken time-reversal
and mirror symmetries, as well as non-trivial topology of chiral
superconductors, from bulk transport measurements.

8.1 Outlook

There are a number of candidates for chiral superconductivity
that have been proposed theoretically and pursued experimentally.
The chiral phase of 3He was proven to be chiral p-wave based on the
observation of anomalous Hall transport of electrons embedded in
superfluid 3He-A [7, 8]. The heavy electron metal UPt3 shows
evidence of broken time-reversal symmetry based on Kerr
rotation [33], Josephson interferometry [3], μSR [31] and SANS
studies of diffraction by the vortex lattice [6]. Observation of an
anomalous thermal Hall effect onsetting at the A to B transition
would provide a definitive bulk signature of broken time-reversal
and mirror symmetries in UPt3. Analysis of the temperature- and
impurity-dependences of the Hall conductivity could provide new
and quantitative experimental constraints on the symmetry class of
E-rep of UPt3. For a number of proposed candidates for chiral
superconductivity, e.g., Sr2RuO4, doped graphene, SrPtAs, etc.,
observation of an anomalous thermal Hall effect would provide
confirmation of broken time-reversal and mirror symmetry by the
superconducting order parameter. NMR experiments revealed the
existence of new superfluid phases of liquid 3He when it is infused
into low density, anisotropic, random solids - “aerogels” [80] - or
confined into sub-micron cavities [81]. Analysis based on
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Ginzburg–Landau theory predicts that the ground state of 3He
under anisotropic confinement is a chiral phase [82]. Thus,
experiments designed to measure the transverse heat current
could provide a definitive test of the theory for the ground state
of superfluid 3He infused into anisotropic aerogels [83], and
similarly for 3He confined in sub-micron cavities [84].
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