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People have long had a problem: the equations of motion that reflect the laws of
physics are invariant under time inversion, while there always are irreversible
processes for gases composed of microscopic particles. This article solves the
problem. The point is that we should distinguish between the concepts of the
equation of motion and concrete motion. We also need to distinguish between
the concepts of time-inverse motion and reverse motion. The former is
anticlockwise, which is a fictional motion, while the latter is clockwise. For the
single-particle motions in classical mechanics and in quantum mechanics, we
presentmathematical expressions for time-inversionmotion and reversemotion,
respectively. We demonstrate that single-particle motion is irreversible. The
definition of the reversibility of two-particle collisions is given. According to
the definition, the two-particle collision as a microscopic motion process is
irreversible. Consequently, for a gas consisting of a large number of particles
colliding with each other, its movement should be irreversible, unless the
condition of detailed balance is met. We provide a physical explanation for
detailed balance, which does not concern the meaning of microscopic
reversibility. The detailed balance means that after a pair of reciprocal
collisions occur, the distribution function of the particles remains unchanged.
Therefore, microscopic two-particle collision events are irreversible, but the
statistical average of a large number of collision events makes it possible for
the macroscopic process of a gas to be reversible. Conclusively, we clarify the
microscopic mechanism of the irreversible process of gases.
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1 Introduction

1.1 The paradox of irreversibility

The motion of individual microscopic particles follows the laws of physics. The laws of
physics are embodied in equations of motion, which are expressed as differential equations
with a derivative with respect to time. It is believed that the equations of motion are time-
reversible.

A macroscopic gas is made up of a large number of microscopic particles. Since the
equation of motion that every microscopic particle follows is time-reversible, it is thought
that macroscopic processes should be reversible either. However, we always observe that
irreversible processes occur. Therefore, people are faced with the fact that the laws of motion
of microscopic particles are reversible in time, while the motion of macroscopic systems is
irreversible [1–13]. It is also said that the movement of microparticles is symmetric with
respect to time, but the movement of macro-systems composed of a large number of
microparticles is not [4, 5].
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This fact forms a paradox: “Classical mechanics itself is
entirely symmetrical with respect to the two directions of
time. The equations of mechanics remain unaltered when the
time t is replaced by –t; if these equations allow any particular
motion, they will therefore allow the reverse motion, in which the
mechanical system passes through the same configurations in the
reverse order. This symmetry must naturally be preserved in a
statistics based on classical mechanics. Hence, if any particular
process is possible which is accompanied by an increase in the
entropy of a closed macroscopic system, the reverse process must
also be possible, in which the entropy of the system
decreases.” [14].

We use (pi, qi) to represent the ith generalized coordinate and
generalized momentum. They follow Hamilton canonical equations:

_pi � −∂H
∂qi

, qi � ∂H

∂ _pi

. (1)

Now, we make time inversion,

t → −t. (2)

Then, we take the following transformation:

pi → −pi, qi → qi. (3)
Then, under the transformation Eqs 2, 3, the forms of Eq. 1

remain unchanged. This is the time-reversal invariance of the
equations of motion and was called “the principle of dynamical
reversibility” [13]. This seems that the movement of each particle
should be time-reversible.

Consider that an isolated ideal gas undergoes a process that
increases its entropy. At one moment, let the momentum of all
molecules reverse, that is, the transformation of Eqs 2, 3 is taken;
then, from this moment on, each molecule still moves according to
Eq. 1 in the reverse time direction. That is to say, the whole gas
moves in the opposite time direction, i.e., it moves in the direction of
decreasing entropy. However, such a process is practically
impossible. The second law of thermodynamics negates the
possibility of such a process. This argument is known as the
Loschmidt paradox [2, 13, 15, 16]. The Loschmidt paradox can
be stated quite simply: if all the laws of physics are time-reversal-
symmetric, how can one prove a time-asymmetric law like the
second “law” of thermodynamics that states that the entropy of
the Universe “tends to a maximum” [16].

In quantum mechanics (QM), there is the same paradox: “Time
irreversibility is not a problem to be solved, . . . . . .Theoretically, in
particular in the quantum case, realization of time irreversibility is
difficult because the fundamental kinetic equations, including the
Schrödinger equation and the Dirac equation, ensure that the
dynamics are reversible in time” [17]. Some scholars believed
that the microreversibility can be employed to provide a way to
obtain the statistical cumulants [18].

Someone believed that there was “no conflict between reversible
microscopic laws and irreversible macroscopic behavior” [5].
However, when he addressed this, he did not resolve the
Loschmidt paradox.

People admit it is a problem and have been troubled by this
paradox for more than 100 years. Various efforts have been devoted
to eliminate this problem. These efforts speculate about the cause of

the irreversibility of macroscopic processes from microscopic
reversibility.

One view is that although every microprocess is reversible, the
statistical nature of a large number of microprocesses can lead to
irreversibility of macroprocesses. For example, the law of motion of
each microparticle is time-symmetrical, but the motion that evolves
into a macroscopic gas is a diffusion equation, which is temporally
asymmetric [5]. However, it is difficult to transit from microscopic
equations of motion to macroscopic equations, and there has been
no successful solution so far. “There are many conceptual and
technical problems encountered in going from a time-symmetric
description of the dynamics of atoms to a time-asymmetric
description of the evolution of macroscopic systems. This
involves a change from Hamiltonian (or Schrödinger) equations
to hydrodynamical ones, e.g., the diffusion equation. The problem of
reconciling the latter with the former became a central issue in
physics during the last part of the 19th century” [5]. This is because
“the microscopic details are usually unreachable, and a full
description of the system is impossible” [19].

One view is that the irreversibility of thermodynamic processes
arises because the initial state of thermodynamic systems is very
special [3, 10]. For example, at the initial moment, the gas is confined
to a specific region. This view is untenable. If the macroscopic gas is
in another initial state, its motion process is still irreversible. There
are many initial states from which the motion of a gas is irreversible.

Some scholars think that there are no real isolated systems, and
there are always various perturbations that more or less cause
molecules to deviate slightly from their intended trajectories after
collision. In this way, after multiple collisions, the molecule
completely loses its memory. “In reality, it is impossible to
produce a totally isolated system. There are always external
perturbations present, such as radiation, sunspots or the variable
gravitational influence of the surrounding matter.” Thus, “the
system loses its memory of the initial state after only a small
number of collisions” [10]. “In the forward direction, the
macroscopic time development is stable with respect to
perturbations but in the time-reversed direction, it is very
unstable.” This reason could not provide satisfactory explanation
of the paradox and was opposed by others [9]. As a matter of fact,
even without external perturbation, an isolated system also follows
the law of entropy increase. For instance, in deriving the Boltzmann
H theorem, no external affection is considered.

Some scholars think that walls with specific shapes and sizes
have an effect on the state of a gas. It is well known that the
irreversibility of thermodynamic processes is practically irrespective
to the walls.

Prigogine [20] attempted to give a mechanism of irreversibility,
called “cascade mechanism.”He thought that the variation in lower-
order correlations leads to higher-order correlations, and the
appearance of the higher-order correlation was accompanied by a
“directed flow.” That was the mechanism of irreversibility. However,
he did not explain why there was no opposite directed flow in the
higher-order correlations or why the higher-order correlations were
anisotropic.

Based on numerical simulations, it was found that microscopic
reversibility can lead to a state of time anisotropy. The
corresponding mathematical proof is called the fluctuation
theorem [21, 22], and the authors thought that it was the “first
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step toward understanding how macroscopic irreversibility arises
from microscopically time-reversible dynamics.” They addressed
that “our new proof of how macroscopic irreversibility arises from
time reversible microscopic dynamics is valid for all densities” and
“time reversibility of the underlying equations of motion is the key
component to proving these theorems” [16].

None of the above explanations correctly explain the
irreversibility of thermodynamic processes. These explanations
give different physical reasons for one physical problem. We
think that if there are different interpretations for a physical
phenomenon, and none of them can forcefully overturn the
others, then, none of them are correct.

Anyhow, the problem remains, and until 2002, “there has been
no real change in the situation” [8].

Loschmidt’s reasoning implicitly assumes that because the
equation of motion that microscopic particles obey is time-
reversible, the motion of the microscopic particle is necessarily
time-reversible. This is also known as micro-reversibility, and
this assumption is accepted by almost everyone. The time
reversibility of the equations of motion is confirmed by
transformations Eqs 2, 3. People presuppose the
microreversibility and discuss with this premise the cause of the
macroirreversibility. However, it has not been demonstrated
whether the micromotion is reversible or not. If the micromotion
is irreversible, this will inevitably have some consequences. For
example, the absence of microscopic reversibility will lead to
asymmetry in the probability currents [23].

In order to solve this paradox, we have to clarify the relevant
physical concepts. First, we should distinguish concepts of the
equation of motion and specific motion. We must carefully study
whether specific microscopic movements are reversible or not. If
microscopic motion is irreversible, then it is not surprising that
macroscopic motion is irreversible, and the so-called paradox
disappears naturally. Second, when talking about the reversibility
of specific motion, we must distinguish between reverse motion and
time-inverse motion.

1.2 Distinguishing the concepts of reverse
motion and time-inverse motion

For the motion of an individual particle and the motion of a
system, we define the concepts of reverse motion and time-inverse
motion, respectively.

The concepts for an individual particle are as follows.
Let a particle be in a state A at time t0, called the original initial

state. Starting from state A, the particle moves clockwise, passing
through a series of intermediate states, and reaches an original final
state B at time t1, where t1 > t0. This process is called the original
movement process.

We take state B as a new initial state, called the second initial
state. Let us consider the following two processes, referred to as
opposite processes.

Time-inverse movement process: Starting from the second
initial state at time t1, the particle moves counterclockwise, in the
opposite order, passing through each intermediate state in the
original process, and returns to a final state that is just the
original initial state A at time t0. Note that t0 < t1. Such a motion

is called the time-inverse motion of the original process. This is a
fictional movement because in the real world, time always goes to
the future.

Reverse movement process: Starting from the second initial state
at time t1, the particle moves clockwise, in the reverse order, passing
through each intermediate state in the original process, and returns
to the original initial state A at time t1 + t1 − t0 � 2t1 − t0. Such a
process is called the reverse-movement process of the original process.

If the particle states are described by momentum, the direction
of momentum in the opposite processes should be always opposite
to that in the original process.

Suppose that one uses a camera to film the original process, and
then plays the video backward, if the reverse process is the same as
what the video playback shows, then the original process is said to be
reversible. Note that when we play the video backward, the time is
playing into the future.

Although both the opposite processes describe the motion from
the second initial state to the original initial state, the directions of
time evolution are just opposite. The two processes have different
mathematical expressions, given in Section 2.

We next consider a macroscopic system composed of a large
number of microscopic particles, such as a gas. The process that a
macrosystem undergoes is a macroprocess. The gas is in a
macroscopic state at every macroscopic moment. We mark a
macrostate with a capital letter. There can be many microstates
corresponding to a macrostate. We mark a microstate with a
lowercase Greek letter. At a certain micromoment, the gas is in a
specific microstate α of a macrostate A, denoted by Aα.

At the initial moment t0, the gas is in a macroscopic original
initial state A, and one of the specific microscopic original initial
states α. Starting from this original state Aα, the gas moves
clockwise, passing through a series of intermediate states Bβ, and
reaches a final state Cγ at time t1, where t1 > t0, called the
microscopic original final state. This process is called the
original process.

We take Cγ as a new initial state, called the second initial state. If
state Cγ is described by the momentum of the microscopic particles,
the momentum direction of every particle should be reversed to
obtain the second initial state. We consider the following two
opposite processes.

Time-inverse movement process: Starting from the second
initial state Cγ at time t1, the system moves counterclockwise, in
the opposite order, passing through each intermediate state Bβ in the
original process, and returns to the original initial state Aα at the
earlier time t0. We can imagine that a video recorder films the
original process and then plays the video rewind, although the
playback is actually done clockwise. Such amotion is called the time-
inverse motion of the original process. This is a fictional movement
because in the real world, time always goes to the future.

Reverse movement process: Starting from the second initial state
at time t1, the system moves clockwise, in the reverse order, passing
through each intermediate macrostate B in the original process, and
returns to the macro original initial state A at time 2t1 − t0. Such a
motion process is called the reverse movement process of the
original process. If the reverse process can be realized, the
original process is said to be reversible, otherwise irreversible.

In the reverse process, merely the intermediate macrostates in
the original process are retrieved in the opposite order without the
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requirement of the details of the microstates. This kind of
reversibility, without resorting to microscopic details, is called
reversibility in the macroscopic sense. In the time-inverse process
and reverse process, the macrostate at every macro moment should
be same, but the microstate can be different.

The reason why we make this distinction between the time-
inversion process and the reverse process of a macroscopic system is
that when people talk about the inverse process of a macrosystem,
they actually mean the reverse process defined here, not the time-
inversion process. The features of the reverse process are that it is
clockwise and that merely the macroscopic states in the original
process are required to retrieve in the opposite order, with no
requirement of the details of the microstate. Some examples are
given as follows.

An original process is that an ice cube dissolves in a cup of
boiling water. Its imagined reverse process is impossible. “It is
impossible to prepare a cup of lukewarm water in such a way
that, 1 hour later, it will turn into an ice cube floating in boiling
water” [24]. First, the imagined reverse process is clockwise. Second,
the imagined reverse process is not required to retrieve every
intermediate microstate in the original process. It is merely
required that every intermediate macrostate is retrieved in the
opposite order of the original process.

Evaporation and condensation are processes reverse to each
other. “Since evaporation and condensation are in general
thermodynamically reversible phenomena, the mechanism of
evaporation must be the exact reverse of that of condensation,
even down to the smallest detail” [25]. Both the evaporation and
condensation processes are in progress clockwise, and in the sense of
macrostates instead of microstates, they are mutually reversible
processes. One of the processes does not mean a time-inverse
process of the other.

People talk about the ideal perpetual motion machine of the
second kind. This kind of perpetual motion machine is required to
carry out a reversible cycle that is repeated over and over again. In
each cycle, there must be a reverse process that goes clockwise. Such
a fictional machine always works clockwise. Moreover, people do
not consider the details of microscopic states in each cycle.

The envisaged Poincaré recurrences [7, 10, 26, 27] are also
clockwise processes.

Spin echo is also a clockwise process. It is regarded as the reverse
process of the precession of a spin system [28–30].

A gedanken experiment has been conducted [30]. The original
process was that a system evolved clockwise starting from the
moment t � 0 until t � T. Then, at the moment t � T, the
system started carrying out a reverse process until t � 2T.
Therefore, this reverse process was also carried out clockwise.

In the introduction of [16], when “the fundamental property of
time reversible dynamics” was mentioned, time was supposed to go
from 0 to t and then to 2t. Time went clockwise throughout.
Although the authors discussed the reverse process, they did not
consider time inversion.

When numerical simulations of colliding particle systems by a
computer are carried out, the reverse processes move in the
clockwise direction [10, 31–33].

Any actually observable process is clockwise. The time-inverse
processes are fictitious.

However, people sometimes confuse reverse motion with time-
inverse motion, equating the two kinds of motion. That is to regard a
clockwise reverse process as an anticlockwise process. Here are
some examples.

Lebowitz [3] envisaged an original motion and its reverse
motion by a figure. In that figure, the panels A–C “show athletes
on a racetrack. At the first gunshot, they start running”, which was
the original process. Then, “at the second, they reverse and run back,
ending up again in a line.” The reverse process was shown by the
panels D–F in that figure, going clockwise. But the author of [3]
wrote the caption of the figure by “Reversing time”.

In Fig. 2.4 of [9], the author took time inversion t → −t at the
moment t � T. Nevertheless, the system went on to moment t � 2T.
That is to say, after time was inversed, time still went clockwise just
as the original process.

Schwable [10] called the manipulation of v → − v time reversal,
but after the manipulation, the system actually still evolved
clockwise, as shown in Fig. 10.6 of that study.

The confusion between clockwise and counterclockwise
processes probably comes from the following thinking. If an
original process of entropy increase is assumed to reverse, the
assumed reverse process is necessarily accompanied by entropy
decrease. People equate decreasing entropy with time inversion.

Let us review Loschmidt’s reasoning. First, Eq. 1 is the
differential equation that particles’ motion should obey, but
Loschmidt treated it as the particles’ motion itself, confusing the
concepts of the equation of motion and motion. Second,
Loschmidt’s starting point was the time reversal of the equation
of motion (Eq. 1). That he carried out the transformation (Eq. 2)
meant to discuss the time-inverse motion. However, in reality, time
always points to the future. So he confused time-inverse motion with
reverse motion. What Loschmidt actually wanted to see was an
increase in entropy as the gas moved clockwise since he knew that it
was impossible to reverse time in reality. What he expected was that
the system would still move clockwise, but he could observe the
effect of reversing time. We argue in Subsection 3.2 that the outcome
he envisaged is impossible.

The definition of a reversible process of a particle’s motion above
only involves the motion itself and does not involve its surrounding
environment. When a particle undergoes an original process, its
surroundings may also change, say, from an original initial state X to
Y. Then, at the end of the reverse process, the external environment
should return from the Y state to the original initial state X; that is,
all external influences brought by the original process are eliminated.
If the influence on the surroundings cannot be eliminated, then the
process is still irreversible. The same condition applies to a system.
So the conditions for an original process carried out by a system to
be reversible are that after the reverse process of the system, not only
must the system itself return to the original initial state, but the
surroundings must also return to their original initial state.

Section 2 explains that the motion of an individual particle is
irreversible. For a classical particle, its reverse motion at least needs
us to prepare the initial state. Thus, the surroundings are unable to
retrieve the initial state of the original process. For a quantum
particle, the motion itself is irreversible.

For macroscopic matter such as gases, we should focus on the
collision between particles.
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1.3 Collision systems

A macroscopic system is made up of a large number of
microscopic particles. We roughly divide macrosystems into two
categories. The first category, called collision systems, is that the
molecules composing the macrosystem collide with each other, such
as ideal gases. Any system that does not belong to the first category is
called a non-collisional system.

Non-collisional systems are characterized by finite interactions
between the particles that make up the system. The change in
momentum caused by interactions between particles is
continuous. The spatial coordinates of each particle can also
change continuously. Hence, the Liouville equation applies to this
category of systems. We provide some examples of non-collisional
systems. Harmonic and nonharmonic coupling systems [34–41] are
non-collisional ones. Spin systems [28–30] and spin glass [42, 43]
also belong to this category.

Another example is a system of one-dimensional identical
particles [2, 26, 44], although collisions between the particles can
occur. “Since the collisions between the molecules are elastic and the
particles indistinguishable, we can allow the colliding molecules to
move as if they passed through one another without collision” [44].

In the Liouville equation of this system, the term with the derivative
of momentum does not appear. Thus, the momentum distribution
does not change with time. Nevertheless, the spatial distribution of
the particles can vary, tending to be uniformly distributed with time.
This system has essentially the same kinematic characteristics as a
collision-free system. Indeed, in discussing the variation of the
particle distribution of this system, collisions between particles
were not taken into account [2]. Therefore, it is also classified as
a collision-free system.

In general, because the non-collisional systems satisfy the
Liouville equation, their processes may be reversible, and it is
possible to estimate the Poincaré recurrence time [26]. It is likely
that the non-collisional systems are not ergodic.

We investigate the collision systems made up of a large number
of molecules that frequently collide with each other. Such a system is
called a gas. We mean the real molecules such as H and CO, not a
hard ball model or any other ideal model. Only isolated systems are
considered. For the sake of simplicity, we assume that dimension of a
gas is very much larger than that of a molecule in the gas so that
every molecule moves as if it is in an infinitely large space, and we do
not consider the boundary conditions of its motion. We also assume
the case of one-component ideal gases composed of identical

FIGURE 1
Sketches of the collisions of two free particles. (I) In classical mechanics, a particle with amomentum is represented by a line segment with an arrow.
(A) The momenta of the particles before and after the collision are (p1 ,p2) and (p1

′ ,p2
′), respectively. The original collision process is denoted as

(p1 ,p2) → (p1
′ ,p2

′). (B) Time-inverse collision of (A) (−p1
′ ,−p2

′) → (−p1 ,−p2). (C) Reverse collision of (A) (−p1
′ ,−p2

′) → (−p1 ,−p2). (D) Reciprocal collision of
(A) (p1

′ ,p2
′) → (p1 ,p2). (ii) In QM, a plane wave with a momentum is represented by a line segment with an arrow. (A) Scattering of two free particles

having plane waves with momenta (p1 ,p2). After the scattering, the two particles transit to the two plane waves with momenta (p1
′ ,p2

′). This original
transition process is denoted as (p1 ,p2) → (p1

′ ,p2
′). (B), (C), and (D) are the time-inverse, reverse, and reciprocal transition processes of (A), respectively.

The denotations of (B), (C), and (D) are the same as those in the case of classical mechanics. (B) and (C) look the same, but the former is anticlockwise, and
the latter is clockwise. (A) and (D) are clockwise processes.
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particles. Only elastic collisions between particles are considered,
regardless of the internal degrees of freedom of the particles. The gas
is thin enough such that only two-particle collisions occur.

The macroscopic processes of a gas are generally irreversible,
except its quasi-static processes. The microscopic mechanism of the
macroscopic motion of a gas must be hidden behind the collisions
between particles. Therefore, it is necessary to take a closer look at
the two-particle collision and its effects.

Some consequences of collisions between particles were
investigated [45]. In a gas, the change in the particle’s
momentum is discontinuous due to its collision with other
particles. As a result, in the phase space, the trajectory of a phase
point is not continuous, and the phase function of the gas is not
smooth. Because of this reason, one is actually unable to define a
density current for the phase points. Consequently, the Liouville
equation does not apply. All discussions based on the Liouville
equation and on smooth phase functions are problematic. For
example, the BBKGY method [7, 27, 46–56] deriving the
Boltzmann equation from the Liouville equation is incorrect. The
proof of Poincaré recurrence theorem assumes that the phase
function is smooth [27], so the proof procedure is incorrect. We
do not negate the Boltzmann equation and Poincaré recurrence
theorem themselves. Boltzmann himself obtained the Boltzmann
equation in his own way [57], without the need of the BBKGY
method. Poincaré recurrence theorem itself may be correct, but a
rigorous proof is still desirable.

The present work examines more closely the collision process
itself. One more consequence of a collision between particles is
that the collision causes a sudden change in momentum, which
provides randomness to the final state after the collision. As a
result, the microscopic process of collisions between particles is
irreversible.

In Section 2, we consider whether single-particle motion is
reversible. For clarity, the mathematical expressions for time-
inverse motion and reverse motion are presented. The conclusion
is that the motion of individual particles is essentially irreversible.
Section 3 studies the irreversibility of the two-particle collision
processes. We demonstrate that individual microscopic collision
events are irreversible. Consequently, macroprocesses are generally
irreversible. Nevertheless, when the number of particles in a gas is
large enough to meet the condition of detailed balance, the quasi-
static processes of a gas can be reversible. Section 4 provides our
conclusion.

2 The irreversibility of individual-
particle motion

We first distinguish between two concepts: the equation of
motion that a particle obeys and the specific motion of the
particle. The mathematical expressions corresponding to these
two concepts are presented. We have a basic point of view: one
physical concept should have a corresponding mathematical
expression, and theoretical conclusions should be drawn from
rigorous mathematical derivation. Two different concepts are of
different mathematical expressions. Discussion of physical concepts
cannot be clear without explicit mathematical expression and
derivations.

First, the case of classical mechanics is studied. In classical
mechanics, a particle can be any object that can be described by
a massive point with no geometric size. It can be a microparticle,
such as a molecule, or a macro-object. Then, the case of quantum
mechanics is studied.

2.1 Distinguishing the equation of motion
and specific motion

As mentioned in the Introduction, people imply that time
reversibility of equations of motion necessarily leads to time
reversibility of the motion of individual microparticles. That is to
say, the motion of each particle can be carried out anticlockwise
since the form of the equation of motion that the particle obeys
remains unchanged under time inversion.

An equation of motion expresses a physical law that must be
followed by the movement of particles. The physical laws determine
how the physical quantities of a particle, such as the coordinates and
momentum, vary with time. Equations of motion usually appear as
differential equations. In classical mechanics, the most fundamental
one is Newton’s second law. It takes the form of

d
dt

p − F � 0. (4)

This equation determines how a particle’s momentum should
vary with time when it is subject to force F. Eq. 4 is also the first
equation in Eq. 1.

We assume that there is no friction in force F. This equation of
motion is considered to be reversible in time or symmetrical with
respect to time [7, 9, 16], i.e., under the transformation of Eqs 2, 3,
the form of Eq. 4 remains unchanged.

When we talk about the motion of a particle, we mean its specific
motion process, simply referred to as motion. In classical mechanics,
it refers to the specific expression that shows that with time, how the
physical quantities of a particle, such as spatial coordinates, velocity,
momentum, and energy, actually vary.

Suppose that the variation in a particle’s momentumwith time is
known as

p � p t( ). (5)

At any moment, the magnitude and direction of the
momentum are explicitly known. Let time be inversed, t → − t.
Then, if the momentum expressed by Eq. 5 satisfies
−p(−t) � p(t), we say that this motion is of time-reversal
invariance; otherwise, it is not.

Thus, we distinguish between the equation of motion and
specific motion. Regarding the change in momentum of classical
particles, the mathematical expression of the equation of motion is
Eq. 4, while that of a specific motion is Eq. 5. A specific motion
process can be illustrated by a picture. For instance, with the specific
expression Eq. 5, a schematic diagram of momentum over time can
be drawn. Figure 1 is a schematic diagram for two-particle collisions.
The differential Eq. 4 cannot be represented graphically. What we
actually see is the specific motion of the particle, the process
represented by Eq. 5. Although the specific expression Eq. 5
certainly follows the laws of physics, it cannot be directly seen
from Eq. 4 itself.
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It is generally implicitly assumed that if the equation of motion
Eq. 4 is time-reversible, then, necessarily, Eq. 5 is also temporally
reversible. “The equations of classical mechanics are invariant under
time reversal. Intuitively, this says that if a film of a sequence of
events is run backward, what is seen on the screen appears to be
physically possible” [9]. This is equating Eq. 4 and Eq. 5, which
reflects that the two concepts, the equation of motion and the
motion of particles, are confused.

The irreversibility of movement is occasionally mentioned. It
was mentioned [1, 2] that the irreversibility of single-particle motion
in an infinitely large system was trivial irreversibility. However, there
was no conceptual distinction between motion and equations
of motion.

Let a differential equation be integrated in some way so as to obtain
the expression of the physical quantity with time. Such a relation is
called the general solution of a differential equation. For example, the
indefinite integral solution of Eq. 4 results in a general solution:

p t( ) � ∫ dt′F t′( ) + C. (6)

The process of finding a general solution is a purely
mathematical operation without adding any physical factor.

So, does Eq. 6 describe the specific motion of the particle? Or, is
it equivalent to Eq. 5. The answer is no. This is because there is a
pending constant in Eq. 6, the value of which can only be determined
by initial conditions. This constant is set by adding physical factors.

Physically, any specific motion of any particle has a starting
point in time. From the Big Bang model, we know that our universe
has a time beginning. Therefore, any movement that actually occurs
in the universe has a starting point in time. Movement without a
starting point of time does not exist. Few studies note that specific
motion should have initial conditions [6].

Hereafter, the initial time is denoted as t0. When we mentioned
time inversion above, we took t → − t, which defaulted t0 � 0. As
t0 ≠ 0, time inversion should be expressed as t − t0 → − (t − t0).

Mathematically, differential equations with derivatives with
respect to time are always solved under certain initial conditions.
For example, the initial condition required to solve Eq. 4 is

p t � t+0( ) � p0, t
+
0 � t0 + 0+. (7)

A solution of the equation of motion that meets certain initial
conditions is that describing the specific motion; hence, it is called a
specific solution. For example, the specific solution of Eq. 4 satisfying
the initial condition (Eq. 7) is

p t( ) � ∫t

t0

dt′F t′( ) + p0. (8)

In Eq. 8, the initial condition has already been used, i.e., the
pending constant has been determined. Thus, Eq. 8 clearly describes
the specific process of movement, which is just Eq. 5 that is required.

As given above, we have tacitly assumed that time evolves
clockwise from the initial moment t0. So we talk about the
movement in the time range

t> t0. (9)

The possible characteristics of motion can be analyzed from the
general solution of the equation of motion (Eq. 6). For example, for a

celestial body subject to gravitational action, there is an association
between its radial and angular coordinates. The relationship may be
elliptical, parabolic, or hyperbolic. When carrying out such a
qualitative analysis, the initial condition is not necessary, so it is
usually ignored. However, the qualitative analysis does not provide a
specific orbit because there is a coefficient called eccentricity to be
determined by the initial condition. Therefore, analyzing the specific
movement process needs the initial condition.

It is observed that there are actually two elements for describing
the motion of a particle: the differential Eq. 4 and the initial
conditions and Eq. 7. The physical law (Eq. 4) itself has only
differential equations with no initial conditions.

Under different initial conditions, a differential equation may
have different specific solutions, i.e., the details of the motion under
different conditions may be different, reflecting different specific
movement processes. These processes obey the same physical law.
For example, imagine an object moving closer to Earth from a
distance. When approaching Earth to a certain extent, it may fall to,
rotate around, and move away from Earth. These three movements
are different, and the one achieved depends on the initial conditions
of this object. However, these three possible specific motions follow
the same physical law: objects move according to Newton’s second
law (Eq. 4) under the gravitational pull of Earth.

Therefore, we clarify that equations of motion (Eq. 4) cannot be
equated with specific motion (Eq. 5). The temporal inversion of Eq. 4
does not determine the temporal inversion of the specificmotion (Eq. 5).

Only a specific solution (Eq. 8) that meets the initial conditions
describes a specific motion. So, is Eq. 8 temporally inverted or
reversible? It seems not easy to provide the answer directly from Eq.
8 itself. We carry out a further analysis below.

2.2 The equation of time-retarded motion of
a particle

When we talk about the equation of motion (Eq. 4), we are not
clear whether time t points to the past or to the future. “The equations
of motion in physics are by themselves insufficient to predict what
goes on in the Universe. Those equations must be supplemented with
the axiom of causality” [16]. The so-called axiom of causality means
“Only the past influences the present. The future will, in turn, be
influenced by the present. The future cannot influence the present”
[16]. There is a close connection between the assumption of causality
and the second law of thermodynamics [58].

The initial conditions presented above indicated that time
went clockwise.

If a motion is carried out with time going to the future (past),
i.e., in the clockwise (anticlockwise) direction, it is called time-
retarded (time-advanced) motion, or, in short, retarded (advanced)
motion. The function that describes the retarded (advanced)
movement is called retarded (advanced) function.

People always talk about retarded motion if there is no
additional word. For example, we have implicitly assumed that
Eq. 8 described a retarded motion in the time range (Eq. 9).
However, the solution to Eq. 8 itself does not explicitly indicate
that this is a retarded motion without the supplement of Eq. 9. A
physical concept should have its corresponding mathematical
expression. The mathematical expression reflecting the time-
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retarded motion is the time step function θ(t − t0). Few scholars
when discussing the scattering theory and path integral in QMnoted
this point [59–62]. We established the differential equations satisfied
by the time-retarded function and time-advanced function [63, 64].
Here, we follow the same idea to establish the differential equations
satisfied by the retarded and advanced functions corresponding
to Eq. 4.

To explicitly label a retarded motion, we attach a superscript
R to the momentum, pR, which is called a retarded solution. We
think that the differential equation satisfied by the retarded
solution pR is

d
dt
pR t( ) − θ t − t0( )F � ∂θ t − t0( )

∂t
p0. (10)

Usually, the derivative of the step function is written as the Dirac
delta function, ∂θ(t−t0)

∂t � δ(t − t0). We stress [63–66] that the
rigorous result should be as follows:

∂θ t − t0( )
∂t

� δ t − t0( ) − ηθ t − t0( ), η → 0+. (11)

The term with an infinitesimal η should not be discarded.
It is because an infinitesimal term cannot be ignored compared
to 0. The Dirac delta function itself is invariant with respect to
the change in its argument sign, while the time step function
is not. Since the function θ(t − t0) reflects time delay, this
information should be retained after the derivative with
respect to time. The term with the infinitesimal in Eq. 11
reflects the delay in time. A careful discussion of Eq. 11 is
given in the appendix of [63].

Equation 10 also indicates that force F acts at time t> t0. Since
only the motion in the time range t> t0 is described, the retarded
solution ought to have a time delay factor θ(t − t0). We explicitly
separate this factor:

pR t( ) � θ t − t0( )p t( ). (12)
Equation 12 is substituted into Eq. 10.

θ t − t0( ) d
dt

p t( ) − F( ) � ∂θ t − t0( )
∂t

p0 − p t( )( ). (13)

We let both sides of Eq. 13 be 0. That the left hand side is 0 leads
to Eqs 4, 9, and that the right hand side is 0 gives the initial
condition (Eq. 7).

Equation 10 is called the equation of retarded motion. It
contains both the equation of motion (Eq. 4) and the initial
condition (Eq. 7). This form of Eq. 10 is helpful to clearly
recognize the physical meaning of retarded motion. It should be
noted that Eq. 8 satisfies Eq. 4 and the initial condition (Eq. 7).
Nevertheless, what really describes specific movements should be
Eq. 12, for the factor θ(t − t0) should not be ignored.

A combination of Eqs 8, 12 results in the solution of Eq. 10 to be

pR t( ) � θ t − t0( ) ∫t

t0

dt′F + p0( ). (14)

This form of the solution makes us clearly discuss the reverse
process of a specific motion, while Eq. 4 itself does not.

Since there is an infinitesimal term in Eq. 11, the right side of Eq.
10 is not invariant under inversion t − t0 → − (t − t0). Therefore,

Eq. 10 describing retarded motion does not guarantee that motion
has invariance under time inversion.

In the Introduction, we mentioned that a distinction should be
made between the concepts of time-inverse motion and reverse
motion. Now, we provide the mathematical expressions for these
two concepts.

2.3 The time-advanced motion of a particle

The time-retarded motion above describes the motion in the
time range Eq. 9 starting from the initial moment t0. On the
contrary, the time-advanced motion describes the motion,
starting from the initial moment t0, in the time range

t< t0. (15)

Equation 15 means that the motion goes anticlockwise starting
from t0.

The time-advanced motion and aforementioned time-inverse
motion, both being counterclockwise, are two concepts, and their
corresponding mathematical expressions are different. We present
the mathematical expressions.

Usually, when people discuss the time-inversion invariance
of the equation of motion, they consider inversion Eq. 2. Then,
after the transformations Eqs 2, 3, the equation of motion (Eq. 4)
remains unchanged. The time t after the transformation still
points to the future, with defaults t � 0 as the initial moment.
Such an approach is not conducive to discussing
counterclockwise movement.

We do not take the time inversion (Eq. 2). The equation of
motion describing the anticlockwise motion of a particle is

− d
dt

p − F � 0; t< t0. (16)

Here, the momentum is transformed according to Eq. 3.
Since we do not take the time inversion (Eq. 2), time t in Eq. 16
moves anticlockwise. The initial moment is set as t0. The
form of Eq. 16 is convenient for discussing the
anticlockwise motion.

Now, we describe the time-advanced motion in a way
similar to that for time-retarded motion described above.
We add a superscript A to momentum, pA, which is called
time-advanced momentum. It obeys the following
differential equation:

d
dt
pA t( ) + θ t0 − t( )F � ∂θ t0 − t( )

∂t
p0. (17)

Naturally, the solution should have the form of

pA t( ) � θ t0 − t( )p t( ). (18)

This is substituted into Eq. 17, and the resultant is

θ t0 − t( ) d
dt

p t( ) + F( ) � ∂θ t0 − t( )
∂t

p0 − p t( )( ). (19)

We let both sides of Eq. 19 be 0. When the left hand side is 0, it
results in Eq. 16, and when the right hand side is 0, it leads to the
initial condition:
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p t � t−0( ) � p0, t
−
0 � t0 − 0+. (20)

The specific solution satisfying both Eq. 16 and the initial
condition (Eq. 20) is

p t( ) � −∫t

t0

dt′F t′( ) + p0. (21)

The equation of advanced motion (Eq. 17) contains both Eq. 16
and the initial condition (Eq. 20). It is useful for us to discuss
counterclockwise movement. We regard the time-inverse motion
and counterclockwise motion as synonyms.

Let us examine that a particle first moves clockwise for a period
of time and then moves counterclockwise.

When the particle moves clockwise, its momentum varies
according to Eq. 14. At the moment t1, its momentum
becomes pR(t1) � p1,

p1 � θ t1 − t0( ) ∫t1

t0

dt′F + p0( ). (22)

After the moment t1, the particle moves anticlockwise, and the
initial condition should be p(t1) � −p1. By Eqs 18, 21, the advanced
momentum varies with time as follows:

pA t( ) � θ t1 − t( ) −∫t

t1

dt′F − p1( ). (23)

We substitute Eq. 22 into Eq. 23 and use θ(t1 − t)θ(t1 − t0) �
θ(t1 − t) to obtain

pA t( ) � −θ t1 − t( ) ∫t

t0

dt′F + p0( ). (24)

By comparing Eqs 24, 21, we know that in the time period
t0 ≤ t≤ t1, the anticlockwise motion of the particle is strictly the
inverse of the clockwise motion. In particular, the momentum at
the “final moment t0” of the counterclockwise motion (Eq. 24) is just
the negative sign of the momentum of the “initial moment t0” of the
clockwise motion (Eq. 21). The condition is that force F is the same at
the same moment in the clockwise and counterclockwise time frames.

Therefore, if the initial condition −p1 of the advanced motion
can be prepared, the integrand F is finite, and the integral can be
carried out, this time-advanced process can be achieved, and the
particle’s momentum can reach −p0. An important postulation is
that time can be inversed.

2.4 The reverse motion of a particle

Let us examine the reverse motion of the movement process
(Eq. 14). This means that at moment t1, the particle takes the minus
sign of Eq. 22, −p1, and then moves clockwise. We want to see if it
moves in reverse order through each intermediate state of Eq. 14 and
finally reaches the minus sign of its initial momentum, −p0. This
reverse motion is a time-retarded one.

The initial condition of the reverse motion is p(t1) � −p1.
Starting from the moment t1, the particle moves in the way of

pR � θ t − t1( ) ∫t

t1

dt′F − p1( ) � θ t − t1( ) ∫t

t1

dt′F − ∫t1

t0

dt′F − p0( ).
(25)

The first integration in Eq. 25 is divided into two parts,∫t

t1
dt′ � ∫t1

2t1−t dt′ + ∫2t1−t
t0

dt′. Suppose that within the time
period t1 ≤ t≤ 2t1 − t0, the force F meets the relationship

F t( ) � F 2t1 − t( ), t1 ≤ t≤ 2t1 − t0. (26)
Then, we have

∫t

t1

dt′F − ∫t1

2t1−t
dt′F � 0. (27)

It follows from Eqs 26, 27 that

pR � −θ t − t1( ) ∫2t1−t

t0

dt′F + p0( ). (28)

Equation 28 demonstrates that in this time period, the
momentum changes strictly in reverse order over the time period
t0 ≤ t≤ t1. In particular, pR(2t1 − t0) � −p(t0), which is the minus
sign of the original initial momentum p(t0).

Thus, the condition that motion Eq. 14 is reversible is that the
initial condition (Eq. 22) can be prepared, and the force F satisfies
condition Eq. 26 and can be integrated over time.

For example, Earth–Moon is regarded as an isolated two-body
system, in which Earth is considered to be static, and theMoon rotates
around Earth by gravitational pull. Gravity meets condition Eq. 26. If
at a moment the momentum of the moon is reversed, the subsequent
motion is the reverse motion. There is a premise that the initial
condition of reverse motion can be realized. We know that the initial
conditions of reversing the momentum of the Moon are unattainable.
So, in reality, this reverse motion is impossible to achieve. The
conclusion is that themotion of theMoon around Earth is irreversible.

In general, when discussing an original process (Eq. 14), there is
no restriction on its initial condition. We always discuss the motion
of a particle when the initial condition (Eq. 7) has been achieved.

By contrast, if we talk about the reverse motion of a known
original motion process, its initial condition is not arbitrary, but is
determined by the final state of the original motion and needs to be
prepared. If the initial condition cannot be prepared, the original
motion is irreversible. For example, an original motion is that, in a
vacuum, a bullet is fired from the muzzle of a gun and reaches the
target. No one can achieve its reverse motion.

If, after the occurrence of the original process (Eq. 14), there is a
probability that the initial condition of the reverse process can be
realized but the probability is less than 1, we think that the original
motion process is still irreversible.

Even if we can prepare an initial condition, the surroundings are
inevitably influenced in the course of the preparation. That is to say,
the environment cannot return to the original initial state. In this
case, we think that the original motion is still irreversible.

It is observed that the conditions for the reversibility of the
motion of a particle are quite harsh. We can conclude that in
classical mechanics, the motion of a particle is basically irreversible.

2.5 The motion of a particle in quantum
mechanics is irreversible

In QM, the motion of microscopic particles with the property of
wave–particle duality is described. The fundamental equations of
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motion, as well as the physical quantities, are different from those in
classical mechanics. However, the idea of analyzing the time-inverse
motion and reverse motion of a particle is consistent with that for
classical mechanics presented above.

A fundamental physical quantity in QM is wave function ψ(r, t).
By use of the wave function, we can calculate the expectations of
some other physical quantities, such as particle density distributed in
space, current density of particles, momentum, kinetic energy,
energy, and density of states.

The fundamental equations in QM are differential equations
used to solve wave functions, mainly the Schrödinger equation and
Dirac equation. They have the following form:

iZ
∂
∂t

−H( )ψ r, t( ) � 0. (29)

The time inversion (Eq. 2) is taken in Eq. 29, and subsequently,
in the transformed equation, the time again points to the future, and
the solution becomes ψ*(r, t), the complex conjugate of ψ(r, t) [67].
Here, we do not take the time inversion (Eq. 2) but simply retain Eq.
29 unchanged, keeping in mind that the time therein can go
anticlockwise. So Eq. 29 stands for both the time-retarded and
time-advanced motions.

The dependence of the wave function on time describes the
specific motion.

ψ � ψ r, t( ). (30)
The differential Eq. 29 shows us the fundamental law that a

particle’s motion must obey. From Eq. 29 itself, one is unable to see
the specific motion described by Eq. 30.

Since the equation ofmotion (Eq. 29) has time inversion invariance,
the specific motion (Eq. 30) of a particle should have either.

We stress that the equation of motion (Eq. 29) and concrete
motion (Eq. 30) are two different concepts. Eq. 29 indeed remains
unchanged under time inversion, but this does not guarantee that
the motion process described by Eq. 30 is reversible.

In order to solve a specific motion from Eq. 29, an initial
condition is required.

ψ r, t � t+0( ) � ψ r, t+0( ). (31)

A combination of Eqs 29, 31 results in the expression of the
specific motion [63, 64]:

ψ r, t( ) � exp − i
Z
∫t

t0

dt′H t′( )( )ψ r, t0( ). (32)

The initial condition has been employed in the solution. Because
Eq. 29 is a homogeneous one, the initial condition provides a factor
in Eq. 32, instead of an additional term as that in Eq. 8.

If the Hamiltonian H has a complete set of eigenfunctions
φn(r, t){ }, the solution of Eq. 29 can be written as the
superposition of this complete set.

ψ r, t( ) � ∑
n

cnφn r, t( ). (33)

For example, the Hamiltonian of a free particle is

H � − Z2

2m
∇2. (34)

Its complete set of eigenfunctions and corresponding
energies are

φk r, t( ) � 1

2π( )3/2 e
−i E k( )t/Z−k·r( ), E k( ) � Z2k2

2m
. (35)

Equation 33 is the general solution of Eq. 29. From the general
solution, one can analyze the features the wave function may have,
but the real specific movement cannot be certain yet, unless the
initial condition is known. When the expansion coefficient in Eq. 33
is determined by the initial conditions, Eq. 33 becomes a
specific solution.

Thus, describing a specific motion of a particle requires two
elements: the differential Eq. 29 and the initial conditions.

A differential equation can have different solutions subject to
different initial conditions. Each specific motion has its own details.
For the Hamiltonian (Eq. 34) of a free particle, if the initial condition
is a plane wave, the specific solution is a single plane wave. If the
initial condition is a wave packet, the particular solution is a
traveling while collapsing wave packet.

Solution Eq. 32 does not clearly indicate whether this is a
retarded or advanced movement. Usually, it is defaulted that this
is a retarded motion.

Now, we explicitly discuss retarded motion, i.e., the motion in
time range t> t0 after the initial moment t0. We add a superscript R
to the wave function, ψR(r, t), to mark that this is a time-retarded
wave function. The equation of motion satisfied by ψR(r, t) is

iZ
∂

∂t
−H( )ψR r, t( ) � iZ

∂θ t − t0( )
∂t

ψ r, t0( ). (36)

Since ψR(r, t) is a time-retarded wave function, it is written in
the form of

ψR r, t( ) � θ t − t0( )ψ r, t( ). (37)

The factor θ(t − t0) unambiguously indicates that time evolves
toward the future [59–62].

After Eq. 37 is substituted into Eq. 36, we obtain

θ t − t0( ) iZ
∂

∂t
−H( )ψ r, t( ) � iZ

∂θ t − t0( )
∂t

ψ r, t0( ) − ψ r, t( )[ ].
(38)

We let both sides of Eq. 38 be 0. When the left-hand side is 0, it
leads to Eqs 29, 9, and when the right-hand side is 0, it results in the
initial condition (Eq. 31). Thus, Eq. 36 contains both the equation of
motion and the initial condition.

It follows from the combination of Eq. 32 and Eq. 37 that

ψR r, t( ) � θ t − t0( ) exp − i
Z
∫t

t0

dt′H t′( )( )ψ r, t0( ). (39)

Note that the specific solution Eq. 32 satisfies the differential Eq.
29 and the initial condition Eq. 31. However, the solution that really
describes the retarded movement should be Eq. 39.

With the preparation above, we discuss the time-inverse motion
and reverse motion.

The time-advanced wave function ψA(r, t) obeys the
following equation:
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iZ
∂

∂t
−H( )ψA r, t( ) � iZ

∂θ t0 − t( )
∂t

ψ r, t0( ). (40)

In the expression of ψA(r, t), there should be a time-
advanced factor.

ψA r, t( ) � θ t0 − t( )ψ r, t( ). (41)

Substituting Eq. 41 into 40 yields

θ t0 − t( ) iZ
∂
∂t

−H( )ψ r, t( ) � iZ
∂θ t0 − t( )

∂t
ψ r, t0( ) − ψ r, t( )[ ].

(42)
We let both sides be 0. When the left-hand side is equal to 0, it

results in the equation that ψ(r, t) satisfies:

iZ
∂
∂t

−H( )ψ r, t( ) � 0; t< t0. (43)

Equation 43 is the same as Eq. 29 but applies to past time. When
the right-hand side of Eq. 42 equals 0, it yields the initial condition:

ψ r, t � t−0( ) � ψ r, t−0( ). (44)

Obviously, under the initial condition Eq. 44, the solution of Eq.
40 is

ψA r, t( ) � θ t0 − t( ) exp − i
Z
∫t

t0

dt′H t′( )( )ψ r, t0( ). (45)

We first let a particle move clockwise starting from moment t0.
According to Eq. 39, at t1, the wave function is

ψR r, t1( ) � θ t1 − t0( ) exp − i
Z
∫t1

t0

dt′H t′( )( )ψ r, t0( ). (46)

At this moment, we let the particle do time-inverse motion with
the initial condition

ψ r, t1( ) � ψR r, t1( ). (47)

Then, according to Eq. 45, in the time period t0 ≤ t≤ t1, the
advanced wave function is

ψA r, t( ) � θ t1 − t( ) exp − i
Z
∫t

t1

dt′H t′( )( )ψR r, t1( )

� θ t1 − t( )θ t1 − t0( ) exp − i
Z
∫t

t0

dt′H t′( )( )ψ r, t0( ) � ψR r, t( )
.

(48)

We used Eq. 46. This shows that if condition (Eq. 47) is met, the
wave function varies rigorously in the reversed order of the original
motion. We mention again that the time-advanced motion is a
fictional motion.

Now, we consider the reverse motion, which is clockwise starting
from moment t1. In Eq. 39, the initial time is taken as t1, and the
initial condition is Eq. 46. Then, in the time range t1 ≤ t≤ 2t1 − t0,

ψR r, t( ) � θ t − t1( ) exp − i
Z
∫t

t1

dt′H t′( )( )ψR r, t1( )

� θ t − t1( )θ t1 − t0( ) exp − i
Z
∫t

t1

dt′H t′( )( ) exp − i
Z
∫t1

t0

dt′H t′( )( )ψ r, t0( ).
(49)

The second integration is divided into two parts:∫t1
t0
dt′ � ∫t1

2t1−t dt′ + ∫2t1−t
t0

dt′. The Hamiltonians at different time
points are assumed commutable. For a reversible motion, we
expect that

ψR r, t( ) � θ t − t1( ) exp − i
Z
∫2t1−t

t0

dt′H t′( )( )ψ r, t0( )

� ψR r, 2t1 − t( ). (50)

This requires that

∫t

t1

dt′H t′( ) + ∫t1

2t1−t
dt′H t′( ) � 0, (51)

i.e.,

H t( ) � −H 2t1 − t( ). (52)

Equations 51, 52 mean that from t1, the Hamiltonian has to
change its sign. A Hamiltonian is kinetic energy plus potential
energy. If a Hamiltonian changes its sign, it will become another
system. Hence, Eq. 52 is unattainable, and Eq. 50 is either.

Let us consider the simplest example, i.e., the case of a free
particle moving as a plane wave. The Hamiltonian is Eq. 34,
independent of time. Suppose that the initial condition is one of
the plane waves, Eq. 35. That is to say, at moment t0, the wave
function is

φk r, t0( ) � 1

2π( )3/2 e
−i E k( )t0/Z−k·r( ). (53)

Equation 53 is the initial condition. At t> t0, the wave function is

φR
k r, t( ) � θ t − t0( ) exp i t − t0( ) Zk

2

2m
∇2[ ]φk r, t0( )

� θ t − t0( ) 1

2π( )3/2 e
−i E k( )t/-−k·r( )

. (54)

In particular, the wave function at time t1 is

φR
k r, t1( ) � 1

2π( )3/2 e
−i E k( )t1/Z−k·r( ). (55)

We let the particle do reverse motion from the moment t1. At
this time, its wave vector is reversed. The initial condition of the
reverse motion is to simply reverse the vector in Eq. 55

φk r, t1( ) � 1

2π( )3/2 e
−i E k( )t1/Z+k·r( ). (56)

If the original motion is reversible, in the time period
t1 ≤ t≤ 2t1 − t0, the wave function should have a relationship

φR
k r, t( ) � φR

−k r, 2t1 − t( ). (57)

The wave function on the right-hand side is that within the
time period t0 ≤ t≤ t1, and the wave vector has a minus sign.
However, by the initial condition (Eq. 56), the wave function after
the time t1 is

φR
k r, t( ) � θ t − t1( ) exp i t − t1( ) Zk

2

2m
∇2[ ]φR

k r, t1( )

� θ t − t1( ) 1

2π( )3/2 e
−i E k( )t/Z+k·r( ). (58)
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Comparing Eqs 58 and 54 demonstrates that Eq. 57 is not satisfied.
The conclusion is that in QM, the motion of particles is

irreversible.
Hereafter, we discuss reverse motion that is clockwise.

The time-inverse motion is purely fictional and will not be
discussed further.

3 The irreversibility of two-particle
collision processes

We consider an ideal gas composed of a large number of
molecules that collide with each other frequently. This is a
collision system. We only consider two-particle elastic collisions.
Because of the collisions, there is transfer of energy and momentum
between molecules, which causes rapid change in the microscopic
state of the gas and, moreover, the change in the macroscopic state;
hence, examining whether the two-particle collision process is
reversible is important. If it is reversible, the motion of the gas is
either; otherwise, the motion of the gas is not guaranteed to be
reversible.

The collision is instant so that we actually do not know the
details of the changes in the physical quantities of the molecules
during the collision [45]. The state of the two particles before the
collision is called initial state, and that after the collision is called
final state. For a hard-sphere system, the dynamics is completely
deterministic because the after-collision momenta are uniquely
determined by the collision rule [33, 34]. Even in this case, the
momenta of the molecules before and after collisions change
discontinuously.

Figure 1A is the schematic of the original process of two-
particle collision. The two particles before the collision are called
incident particles, the momenta of which are p1 and p2,
respectively. After the collision, they are called outgoing
particles, the momenta of which are p1′ and p2′, respectively.
The conservation of the total kinetic energy and total
momentum is expressed as follows.

1
2m

p21 +
1
2m

p22 �
1
2m

p′21 +
1
2m

p′22, (59a)
p1 + p2 � p1

′ + p2
′. (59b)

Equations 59a, b are not differential equations, but they directly
describe the motion of the two-particle collision. They are the
solutions of the equation of motion with the given initial
condition. The initial conditions are that the momenta p1 and p2
before the collision are known.

We write Eqs 59a, b referring to the original process (Figure 1A).
In Eqs 59a, b, the left (right)-hand side represents the initial (final)
state. We write from left to right. Once Eqs 59a, b are written, we can
also write them from the right to left, i.e., to regard the right-hand
side as initial state and left-hand side as final state. Then, in this view,
there can be three processes, as shown in Figures 1B–D. They are
called the time-inverse process, reverse process, and reciprocal
process of the original process Figure 1A, respectively. For
Figures 1B,C, Eq. 59b has minus signs on both sides, so all the
minus signs can be dropped. Figure 1D is obtained by exchanging
the initial and final states of Figure 1A, so that is called the
reciprocal process.

Note that our definitions for the processes in Figure 1 may
differ from those in the literature. In the literature, Figure 1B is
named as reverse collision [7, 27] or time reverse collision [9];
Figure 1C is called inverse collision [68] or reverse collision [13,
69]; Figure 1D is called opposite collision [57], restituting
collision [68], or inverse collision [7, 9, 11, 13, 27, 51, 69–71].
Since the time-inverse collision is purely fictitious, Figure 1B is
not discussed below.

3.1 Two-particle collision in
classical mechanics

We first propose a definition of the reversibility of the collision
process given in Figure 1A. If the collision shown in Figure 1A
occurs, the reverse collision shown in Figure 1C necessarily also
occurs; that is, if the probability of the occurrence of the reverse
process shown in Figure 1C is 1, then we say that the original
collision shown in Figure 1A is reversible. If the probability is less
than 1, then the original collision is said to be irreversible. Let us
analyze whether the probability of the reverse process occurring is
equal to 1.

In one-dimensional space, Eq. 59a, b contains two equations.
The p1 and p2 of the incident particles are known. From Eq. 59a, b,
the twomomenta of the final state can be uniquely solved. Therefore,
the final state is uniquely determined. In particular, since the
particles are identical, the solution is p1

′ � p2, p2
′ � p1, i.e., the

two particles simply exchange their momenta. This case is as if
no collision occurs, which was treated in [26, 44]. That is why we
classified one-dimensional identical particle systems as collision-free
systems in Subsection 1.3.

In two-dimensional space, each momentum has two
components, so Eq. 59a, b contains three equations. There are
four momentum components (p1x

′, p2y
′ ), (p2x

′ , p2y
′ ) to be solved.

Therefore, there is an uncertain quantity in the final state, e.g.,
the angle θ between p1′ and p2′ can vary in the range of 0~2π.

In three-dimensional space, each momentum has three
components, so Eq. 59a, b contains four equations. There are six
momentum components (p1x

′, p1y
′, p1z

′ ), (p2 x
′ , p2y

′ , p2z
′ ) to be solved.

Thus, there are two uncertain quantities of the two outgoing
particles, e.g., the angles (θ,φ) between p1′ and p2′ can vary in the
range of 4π solid angles. Therefore, the momenta of the outgoing
particles have a distribution [72].

We consider the case of three-dimensional space. In Figure 1A,
only a pair of specific outgoing momenta p1′ and p2′ are plotted. The
probability of the occurrence of this pair p1′ and p2′ is denoted as a12.
It must be that a12 < 1, because there are other outgoing p1′ and p2′

pairs, as long as they meet Eq. 59a, b.
The reciprocal collision shown in Figure 1A is the exchange of

(p1, p2) and (p1′, p2′) as in Figure 1D, that is to say, the initial state is
(p1′, p2′) and the final state is (p1, p2); the occurrence probability of
Figure 1D is denoted as a21. By classical mechanics, it is
demonstrated that a21 � a12 [51]. One may believe [49] that a21 �
a12 reflects the “principle of dynamic reversibility.” This recognition
is not right because the reverse collision is not involved in proving
a21 � a12.

Now, assume that the collision process shown in Figure 1A takes
place. We examine if its reverse collision necessarily occurs, or the
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occurrence probability of Figure 1C is 1. In Figure 1C, the momenta
of the incident particles are −p1′ and −p2′, and only a specific pair of
outgoing momenta −p1 and −p2 is plotted. In fact, there can be
whatever pairs of outgoing −p1 and −p2 as long as they meet Eq. 59a,
b. Therefore, the occurrence probability of the specific collision
shown in Figure 1C is certainly less than 1. By definition, the original
collision in Figure 1A is irreversible. Similarly, the collision process
in Figure 1C is also irreversible. It is concluded that in two-
dimensional and three-dimensional space, the two-particle
collision is irreversible.

Since individual microscopic collision events are irreversible,
why can a frictionless quasi-static process of a macroscopic system
composed of a large number of microscopic particles colliding with
each other be reversible?

At every moment of a frictionless quasi-static process, the
gas is in equilibrium state. Therefore, let us first review the
concept of equilibrium. The definition of equilibrium is as
follows: “A macroscopic state which does not tend to change
in time, except for random fluctuation” [31]. When a system is
in equilibrium, its macroparameters, such as volume,
temperature, and pressure, do not change with time. If a
macroscopic parameter such as pressure can be measured
using an instrument, the measured value does not change
with time. An equilibrium state is a macrostate. There can be
a huge number of microstates corresponding to this one
macrostate. In an equilibrium state, microstate changes
vary rapidly. The change is caused by the collisions between
molecules. The molecules’ momenta follow
Maxwell–Boltzmann distribution. The reason that the
microstates changes while the macrostate does not is that the
distribution remains unchanged.

That the frequent collisions between molecules do not change
the distribution is determined by the principle of
detailed balance.

3.2 Detailed balance

From Boltzmann’sH theorem [50], it can be shown that detailed
balance is the sufficient and necessary conditions for a gas to reach
equilibrium [15, 51, 71, 73]. Here, we review the principle of
detailed balance.

For the two-molecule collision shown in Figure 1A, the
mathematical expression of the detailed balance is

f p1( )f p2( ) � f p1
′( )f p2

′( ). (60)

The f(p) is the momentum distribution function of the gas. In
equilibrium, it is the Maxwell–Boltzmann distribution.

We inspect the physical meaning of Eq. 60. It is revealed that for
the two particles participating in the collision, the product of the
distribution of the initial state is equal to that of the final state. In Eq.
60, the left-hand side equals to the right-hand side. On the other
hand, the right-hand side also equals to the left-hand side. That is,
not only does collision (p1, p2) → (p1′, p2′) given in Figure 1A but
also its reciprocal collision (p1′, p2′) → (p1, p2) shown in Figure 1D
satisfy Eq. 60.

The detailed balance tells us that a pair of collisions reciprocal to
each other retains the distribution function unchanged. We assume

that in an equilibrium gas there are four molecules. The momenta of
molecules 1 and 2 are p1 and p2, and those of 3 and 4 are p1′ and p2′,
respectively. Let molecules 1 and 2 collide as in Figure 1A,
(p1, p2) → (p1′, p2′). After the collision, two extra p1′ and p2′

molecules are generated, and two p1 and p2 molecules are
reduced. As a result, the distribution function of the gas may
deviate from the equilibrium one. If, meanwhile, another
collision between molecules 3 and 4 takes place, as in Figure 1D,
(p1′, p2′) → (p1, p2), then, the extra p1′ and p2′ are reduced, and the
reduced p1 and p2 are restored. This retrieves the equilibrium
distribution.

It is observed that the occurrence of a pair of reciprocal
collisions can keep the distribution function unchanged, and this
unchanged distribution is an equilibrium one. Conversely, if a gas
is in equilibrium, when a collision of Figure 1A takes place, there
must also be a reciprocal collision of Figure 1D, although this pair
of reciprocal collisions changes the microscopic state of the gas.
[49] thought that the detailed balance was a sufficient but not
necessary condition for equilibrium, but it has been proven that
the detailed balance was a sufficient and necessary
condition [7, 51].

As a comparison, we consider a pair of reverse collisions Figures
1A,C. Assume that there are four molecules. The momenta of
molecules 1 and 2 are p1 and p2, and those of 3 and 4 are −p1′
and −p2′, respectively. Let molecules 1 and 2 collide as in Figure 1A,
(p1, p2) → (p1′, p2′), and 1 and 2 collide as in Figure 1C,
(−p1′,−p2′) → (−p1,−p2). After this pair of collisions, four
molecules, p1′, p2′, −p1, and −p2 are produced, and the other four,
p1, p2, −p1′, and −p2′ are reduced. Apparently, the momentum
distribution function changes. Therefore, a pair of reverse
collisions cannot retain the distribution unchanged.

For the detailed balance, we address the following points. Before
doing so, we remind the difference between macro- and micro-
infinitesimals in time and space [45]. The macro (micro)-
infinitesimal in time is called macro-instant (micro-instant).
Macroscopic instruments can carry out measurements during a
macro-instant. Spatially, a macro-subregion is a very small region,
but it still belongs to a macro one. Amicro-region can contain only a
small number of molecules.

(i) Detailed balance is achieved within a macro-instant.

When a gas is in equilibrium, a pair of reciprocal collisions
Figures 1A,D occur within the samemacro-instant, but not the same
micro-instant. Macroscopically, the pair of (p1, p2) → (p1′, p2′) and
(p1′, p2′) → (p1, p2) occurs simultaneously, but microscopically, they
occur sequentially. The system is in equilibrium at every
macro-instant.

(ii) Detailed balance is achieved in a macro-region.

A pair of reciprocal collisions occurs within a macro-subsystem
but not in a microregion. This is also what equilibrium requires. “If a
closed macroscopic system is in a state such that in any macroscopic
subsystem the macroscopic physical quantities are to a high
degree of accuracy equal to their mean values, the system is
said to be in a state of statistical equilibrium (or thermodynamic
or thermal equilibrium)” [14]. Equilibrium is reached in any
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macro-subsystem, while in a microregion, detailed balance cannot
be reached.

Based on the discussion of (i) and (ii) above, detailed balance is
achieved statistically in macro-subsystems. The equilibrium refers to
that in macro-subregions and at macro-instant. Microscopically, the
gas is in non-equilibrium everywhere and every time. Microstates
cannot be distinguished by instruments that measure
macroparameters.

(iii) Detailed balance is independent of reverse collisions.

Detailed balance (Eq. 60) ensures that in equilibrium, the pair of
reciprocal collisions occurs, with no requirement of the reverse
collision shown in Figure 1C. The pair of reciprocal collisions takes
place clockwise, irrespective of any anticlockwise process [71]. On
the other hand, as mentioned above, a pair of reverse collisions does
not guarantee the invariance of the momentum distribution
function. Therefore, whether a macroprocess is reversible is not
based on whether two-particle collisions are reversible.

Detailed balance itself also contains

f −p1( )f −p2( ) � f −p1′( )f −p2′( ). (61)

That is to say, the collision process shown in Figure 1C and its
reciprocal process also keep the momentum distribution unchanged
in the case of equilibrium.

We imagine a picture of the angular distribution of molecular
momentum in a gas in equilibrium. Since the number of molecules
in the gas is sufficiently large, by detailed balance, there must be
many reciprocal collisions, all of which have the same values of the
incident and outgoing momenta, but in different directions. We
superimpose events in one figure. Figure 2A is a superposition of the
four events of Figure 1D, where the incident and outgoing particles
are represented by dashed and solid lines, respectively. Figure 2B
roughly illustrates the superposition of a large number of collision
events. The angle between the momenta of the two incident particles
uniformly distributes within solid angle 0~4π, and that of the
outgoing particles also does so.

Reversing the directions of the arrows for both the solid and
dashed lines shown in Figure 2B yields the schematic diagram of Eq.
61. This is a superposition of the schematic diagram shown in
Figure 1C in all directions. This shows that for reciprocal collisions,
as well as for reverse collisions, the momentum of the incoming and
outgoing particles is uniformly distributed in all directions. This
means that if there is a collision as shown in Figure 1A, then there
will be a reverse collision (Figure 1C).

Therefore, although the detailed balance itself does not require
the reverse process of a collision to appear, we believe that once the
detailed balance is reached, then, in the equilibrium state, the reverse
collision process of any collision also inevitably occurs. That a pair of
reverse collisions, Figures 1A,C, occur in amacro-instant should be a
by-product when an equilibrium state is reached.

We conceive a situation that slightly deviates from
detailed balance.

When Boltzmann derived the H theorem, he obtained the
following inequality [13]:

ln
f p1( )f p2( )
f p1′( )f p2′( ) f p1( )f p2( ) − f p1

′( )f p2
′( )[ ]≥ 0. (62)

The equal sign holds only when the detailed balance (Eq. 60) is
reached. We suppose that the gas is very close to equilibrium, such
that the momentum distribution of the two particles before the
collision belongs to the equilibrium distribution with temperature T,

f p1( )∝ exp −ε p1( )
kBT

( ), f p2( )∝ exp −ε p2( )
kBT

( ), (63)

and after the collision, the distribution belongs to that with
temperature T + ΔT,

f p1
′( )∝ exp − ε p1′( )

kB T + ΔT( )
⎛⎝ ⎞⎠, f p2

′( )∝ exp − ε p2′( )
kB T + ΔT( )

⎛⎝ ⎞⎠,

(64)
where

ΔT ≪ T. (65)

FIGURE 2
(A) Superposition of four Figure 1D in different directions. Incident and outgoing particles are represented by dashed and solid lines, respectively. (B)
Superposition of a large number of similar collisions, which shows that in equilibrium, the momentum distribution is isotropic.
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For an elastic collision (Eq. 59), the total energy before and after
the collision is denoted by ε, ε � ε(p1) + ε(p2) � ε(p1′) + ε(p2′). We
derive from Eq. 62 that

− ε

kB

1
T
− 1
T + ΔT( ) 1 − exp

ε

kB

1
T
− 1
T + ΔT( )[ ]( )e− ε

kBT ≥ 0. (66)

Regardless of whether the two molecules become a hotter or
cooler distribution after the collision, this expression is not less than
0. It is equal to 0 only if ΔT � 0. Equations 63–66 mean that areas
with slightly lower (higher) temperatures will increase (decrease)
temperatures. Heat always flows from the hotter to the cooler area,
making the temperature approach the same everywhere.

The isotropic distribution shown in Figure 2B is ideal only when
the number of molecules in the gas approached infinity. In this
equilibrium state, the momentum distribution remains unchanged.

Therefore, a necessary condition for achieving detailed balance
is that the number of molecules in the gas is sufficiently large.
Although the molecule number in the actual gas is as high as the
order of magnitude of Avogadro constant, it is not really infinity
after all. So, even in every macro-instant, it is not guaranteed that for
every two-particle collision, there always occurs a corresponding
reciprocal process. As a result, the momentum distribution of the
molecule may deviate from the equilibrium distribution. This
deviation is the fluctuation. Macrophysical quantities are averages
calculated by means of the distribution function. Therefore, they
fluctuate around their average values. Obviously, the larger the
molecule number, the smaller the fluctuation.

Now, let us consider a region in the gas that is macroscopically
small enough, say, a submillimeter-scale region, and the particle
number in this region is much smaller than that of the whole gas. If
in a region of 1 m3 there are N ~ 1023 particles, then, in 10−16 m3,
there are N1 ~ 107 particles, such that N1 ≪N. In such a small
region, fluctuation will be comparatively large. It is possible that the
number of particles with momentum in a certain direction in a
macro-instant is much greater than that with opposite momentum.
If a pollen granule is positioned in this region, the molecular impact
it receives is not isotropic, so it suffers a net force. The pollen is
subject to this force to move. This is the reason for Brownian
motion, which reflects that in such a small area, detailed balance
cannot be achieved.

Brownian motion also indicates that at a macro-instant, the
number of particles entering and leaving the region is not always
equal. That is to say, the density of particle numbers in this region
varies with time. The molecular number density in different small

regions at a micro-instant is not the same. The density varies around
its average value. The fluctuation in a gas actually embodies the non-
equilibrium at a micro-instant.

When the detailed balance is not achieved, the left and right
sides of Eq. 60 are not equal. This means that at least a collision
shown in Figure 1A does not have its reciprocal collision at a macro-
instant. Consequently, the momentum distribution function will
change. The gas cannot tend to be in equilibrium. Rather, it is in a
non-equilibrium state. As a result, the macroscopic state
may change.

Now, let us consider a case where an ideal gas expands into a
vacuum, as shown in Figure 3. Figure 3A shows that the gas is
confined in the left half of a box by a partition. At the initial moment,
the partition is removed, and the gas begins to expand. The border
line between the gas and vacuum is called frontline.

At the moment that the partition is just drawn, there is no
particle on the right side of the frontline. We suppose that on the
left side of the frontline, two particles moving rightward collide,
as in Figure 1A, and after the collision, they enter the vacuum on
the right side of the frontline. If a corresponding reciprocal
collision of another two particles occurs, as in Figure 1D, they
also enter the vacuum. At this moment, since there are no
particles on the right side of the frontline, there is no reverse
collision, as in Figure 1C. Therefore, the molecules always enter
the vacuum from the left side of the frontline. There is no
mechanism for particles to immediately return to the left side
of the frontline. The frontline moves rightward.

Assuming that at the moment in Figure 3B, the momenta of all
molecules in the gas are reversed, will the frontline move leftward?
The analysis is actually the same as that for Figure 3A. Since the right
side of the frontline is a vacuum, the molecules on the left side of the
frontline still enter the vacuum, and there is no mechanism for
particles to return to the left of the frontline. The frontline continues
moving rightward. This shows that Loschmidt’s reasoning does
not apply.

We next analyze the equilibrium state in Figure 3C. At every
micro-instant, it is in a microstate. Every microstate in a
macrostate is equiprobable to appear. For a microstate in the
macrostate, when all the molecules’ momentum directions are
reversed, the resultant is still a microstate in this macrostate.
When a gas evolves from a non-equilibrium state to the
equilibrium state as shown in Figure 3C, it can be any of these
microstates. Conversely, any microstate in Figure 3C can be the
one, denoted as A, that is achieved by reversing all the molecule

FIGURE 3
Schematic diagram of gas expansion into vacuum. The dotted line indicates the border line between gas and vacuum, called frontline. (A) The gas is
confined inside the left half of the box by a partition. At the initial moment, the partition is drawn, and the gas starts expansion. (B) The gas expands to
three-fourths of the box. (C) The gas is evenly distributed in the whole box, i.e., the equilibrium state is reached.
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momentum directions of a microstate, denoted as B, the latter
being achieved from a non-equilibrium state. Following
Loschmidt’s reasoning, we assume reversing all the molecular
momentum in A to obtain state B, and with time, B will undergo a
reverse process to go back to the original non-equilibrium state,
such as in Figure 3B. However, we know that such a process has
never occurred, and we do not expect so. This, again, shows that
Loschmidt’s reasoning does not apply again.

On account of the molecule number in the gas considered not
being infinite, when there is a collision (Figure 1A), the probability
of its reverse collision (Figure 1C) is not 0. It seems that there is a
nonzero probability for the reverse process of the gas to happen, say,
from Figure 3C to Figure 3B. Nevertheless, this probability is so
small that it is equivalent to impossibility. In Boltzmann’s language,
the evolution from Figure 3B to Figure 3A or from Figure 3C to
Figure 3B “has a definite calculable (though inconceivably small)
probability, which approaches zero only in the limiting case when
the number of molecules is infinite.” The time needed is so remote
that “One may recognize that this is practically equivalent to never.
. . .. . . If a much smaller probability than this is not practically
equivalent to impossibility, then no one can be sure that today will be
followed by a night and then a day” [57].

A frictionless quasi-static process is the exhibition of a series of
equilibrium states. Therefore, such a process is reversible. However,
this reversibility does not come from the reversibility of the motion
of individual particles nor from the reversibility of the two-particle
collision. Rather, it is the statistical average effect of a large number
of molecules colliding with each other when the detailed balance
is reached.

It is observed that macroscopic reversibility requires a large
number of molecules in the gas. Usually, a gas contains molecules in
the order of magnitude of the Avogadro constant, which is very close
to meeting this requirement.

In summary, the motion of microscopic particles is
irreversible. Nevertheless, when the number of molecules that
make up the gas is very large, the macrostate of the gas can be in
equilibrium when detailed balance is reached. The equilibrium
state is the statistical average effect of the motion of a large
number of microscopic molecules. Frictionless quasi-static
processes are reversible.

3.3 Two-particle scattering in
quantum mechanics

We showed in Subsection 2.5 that single-particle motion in QM
is irreversible.

We [64] rigorously derived the generalized scattering formula in
QM. The state of particles before (after) the scattering is called the
initial (final) state. For single-particle scattering, if the initial state is
a plane wave of a free particle, eip·r , after being scattered by a
scattering center, the final state is a complicated spherical wave
function ψ(r, t). This spherical wave has projected amplitudes on
plane waves eip′·r in all directions.

Let us discuss two-particle scattering. Suppose that two free
particles with momenta p1 and p2 collide. The initial state is the
product of two plane waves, eip1 ·r1 eip2 ·r2 . The final state ψ(r1, r2; t) is
complex, which can spread in all directions. If we intend to

implement the reverse process of the scattering, we must prepare
ψ(r1, r2; t) as the initial state for the reverse process, which is
apparently impossible. So, this scattering process of two free
particles in QM is irreversible.

Nevertheless, ψ(r1, r2; t) can be expanded by two-particle plane
waves, i.e., it has project amplitude on every pair of plane waves
eip′1 ·r1 eip′2 ·r2 . That is to say, there is a probability for the two particles
with momenta p1 and p2 to transit to two plane waves with specific
momenta p1′ and p2′, respectively. This probability is denoted as
w(p1, p2; p1′, p2′). In Figure 1, we use a piece of arrowed line to
represent a plane wave with momentum. Figure 1A shows a sketch
of the two (p1, p2) plane waves transiting to two new plane waves
(p1′, p2′), denoted as (p1, p2) → (p1′, p2′). Figures 1B,C,D show the
time-inverse transition, reverse transition, and reciprocal
transitions, respectively, of Figure 1A. All of the transitions
follow the total energy conservation and total momentum
conservation (Eq. 59). The transition probability of the reciprocal
process is denoted as w(p1′, p2′; p1, p2).

We have rigorously proved that [64]

w p1, p2; p1
′, p2

′( ) � w p1
′, p2

′; p1, p2( ). (67)

The transition probability of the process (Figure 1A)
(p1, p2) → (p1′, p2′) is the same as that of (Figure 1D)
(p1′, p2′) → (p1, p2). This conclusion is derived from the scattering
theory in QM, so it is always valid, irrespective of whether a system
reaches detailed balance, as well as irrelevant to the properties of the
whole gas [74].

The previous discussion about the two-particle collisions and
detailed balance in classical mechanics is entirely applicable to the
case here, as long as the two-particle collision in classical mechanics
is replaced by the scattering transition of two free particles,
(p1, p2) → (p1′, p2′), in QM. In particular, the detailed balance
only concerns a pair of reciprocal scattering transitions (Figures
1A,D) and is irrelative to the reverse transition (Figure 1C).

If a scattering transition (Figure 1A) occurs, the probability of
the occurrence of its reverse process (Figure 1C) is equal to 1, and the
original process (Figure 1A) is said reversible. However, it is actually
that w(p1, p2; p1′, p2′)< 1. Similarly, the probability that the process
(Figure 1C) occurs is necessarily less than 1. Therefore, the process
(Figure 1A) is irreversible.

It was believed that [50, 51]

w p1, p2; p1
′, p2

′( ) � w −p1′,−p2′;−p1,−p2( ). (68)

This relationship means that the transition probabilities of the
processes in Figures 1A,B are the same. This was called detailed
balance and seemed to be obtained from QM [75], the authors of
which equated the time-inverse and reverse processes. We stress that
in deriving scattering formulas [64], we always considered clockwise
processes. We do not know how to include the clockwise and
anticlockwise processes in one formula. In Section 2, it is
observed that the retarded and advanced processes have to be
studied separately. Therefore, we can prove Eq. 67 but are unable
to verify Eq. 68 by the scattering theory in QM.

We address three points here. First, wemake it clear that detailed
balance (Eq. 60), but not (Eq. 67), is a content in statistical
mechanics. Eq. 67 is proved by the scattering theory in QM.
Second, Eq. 60 is expressed by momentum distribution function,
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which involves all molecules in the gas, while Eq. 67 only concerns two
molecules, irrelevant of other molecules. Third, Eq. 60 only applies to
equilibrium states, while Eq. 67 is always correct for two-particle
scattering, regardless of whether the whole gas reaches equilibrium.

In [50], Eq. 68 is put down first. Then, with known
Maxwell–Boltzmann distribution for equilibrium state, it is
postulated that the numbers of the collision and reverse collision
in unit time and unit phase space volume are the same so as to
achieve Eq. 60. This procedure is different from that used by
Boltzmann, who first obtained Eq. 60 for equilibrium state and
then derived Maxwell–Boltzmann distribution from Eq. 60.

We next discuss the collision between two non-free particles.
That is to say, before and after the collision, particles may be in
bound states. A non-free particle is also called a bound particle. On
account of the identity of particles, detailed balance should be
written in the following form [11, 13, 15, 73]:

ninj 1 + χni′( ) 1 + χnj′( ) � ni′nj′ 1 + χni( ) 1 + χnj( ),
χ � 0,Distinguishable particles
χ � +1,Bosons
χ � −1, Fermions

⎧⎪⎨⎪⎩ . (69)

In Eq. 69, ni is the average number of particles in the energy state εi.
From the left- to right-hand sides, Eq. 69 shows that two particles in the
energy levels εi and εj collide and then transit to energy levels εi′ and εj′,
respectively, denoted as (i, j → i′, j′). From the right- to left-hand
sides, Eq. 69 refers to its reciprocal process, (i′, j′ → i, j). The transition
probabilities of the two processes are denoted by w(i, j → i′, j′) and
w(i′, j′ → i, j), respectively. Just as in Eq. 67, it should be

w i, j → i′, j′( ) � w i′, j′ → i, j( ). (70)

In the reciprocal courses, the total energy is conserved.

εi + εj � εi′ + εj′. (71)

Note the difference in the collision of the two bound particles
and two free particles. A free particle has momentum. Its state has an
index momentum. In its reverse motion, its momentum direction is
opposite to that in its original motion. This direction reversion helps
us distinguish the reverse and reciprocal motions, e.g., Figures 1C,D.
In both original and reverse motions, its total energy and total
momentum are conserved (see Eq. 59a, b).

A bound particle is in one of its discrete energy levels, and there
is no momentum in such a state index. Thus, a collision requires the
conservation of total energy (see Eq. 71) without the relationship of
momentum conservation. In this case, there is no difference between
reverse and reciprocal collisions.

Some scholars believed that the collisions are reversible. The
reason may be the identity of the reverse and reciprocal collisions
of bound particles. We reiterate the definition of the reversibility of a
process: if after an original process (i, j → i′, j′) occurs, the
occurrence probability of the reverse process (i′, j′ → i, j) is less
than 1, i.e.,w(i′, j′ → i, j)< 1, then the original process is irreversible.
This is because the particles in the state (i, j) can also transit to states
other than states (i′, j′) by collision, as long as Eq. 71 is met. The
conclusion is that in any case, two-particle collisions are irreversible.

[76] thought that Eq. 67 was a microreversibility relation. [77]
thought that Eq. 67 meant the detailed balance: “This notion is based

solely on the reversibility of the microscopic equation of motion.
(Or, more technically, on the Hermitian nature of the scattering
Hamiltonian).” The detailed balance Eq. 69 only involves the
distribution function and has nothing to do with whether the
equation of motion is reversible. Moreover, the two-particle
scattering transition is irreversible. We emphasize that when
deriving Eq. 67, we do not use the time inversion invariance of
the microscopic equations of motion [64].

For the cases of two free particle collisions, that equilibrium is
reached is not due to the reversibility of the collision, but from detailed
balance (Eq. 60). Similarly, in the case of bound particle collisions,
equilibrium is not due to the reversibility of the collisions, but due to Eq.
69. In the case of quantum statistics, detailed balance can be obtained by
master equations, although in a form superficially different from Eq. 69
[9, 11, 52]. Using the form of master equations, it is possible to define a
“distance” measuring the violation of detailed balance [19].

4 Conclusion

In this work, by careful analysis, we find that the motions of
microscopic particles are irreversible.

We first distinguish between the concepts of equation of motion
and specific motion. These two concepts have different mathematical
expressions. An equation of motion is just a differential equation that
embodies the laws of motion, which can be of invariance under time
inversion, but it does not describe any specific motion. A specific
motion is a specific solution solved from the equation of motion after
considering the initial conditions. It represents the relationship between
physical quantities over time and can be graphically illustrated.

We then distinguish between the concepts of time-inverse motion
and reverse motion. The former is counterclockwise, which is a
fictional movement, and the latter is clockwise. In both classical
mechanics and quantum mechanics, we provide mathematical
expressions for time-inverse motion and reverse motion. The
former is described by a time-advanced function and the latter by
a time-retarded function. From the mathematical derivation, we
conclude that the single-particle motion process is irreversible.

A system consisting of a large number of molecules frequently
colliding with each other is called a collision system. In such a
system, the microscopic mechanism that plays a decisive role is two-
particle collision.

A careful analysis of the two-particle collision was carried out.
Three cases are considered: two-particle collision in classical
mechanics, the collisions of two free particles, and two bound
particles in quantum mechanics. For the cases of two free particle
collisions, a distinction is made between reverse collision and
reciprocal collision. This difference stems from the fact that there
is a momentum index of the state of the particle. For the two bound
particle collisions, there is no difference between these two collisions
because there is no momentum index in the state of a particle.

We have defined the reversibility for the three cases of two-
particle collisions. By definition, all these collision processes are
irreversible.

The irreversibility of the microscopic two-particle collisions
determines that, generally speaking, the macroscopic processes of
gases are irreversible.
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However, the occurrence of a large number of collisions can make
a gas reach detailed balance. The detailed balance means that the
combination of a two-particle collision and its reciprocal collision
retains the distribution function of the gas unchanged. This is the
equilibrium state. The detailed balancing does not have the meaning
of micro-reversibility. The prerequisite for achieving the detailed
balance is that the number of molecules in the gas is sufficiently large.

In summary, every specific microprocess is essentially irreversible.
The statistical nature of a large number of microprocesses can lead to
the reversibility of certain macroprocesses. Thereby, we explain the
microscopic mechanism of why the processes of gases can be
irreversible.
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