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Bubble mass transfer is a common phenomenon in industrial applications. In this
paper, bubble dynamics in both still and turbulent flow were introduced first,
followed by the mass transfer properties of a single bubble and bubble swarms.
Then, bubble mass transfer models for different scenarios were summarized,
including three classical models, extended models, eddy diffusion and whirlpool
theoretical models, and semi- or empirical correlations. Finally, existing methods
for mass transfer intensification in industries were reviewed. Despite extensive
researches, the mechanism for bubble mass transfer has not been fully
understood. Models are commonly limited to some specific conditions and
the accuracy is limited, especially for bubble swarms and bubble mass transfer
in turbulent and non-Newtonian fluids. Also, the mass transfer intensification
methods have their own limitations. Additional exploration of knowledge on
bubble mass transfer models and further improvement in mass transfer
intensification technologies are still required in the future.
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Introduction

Gas-liquid mass transfer is triggered when the gas concentration in the liquid phase is
lower than the saturation threshold or when the partial pressure of the gas in the liquid
phase is higher than that in the gas phase [1]. It occurs naturally with the presence of gas
bubbles in the liquid, like river turbulence-induced aeration, and is also widely applied in
multiphase reactors in industries such as bubble columns, aeration tanks, and bio-
fermentation plants [2, 3]. As reported, about 25% of chemical engineering reactors are
the gas–liquid type [4].

Based on the existing knowledge, the total resistance during a gas-liquid mass transfer
process can be divided into the one in the liquid film and the other in the gas film. For gases
difficult to dissolve in liquid, like oxygen and nitrogen, the liquid film resistance is dominant
[5]. This is the focus of the current study, for which the total mass transfer coefficient
basically equals that in the liquid film. The mass transfer coefficient in the liquid phase is
commonly denoted as KL, and the gas-liquid mass transfer rate can be calculated as dM/dt =
-KLA(Cs -C), whereM = gasmass inside bubbles, t = time,A = bubble-liquid interfacial area,
C = dissolved gas concentration in liquid, and Cs = equilibrium concentration under the
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local partial pressure of the gas in the liquid. The mass transfer
coefficient is an index measuring mass transfer efficiency, and a large
value corresponds to a high efficiency. The gas-liquid mass transfer
can also be expressed by the volumetric mass transfer coefficient
KLA. Over the past hundred years, the mechanism for gas-liquid
mass transfer has been studied extensively. However, due to its
complexity and the increasing diversity of mass transfer conditions,
the understanding of gas-liquid mass transfer requires further
improvement.

In this paper, bubble dynamics were first reviewed, including the
effects of path instability, breakup, and coalescence on bubble mass
transfer. Then the characteristics of mass transfer of a single bubble

and bubble swarms were presented, individually. The bubble mass
transfer in non-Newtonian fluids was discussed subsequently.
Following that, the bubble mass transfer models based on
different principles are summarized, including the three classical
models, extended models, and others developed from eddy diffusion
theory and whirlpool theory. Semi- or empirical correlations of
bubble mass transfer coefficient with different dimensionless
numbers were also reviewed. Additionally, the methods for
enhancing bubble mass transfer applied in industries were
reviewed, including equipment improvement and introduction of
a second energy separation agent andmass separation agent. Finally,
the remaining issues in mass transfer studies and applications were

FIGURE 1
Organization of the review.
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summarized, and the future research directions were discussed. The
paper is organized following Figure 1.

Characteristics of bubble mass transfer

Bubble dynamics and mass transfer

Bubble dynamics, mainly including path instability, breakup,
and coalescence, are significantly related to the bubble mass transfer.
When a bubble rises freely in still water, it is imposed by buoyancy
force, drag force, and lift force, as shown in Figure 2A. Its path can
switch to a zigzag or helical trajectory after traveling a straight
vertical line, usually accompanied by significant bubble

deformations and surface oscillation [6] (Figure 3). The path
instability is caused by the symmetry breakage of the wake vortex
behind the bubble [7, 8], which is governed by the bubble size [8].

There are extensive studies on the dynamics andmass transfer of
a single bubble in still liquids, most focusing on the effects of bubble
dynamics, bubble shape and trajectory, etc. Generally, the bubble
path instability promotes convective transport and thereby
strengthens mass transfer [9]. The interface oscillations induced
during path instability also enhance the mass transfer near the
interface [10]. The zigzag rising trajectory can accelerate the slippage
of bubbles and reduce the thickness of the bubble concentration
boundary layer, leading to enhanced local mass transfer [11]. The
helical rising bubbles can generate an asymmetric wake with a lower
terminal velocity than non-helical rising bubbles, and thus, leads to a

FIGURE 2
Schematic of (A) a single bubble and (B) a bubble swarm moving upwards in still water.
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less efficient mass transfer. The mass transfer coefficient in the
bubble columns is also known to be dependent on the bubble
dynamics. However, bubble swarms perform a different path
instability from a single bubble, due to the turbulence induced
among the moving bubbles (Figure 2B). As bubble swarms rise
in liquid, bubbles coalescence or rebound frequently, which causes
difficulty in determining their trajectories [12, 13].

The behaviors of bubble in turbulent flow are usually
characterized by breakup and coalescence. Bubble breakup
usually occurs under the effects of turbulent fluctuation and
collision, viscous shear stress, shearing-off process, and interfacial
instability [14].

Bubble coalescence is more complex than bubble breakup [4],
which is not only affected by hydrodynamics, but also dependent on
the effect of interfacial characterization. Bubble coalescence is
caused by the relative bubble motions induced by the turbulence
in the continuous phase, mean-velocity gradients, and buoyancy
[15]. Large-size bubbles formed by coalescence exhibit a lower mass
transfer efficiency [16]. When they break up into smaller bubbles,
the mass transfer process is promoted. In addition, Tse et al. [17]
found that, in some instances, the coalescence of two bubbles was
accompanied by the formation of a much smaller daughter bubble
generated by the annular wave following the breakup process. In
coalescence-dominated systems, such processes can generate
significant numbers of small bubbles [17]. Essentially, the path
instability affects bubble diffusion and controls the local
concentration in still water, while the coalescence and breakup of
bubbles affect the size distribution of bubbles in turbulent flow [4].
Great turbulence caused by bubble swarmmotion under the effect of
buoyancy, can result in an enhanced mass transfer.

Most of the industrial reactors are operated under turbulent flow
conditions. The dynamic behaviors of bubbles in turbulent flows are
dramatically more complex than those in still water due to the
random character of the turbulent fluctuations. The flow is not
steady and the fluctuating conditions within turbulent flows can lead
to deformation, breakup and self-sustained oscillations in the bubble
[18]. Secondly, different from still water, there are regions of high

vorticity and low-pressure vortices in turbulent flows [4]. The spatial
structure of the velocity field around the bubble is unknown and
depends on different eddies. For a single bubble in turbulent flow,
the bubble mass transfer is strongly dependent on the Reynolds
number and the Schmidt number [19]. The bubble Reynolds
number based on the bubble slip velocity is used to reflect the
bubble-liquid relative motion, and the liquid Reynolds number to
characterize the turbulent intensity [20]. The relative velocity
between bubble and liquid, and the liquid turbulence both have
an important effect on the mass transfer. An increase in the liquid
turbulence intensity contributes to the improvement of the surface
renewal rate, and thus the enhancement of mass transfer [20].

Mass transfer characteristics of a single
bubble in still water

The mass transfer of a single bubble in still water is the basis for
understanding bubble mass transfer under complex conditions and
in various gas-liquid reactors. The mass transfer of a single bubble in
still water is a combination of molecular diffusion and convective
transport [11]. For a single bubble, the mass transfer coefficient KL is
mainly affected by bubble-liquid contact time, liquid viscosity and
bubble equivalent diameter [21]. It decreases with the increase of the
bubble-liquid contact time, probably due to the thickened bubble-
liquid interface. The increase of liquid viscosity reduces the diffusion
coefficient, and results in a lower mass transfer coefficient [22]. The
bubble size has an essential effect on the mass transfer coefficient
[23]. An increasing bubble equivalent diameter resulted in a
decreasing bubble coalescence rate, a larger gas-liquid interface
area, and a higher gas-liquid mass transfer coefficient. Smaller
bubbles lead to less mass transfer due to small pulsations of
turbulence around them. More specifically, for small bubbles
with an equivalent diameter of 1–2 mm, the mass transfer
coefficient is usually low, as the small bubbles have a rigid
surface with negligible surface oscillations and internal circulation
[24], which are essential to promote the gas-liquid mass transfer

FIGURE 3
(A) Zigzag and (B) spiral trajectories of a single bubble moving in still water.
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[25]. However, Hori et al. [26] found that, for spherical cap bubbles
with an equivalent diameter greater than 5 mm, the mass
transfer coefficient decreased with the increase of the equivalent
diameter, due to the increasing flattening and aspect ratios of the
bubble shape.

The bubble mass transfer is also dependent on the oscillation of
the interface. As the size increases, bubbles become deformed and
partially circulating. Bubble internal circulation increases with
increasing size, and the shape oscillations occur at Re > 200 [11].
The oscillations of the bubble-liquid interface have been reported to
improve themass transfer [10, 27]. The reasons for the reducedmass
transfer coefficient can also be the slippage at the bubble-liquid
interface and the prevention of mass transfer resulting from the inert
gases inside the bubble as well as the surfactants in the liquid phase
[28]. For example, Bao et al. [11] reported that impurities (surface-
active pollutants) in a contaminated system can influence the
mobility of the bubble surface and increase the mass transfer
resistance, which results in a smaller mass transfer coefficient
than that in clean systems.

Mass transfer characteristics of
bubble swarms

At large gas flow rates, bubbles in liquid become dense and the
flow is featured with bubble swarms [29]. In practical industrial
processes, gas-liquid mass transfer is usually in the form of bubble
swarms, where the bubbles present various sizes, shapes and
dynamics [30, 31]. Compared to a single bubble, the mass
transfer characteristics of bubble swarms are more complex and
the number of relevant studies has been much smaller. The mass
transfer efficiency of bubble swarms is dependent on various
parameters. First, the bubble size affects the gas exchange rate,
bubble residence time, fluxes of volume and momentum, and
thereby the mass transfer efficiency. Specifically, small bubbles
have a high specific surface area, and can significantly improve
the mass transfer from the gas phase to the liquid phase.
Additionally, the large bubbles can induce considerable
turbulence in the fluid, and promote mass transfer in the liquid
[4]. According to Sahoo and Luketina [32], small bubbles with a
radius of about 1 mm exhibited a higher oxygen transfer efficiency
compared to larger bubbles.

Second, the way of bubble injection can affect the mass transfer
efficiency. As reported by Gong et al. [33], concentrated injection of
bubbles into liquid increased the bubble-induced liquid velocity,
while it reduced the mass transfer efficiency. Uniform injection of
bubbles performed higher mass transfer efficiencies than
concentrated injection [33, 34]. The gas injection nozzle size also
has an essential effect on mass transfer efficiency. For bubble
swarms, the mass transfer rate increases with the decrease in the
nozzle diameter [35]. Third, the size and height of the liquid
container have an influence on the mass transfer efficiency of
bubble swarms, and the effect also varies with the bubble size [36].

It has been widely accepted that the traditional single-bubble
mass transfer theories cannot be applied directly to quantify the
complex mass transfer processes of bubble swarms. For bubble
swarms, the mass transfer performance is often empirically
correlated with the volumetric mass transfer coefficient KLA [11].

The models for mass transfer of bubble swarms will be summarized
in the subsequent sections.

Mass transfer of bubbles in non-
Newtonian fluids

In non-Newtonian fluids, the mass transfer of bubbles is more
complicated compared to that in Newtonian fluids. A non-
Newtonian fluid has a varying viscosity with the change of shear
rate. The viscosity variation of non-Newtonian liquid with shear rate
varies with its rheological behavior. Non-Newtonian fluids can be
further divided into Bingham fluids, pseudoplastic fluids and
dilatant fluids [37]. Taking pseudoplastic fluids as an example,
after a bubble being injected into the non-Newtonian fluid, the
space expelled by the bubble movement does not recover
immediately, which results in a vacuum behind the bubble. In a
pseudoplastic fluid, restoring the vacuum region requires more
energy than it does in a Newtonian fluid, thus slowing down the
bubble movement. This causes a more significant drag coefficient of
pseudoplastic fluids on the bubble than that of Newtonian fluids,
and the bubble mass transfer coefficient is reduced as a result.
However, some researchers found that, once the bubble size in non-
Newtonian fluids is increased to a certain degree or the flow index
reduced to a certain level, the wake effect, rise velocity and flow field
turbulence can be enhanced, thereby increasing the mass transfer
coefficient and improving the mass transfer efficiency [38]. The
shape of bubbles can also be affected by non-Newtonian fluid. As
reported by Bao et al. [11], the shape transition of bubbles in a
pseudoplastic liquid is from ellipsoid to upside-down spherical cap,
different from that in the Newtonian fluid (from ellipsoid to
spherical cap).

The quantity and rheological properties of non-Newtonian
material bring about the local acceleration or deceleration on
slippage, shear rate, and thus irregular shape shifting and mass
flux of gas–liquid interface. In addition, the gas–liquid mass transfer
investigation in colored or non-transparent non-Newtonian fluids
can be even more difficult, because the usual non-intrusive
measurement methods can hardly be able to visual volume
change or concentration distribution from these non-transparent
fluids. Moreover, some non-Newtonian fluids, such as
polyacrylamide solution, can exhibit both non-Newtonian
behavior and surfactant-like effect, which may also decrease the
mass transfer coefficient and increase the system complexity [39].
Therefore, the understanding of bubble mass transfer in non-
Newtonian fluid is not as clear as that in Newtonian fluids.

Bubble mass transfer models

Classical models of gas-liquid mass transfer

Researchers proposed various theoretical models and empirical
correlations to predict the mass transfer coefficient. The most
recognized models for gas-liquid mass transfer are the two-film
model proposed by Whitman [40], the penetration model by Higbie
[41] and the surface renewal model by Danckwerts [42]. The two-
film theory assumes a stable liquid-gas interface with retardation
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films on both gas and liquid sides, with solute diffuses through the
two films by molecular diffusion (Figure 4A). The two-film theory
revealed the mechanism of gas-liquid mass transfer and laid a solid
foundation for the subsequent studies. But it is only applicable when
the Schmidt number (Sc = ]/D, ] = kinematic viscosity,D = diffusion
coefficient) is small. Higbie [41] proposed the penetration theory,
which assumes that the fluid is composed of elements, and the gas-
liquid mass transfer is completed by the fluid elements. However, the
penetration theory regards the residence time of the fluid elements at
the gas-liquid interface as a constant, which is inconsistent with
reality and difficult to obtain. As an improvement, the surface
renewal model assumes that solute diffusion into the liquid phase
is unsteady. Also, the residence time of fluid elements at the gas-
liquid interface is considered varied, while the probability of
elements being renewed is the same.

However, the actual mass transfer process is more complicated,
and the assumptions made by the three models are inconsistent with
reality to some extent. Additionally, some parameters in the models,
like the surface renewal rate and the residence time of fluid elements,
are difficult to measure, making the models challenging to be applied
to practice. Despite the limitations, the three classical models
provide a clear view of the mass transfer process and lay the
foundation for studying the gas-liquid mass transfer mechanism.

Extended models from classical theories

Based on the three classical models, researchers have developed
numerous models for mass transfer. For example, Ma and Yu [43]
proposed the three-film theory of gas-liquid mass transfer based on
the two-film theory, by considering three resistance films for gas-
liquid mass transfer, namely, gas film, liquid film and interfacial
resistance film (Figure 4B). The interfacial tension effect in the
region near the gas-liquid interface was also included in the three-
film theory, which caused a different molecules transportation mode
compared to that in other regions. According to the three-film

theory, the solute concentration close to the interfacial resistance
film is

Ci � C∧e−
ΔE
RT (1)

where ΔE = difference of interfacial energies between the two sides of
the interfacial resistance film, T = temperature, and C∧ = equilibrium
concentration. Perlmutter [44] improved the surface renewal model
by considering the flow of fluid elements from the liquid bulk to the
interface as a tandem process. In extreme cases, Perlmutter’s model
can be converted into the classical models. That is, when there is
only one fluid element for renewal, the model becomes the same as
the classical surface renewal model, while it turns into the classical
penetration model when the number of fluid elements in tandem
approaches infinity. Shen et al. [21] proposed an improved surface
renewal model by including the instability factors of surface film and
the diffusion process in the film. In addition to the above models
extended from one of the classical models, models developed by
combining two or three of the classical models have also been
reported. For example, Hanratty [25] proposed the film-
penetration theory as a combination of the two-film theory and
the penetration theory.

Models based on eddy diffusion theory and
whirlpool theory

In addition to the three classical mass transfer models and those
extended from them (e.g., Eq. 1), there are models established based
on different theories like eddy diffusion theory and whirlpool theory.
Eddy diffusion theoretical and whirlpool theoretical models
consider the effects of the turbulence structure on mass transfer.

According to the similarity between mass transfer and
momentum transfer, Levich [45] proposed an eddy diffusion
model by assuming that the interphase mass transfer in semi-
infinite space was mainly dominated by molecular diffusion and

FIGURE 4
Schematic of (A) two-film model and (B) three-film model.
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turbulent diffusion. Based on Levich’s model, King [46] reported
that eddy flow dominated mass transfer enhancement in turbulence,
where the large-scale eddies generated surface renewal, whereas the
effect of those small ones can be damped by surface tension. He
obtained the solute concentration distribution in the eddy by
combing the eddy velocity equation and the convection-diffusion
equation, and then calculated the eddy diffusion coefficient as

KL � a
1
nD1−1

nf
a

2
nt

D
2

n−1
, n( ) (2)

where a and n are constants independent of t.
In the whirlpool models, the high-speed turbulent eddies near

the interface are considered to play a leading role in mass transfer,
and the mass transfer rate is greatly affected by the degree of
turbulence. More specifically, the whirlpool models can be
divided into large-scale eddies models (e.g., Fortescue and
Pearson [47]), small-scale eddies models (e.g., Lamont and Scott
[48]) and individual eddy models (e.g., Luk and Lee [49]). The large-
scale eddies models consider that, in turbulent flows, among the
energetic eddies with different scales near the interface, it is the
large-scale energetic eddies controlling the gas-liquid mass transfer.
The formula for the mass transfer coefficient is:

KL � 1.46

�����
D

U| |
Λ

√
(3)

where Λ = integral length from the interface and U = turbulent
velocity near the interface. However, it is not easy to measure the
eddy size distributions at the interface directly, which limits the
practical application of the large eddy model.

The small eddy models consider that, although small-scale
eddies contain lower energy, they can be fully mixed with
adjacent large-scale energetic eddies, thereby transferring matter
and energy among eddies of different scales, through motions
including rotation, jetting, etc. Therefore, for the small eddy
models, in a fully-developed turbulence field, the minimal viscous
dissipative eddies control the mass transfer process. Lamont and
Scott [48] developed the equation for the mass transfer coefficient by
describing eddy velocities based on Kolmogorov’s eddy theory:

KL � A2D
1
2

ε

]
( )−1

2

(4)

where A2 =model constant determined from experimental data, and
ε = turbulent kinetic energy dissipation rate.

Both the large and the small eddy models use the statistical
averaging method to determine the eddy size and velocity, which
poses difficulties in explaining the mass transfer mechanism of an
individual eddy. In addition, whether large eddies or small eddies
control the mass transfer process in the turbulence field is still
debatable. Considering these concerns, Luk and Lee [49]
proposed the individual eddy model, which was established
based on a local equilibrium hypothesis. That is, although the
mass transfer process across the interface was unsteady, the mass
transfer within an individual eddy could be considered as stable.
By assuming the flow velocity in an individual eddy as u, the
component transport equation of the process is solved. Thus, the
gas-liquid mass transfer coefficient of the model is obtained (Luk
and Lee [49]):

KL � 0.9

���
DV

L

√
(5)

where V is the velocity fluctuation amplitude, and L is the velocity
and length scale of an eddy. Compared with the large-scale eddy
theory (e.g., Eq. 2 and 3) and the small-scale eddy theory (e.g., Eq. 4
and 5), the individual eddy theory further deepens the mass transfer
mechanism to the level of single eddies.

Semi- or empirical correlations for bubble
mass transfer

In addition to the models above, there have been extensive
studies on KL, which has been reported to be a function of various
factors, including gas diffusivity, liquid density and viscosity, gas-
liquid affinity, as well as aeration and hydraulic conditions [50,
51]. Equations for calculating the mass transfer coefficients of a
single bubble under different conditions have been widely
reported, some as listed in Table 1. For example, Crift et al.
[56] proposed an equation for the mass transfer coefficient of a
spherical bubble as follows

KL � 2
π

1 − 2.89

max 2.89,
���
Re

√( )( ) 1 /

2Re
1 /

2Sc
1 /

2 D

Dm
(6)

where Re = Reynolds number (Re = ρvL/μ), and Dm = bubble
diameter. Kendoush [59] developed the equation for the Sherwood
number of ellipsoidal bubbles by improving Crift’s equation (Eq. 6),
with Z being the bubble radius function that changes with the bubble
quadrant angle:

Sh � 0.564

���������������������
ReSc∫π

0

1 + 2Z3θ sin 3 θ

Z3θ
dθ

√
(7)

In Eq. (7), θ = quadrant of the bubble.

Generally, the mass transfer models for a single bubble are
unlikely to be extrapolated to bubble swarms directly. Although the
mass transfer of bubble swarms is highly complex, several
researchers have made efforts to establish models. Alves et al.
[60] established a model of the average mass transfer coefficient
for bubble swarms, by using averaged bubble size, gas holdup,
specific interfacial area and bubble residence time in bubble
swarms, as Eq. (8):

KL �
1.13tm

���
vsD
Dm

√
+ tR − tm( )c

���
vs
Dm

√
D

2
3vl−

1
6

tR
(8)

where tR = bubble residence time and tm = the time span where
bubbles behave like mobile fluid particles. Bork et al. [61] proposed
an equation for the Sherwood number and verified the accuracy of
the model experimentally, as Eq. (9)

Sh � 4��
π

√ ��������
FDReScSr

√
(9)

where FD = enhancement factor (FD = 2 for bubble swarms), Sr =
Strouhal number (Sr � fdh

vs
where f is the bubble rise path and dh is
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the bubble diameter of the major axis). Additional representative
models are listed in Table 2 for reference.

In non-Newtonian fluids, the mass transfer of bubbles is more
challenging to compute than Newtonian fluids. Baird and Hamielec
[65] developed an equation for the Sherwood number of a single-
bubble mass transfer in Newtonian fluids, as Eq. (10)

Sh �
����������������
2
π
Pe∫π

0

vθ
vmax

sin 2 θdθ

√
(10)

where Pe = Peclet number defined as Pe � VL
D , vθ = surface velocity,

and vmax = velocity relative to continuous phase. Based on their
equation, Hirose and Moo-Young [66] proposed a semi-empirical
mass transfer formula for a single spherical bubble in non-
Newtonian fluids, as Eq. (11)

Sh � 0.65

�����������������
Pe 1 − 4m m − 1( )

2m + 1
[ ]√

(11)

Here, m = correction factor of non-Newtonian fluids. Kawase
and Moo-Young [62] derived equations for the mass transfer
coefficients of bubbles moving freely under gravity in non-
Newtonian fluids based on the early work of Calderbank and
Moo-Young, as Eq. (12)

KL � 0.975
��
D

√ g

Dm
( ) 1

4 (12)

Note that the bubble mass transfer in colored or non-
transparent non-Newtonian fluids can be even more challenging
to investigate, because the usual non-intrusive measurement
methods can hardly be able to visualize the volume change or
concentration distribution in these non-transparent fluids [11].
Moreover, a few types of non-Newtonian fluids, e.g.,
polyacrylamide solution, can exhibit both non-Newtonian
behavior and surfactant-like effect, which can decrease KL and

cause additional complexity to the system [67]. Due to the
difficulties, most existing models for mass transfer coefficient are
developed by fitting the experimental data, which makes them only
suitable for some specific working conditions and lack generality.

Limitations of existing bubblemass transfermodels
Generally, the current understanding of the mass transfer

mechanism is limited, and there is still a knowledge gap on
bubble mass transfer predictions. For most theoretical models,
the parameters are not easy to measure or link with operational
conditions. Although extensive semi- or empirical correlations for
bubble mass transfer coefficient have been reported, most are
developed by fitting the experimental data and are only
applicable under some specific conditions. As the bubble mass
transfer proceeds under diverse conditions and the liquid-bubble
interactions vary with equipment, it is still difficult to be unified as
models. Additionally, there is a lack of a connection mechanism
between the mass transfer of a single bubble and bubble swarms.
Also, there are difficulties in measuring bubble mass transfer rate
due to the challenge in bubble volume estimation caused by bubble
shape-shifting, especially in turbulent flow, which limits model
improvement.

Intensification of bubble mass transfer
in industry

Intensification of mass transfer is beneficial to industrial
processes in aspects of improving product quality, reducing cost,
raising production efficiency, and safety. To enhance the efficiency
of industrial production, a profound comprehension of the
interdependence between bubble dynamic behaviors, mass
transfer mechanisms, and hydrodynamics is imperative. For
bubble swarms, large bubbles contribute to the formation of
induced turbulence, thereby promoting convective mass transfer

TABLE 1 Equations for single-bubble mass transfer coefficient

Literature Equation Remarks

Higbie R [41] KL� 2�
π

√
����
ReSc

√
D
Dm

Penetration theory Clean liquid system Still water

Baird M H I, Davidson [75] KL � 0.975D−0.25
m D0.5g0.25 For spherical cap bubbles 8 mm < Dm < 42 mm Still water

Maximum deviation 10%

Kendoush A A [77] KL � 1.158D−0.25
m D0.5g0.25 Suitable for spherical-cap bubbles Applicable for Re >> 45 Flowing

water

Takemura F, Yabe A [78]
sh��
pe

√ � 2�
π

√ [1 − 2

3(1+0.09Re 2
3 )0.75](2.5 + ���

Pe
√ ) Still silicon oil Spherical gas bubble Applicable for Re < 100 and Pe >

1 Maximum deviation 7%

Crift et al. [52]
KL � 2Dm

D
�
π

√
������������������[1 − 2.89

max(2.89, ��Re√ )]ReSc√
Dm > 0.1 mm Flowing water spherical bubble

Bao Y et al. [79] KL � 1.22 × 10−4Re0.08Sc0.5 × 0.75(v2x + v2y) + 1.48 × 10−4 Suitable for ellipsoidal bubble Turbulent flow 2 mm < Dm < 4 mm
R2=0.85

Kastens S et al. [80] KL � H(D3
m2−D3

m1)
6RT(t2−t1)D3

m12C
Suitable for ellipsoidal bubble Still water Maximum deviation 23%

Zhao B et al. [81] KL � R
��
SD

√
ch(δ

��
SD

√
D )+Dsh(δ

��
SD

√
D )

Rsh(δ
��
SD

√
D )

The slurry phase as a continuous phase and the gas phase as a
discrete phase

Coppus J.H.C et al. [82]
KL � 1.13

������
D

���
2g
Dm

√√ ��������
cos 3 θ

3 −cos θ+2
3

√
1− cos θ

Spherical gas bubble
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in the liquid phase, and small bubbles offer a higher specific surface
area. Therefore, reasonable control of the size distribution in bubble
swarms, andmaintaining a proper hydraulic condition in the reactor
can enhance gas–liquid mass transfer. Generally, the mass transfer
can be enhanced in the following ways: (1) to improve reactors by
installing hydrodynamic optimization structures like baffles, (2) to
introduce a second energy separation agent, such as electric field,
acoustic field, and magnetic field, (3) to introduce mass separation
agents, like micron-sized particles, nano-sized particles, etc. The
ways of mass transfer enhancement are presented in detail in
the following.

Installing hydrodynamic optimization
structures

One of the common intensifications of mass transfer in bubble
columns is to construct horizontal or vertical baffles in the reaction
chamber, which changes flow direction and enhances turbulence,
thereby improving mass transfer. Yin et al. [68] constructed
rectangular baffles with staggered arrangement in the channel
to improve the gas-liquid mass transfer efficiency of the CO2-
water system. With baffles, the highest bubble mass transfer
coefficient reached 2.8 times the coefficient without baffles. The
mass transfer is enhanced by the strengthened turbulence in the
liquid phase due to the baffle disturbance, which causes bubble
breakup and promotes surface renewal. Gu et al. [69] proposed a
new type of rotating packed bed to enhance turbulence in the gas
phase. With such a rotating packed bed, the mass transfer
coefficient was twice that of traditional designs. Another
solution is to install stirrers or vibration exciters inside the
reaction chamber of a bubble column to enhance circulation
and, thereby mass transfer. However, this method is only
effective in a narrow range of process parameters [70]. It can
also cause undesirable hydraulic conditions in the bubble column,
like back mixing and phase separation, which can reduce the mass
transfer coefficient [70].

Introducing second energy separation agent

Introducing energy into mass transfer equipment is another
essential means to enhance mass transfer, including stirring,
oscillation, and adding energy fields (magnetic fields, sound
fields, supergravity fields, etc.). For example, introducing
pulsations inside a bubble column or subjecting the entire
column to pulsations can cause bubble breakup and elimination
of bubble rise, which increases the liquid-bubble interfacial area and
the contact time, and thereby enhancing mass transfer [70]. Zou
et al. [71] reported that stirring and aeration could weaken the
phenomenon of concentration polarization and improve mass
transfer efficiency significantly. Zhang et al. [72] found that
solid particle oscillation enhanced the radial mixing of the fluid,
and the mass transfer coefficient was increased by more than 50%.
Reichert et al. [73] found that the use of external alternating
magnetic fields along with suspended magnetic particles could
lead to forced and highly intensive particle movement in liquid-gas
mixture, which increased the mass transfer coefficient by up to
200%. However, the methods of stirring and oscillation are not
suitable for traditional equipment such as bubble columns and
packed columns. There are also limitations to introducing the
energy field, e.g., electric and magnetic fields are only suitable for
substances with a certain charge and magnetism. Also, the high
cost of adding an energy field needs to be taken into consideration
for industrial applications [74].

Introducing mass separation agent

Introducing mass separation agents, dispersed particles as the
commonest, can significantly reduce the mass transfer resistance,
and accelerate the mass transfer process [75]. Ferreira et al. [76, 77]
experimentally studied the effects of adding expandable polystyrene
(EPS) particles (hydrophobic) and hollow glass beads (hydrophilic)
on the mass transfer in a bubble column. The results showed that the
hydrophobic micron-sized EPS particles always harmed the mass

TABLE 2 Equations for bubble swarm mass transfer coefficient

Literature Equation Remarks

Kawase Y, Moo- Young M [58] KL � 0.31D
2
3
gρ
Dm

Suitable for Newtonian fluids

Alves S S, Maia C I, Vasconcelos J M T [54]
KL � 1.13tm

��
vsD
Dm

√
+(tR−tm)c

��
vs
Dm

√
D

2
3 v

−16
l

tR

Viscous flow liquid Suitable for a stagnant cap model Estimated
random error of ≈30%.

LeClair B P, Hamielec A E [76]
Sh � 1.13

���
Pe

ε1

√
1000<Re

Sh � 2.213
1

Re0.108
( ) ���

Pe

ε1

√
10≤Re≤ 1000

Sh � 0.65 + 0.06
���
Re

√( ) ���
Pe

√����������������������
5 − 6 1 − ε1( ) 1 /

3 + 1 − ε1( )2
5ε1

√ Re< 10

Viscous flow liquid Spherical bubble

Figueroa-Espinoza B, Legendre D [83]
Sh χ( ) � 2

���
Pe

√��
π

√ f χ( )
f χ( ) � 0.542 + 0.88χ − 0.49χ2 + 0.086χ3

Still water Spheroidal gas bubbles 500 < Re < 1000 and 100 < Sc

Ali H, Solsvik J [84] KL � KLA( 6αg
ds(1−αg))−1 Still fluid Spherical/elliptical gas bubbles Maximum

deviation 9.6%

Please refer to Notations for the physical meanings of the parameters in the table.
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transfer process. The effect of hydrophilic hollow glass beads was a
function of the solid holdup, i.e., the mass transfer coefficient
increased with an increasing solid holdup of up to 10% and
decreased with further higher holdups. The fine particles
promote surface renewal thus the mass transfer at lower solid
holdups, when the change in liquid viscosity is negligible.
However, when the solid holdup is over a certain level, the
viscosity of the liquid phase increases, and the fine particles at
the gas-liquid interface prevent the gas diffusion to the liquid phase.
Thus, the mass transfer coefficient decreases.

With the development of nanotechnology in the last decades,
nanoparticles have become a popular choice as a mass transfer
promoter. Colloids composed of ultrafine nanoparticles (100 nm or
smaller) are called nanofluids [77]. Olle et al. [78] experimentally
investigated the effects of aqueous suspensions of 20–25 nm
magnetic (Fe3O4) nanoparticles on the bubble mass transfer in
an agitated and sparged reactor. Their results showed that, with
nanoparticle volume fractions below 1%, the bubble mass transfer
could be enhanced up to 600%. Park et al. [79] measured the
chemical absorption rate of CO2 into an aqueous solution of
nanometer-sized colloidal silica (0–31 wt%) and 2-amino-2-
methyl-1-propanol in a stirred vessel. They found that the
volumetric liquid-side mass transfer coefficient and the
absorption rate in the nanofluid decreased as the nanoparticle
concentration increased, which could be due to the increase of
system viscosity.

There are still problems for using nanoparticles to enhance
gas-liquid mass transfer in practice. Specifically, (1) the mass
transfer effect of the same type of nanoparticles varies under
different experimental conditions, which can be related to the
nanoparticle properties, preparation methods and stability of
nanofluids [69]; (2) the enhancement mechanism of
nanoparticles on mass transfer is still unclear, which is simply
attributed to the micro-convection caused by Brownian motion of
the nanoparticles currently; (3) few devices are available to observe
the movement of nanoparticles under ordinary solid content [80];
(4) due to the limitations of the stability and visualization of
nanoparticles, the universality and accuracy of current
calculation methods for mass transfer with nanoparticles still
require improvement.

Application of microreactors

Microreactors featured with bubble mass transfer performing in
micrometer-sized channels have also been reported as a way to enhance
bubble mass transfer [81]. Due to the short diffusion path and huge
specific surface area of bubble mass transfer in micrometer-sized
channels, the volumetric mass transfer coefficient in microreactors
can be one to three orders of magnitude higher than that in
traditional gas-liquid reactors [82]. The structure of microchannel is
closely related to the mass transfer efficiency. It is usually designed with
convergent-divergent channels, bend, built-in obstacle, etc., to increase
the gas-liquid interfacial area and enhance the flow disturbance, and
thereby improving mass transfer efficiency. External energy was also
introduced to disturb the flow, like ultrasound [83]. Many researchers
have explored designs of microreactors for various purposes. For
example, Ganapathy et al. (2016) [82] studied the mass transfer

performance of a microreactor which was with 15 straight parallel
channels of 456 μm diameter in a cross-flow inlet configuration. They
found that the efficiencies of CO2 absorption into aqueous
diethanolamine nearly reached 100% under certain operating
conditions, which indicated the significant effect of mass transfer
intensification of the microreactor. Yin et al. (2022) [81] proposed a
split-and-recombine (SAR) microreactor, composed of
convergent–divergent arc channel and rectangular obstacles. The
bubble dynamic features and mass transfer characteristics were
revealed, which showed that the SAR microreactor performing well
in enhancing the gas–liquid mass transfer with rapid chemical reaction.
Liu et al. (2023) reported a bubble-based microreactor (BBMR), and it
also performed excellently in promoting the mass transfer process [84].
Nevertheless, there are still many technical barriers for microreactors,
like commercialization and specific reaction integration problems. Also,
critical analysis including synthesis ability, measurement analysis,
extraction, and detection should be conducted before the
microreactors being applied widely in industry[85, 86].

Conclusion and future aspects

In this review paper, characteristics of mass transfer of a single
bubble and bubble swarms were presented. The effects of parameters
on bubble mass transfer were reviewed, like gas-liquid contact time,
liquid viscosity, bubble size, traveling trajectory, bubble injection
conditions, etc. Following that, bubble mass transfer models for
different conditions were summarized, including three classical
models, extended models and those based on eddy diffusion and
whirlpool theories. Semi- or empirical correlations of bubble mass
transfer coefficient with different dimensionless numbers were also
reviewed. Additionally, technologies for enhancing bubble mass
transfer in industries were introduced, in aspects of equipment
improvement and introduction of a second energy separation
agent and mass separation agent.

Despite the extensive research, the mechanism for bubble mass
transfer has not been fully understood, especially for bubble swarms
and bubble mass transfer in turbulent and/or non-Newtonian fluid
flows. Besides, the accuracy of mass transfer models still needs to be
improved, especially for bubble swarms, due to their complex
characteristics of heterogeneity, multi-scale, nonlinearity,
unsteady state, etc. Most existing multi-bubble mass transfer
models were developed based on the single-bubble mass transfer
model, and the complex processes of bubble coalescence and
breakup were commonly not considered. Currently, despite
numerous measurement techniques proposed to capture the
dynamic behavior of local bubbles, it remains challenging to
obtain more micro and mesoscopic information in gas–liquid
systems, in order to establish a comprehensive theory of bubble
dynamics. For example, the flow field around the bubble affects mass
transfer near the interface, and simultaneously, deforms the bubble
interface, which changes the interfacial area, and in turn, leads to a
time-dependent concentration gradient across the interface [87].
The existing technique has limitations in quantifying such a mass
transfer process.

Based on the main influencing factors of the mass transfer
coefficient, the enhancement of bubble mass transfer can be
achieved by reducing gas-liquid contact time and obtaining proper
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bubble sizes. However, the traditional methods have their limitations,
e.g., they are only suitable for some specific scenarios. Micro-
nanobubbles and nanofluids have become emerging technologies to
promote bubble mass transfer processes. But the relevant knowledge is
not completed, and the existing nanoscale-enhanced gas-liquid mass
transfer model most have a low prediction accuracy. Additional studies
on bubble mass transfer models and a further improvement in mass
transfer strengthening technologies are still required.

Based on the above summary, future research on bubble mass
transfer can be carried out in the following fields: (1) to develop accurate
measurements for flow field and bubble dynamics, as well as bubble
mass transfer rate; (2) to further explore the application of micro-
nanobubbles and nanofluids in enhancing mass transfer. Additionally,
machine learning (ML) has been recognized as capable of identifying
the correlation between experimental data on bubble dynamic behavior
and mass transfer processes, thereby expediting the research process
[88]. Machine learning is able tomake predictions for the size, behavior,
and mass transfer process of bubbles under different conditions.
Therefore, to apply machine learning to bubble mass transfer study
is also an important research direction in the future.
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Glossary

A bubble-liquid interfacial area

A eddy diffusion model constants independent of t

A2 small eddy model constant

Bo Bond number

C dissolved gas concentration in water

Ĉ equilibrium concentration

Cs liquid-phase equilibrium concentration under local partial pressure of gas

D diffusion coefficient

Dm bubble diameter

FD enhancement factor

Fr Froude number

Gr Grashof number

KL mass transfer coefficient

L length scale of an eddy

M mass of the gas inside the bubble

M correction factor of non-Newtonian fluids

N eddy diffusion constants independent of t

P oscillatory fractions

Pe Peclet number

Qo peak of oscillatory flow

Qs steady flow

Re Reynolds number of gas

ReL Reynolds number of liquid

S surface renewal rate

Sc Schmidt number

Sh Sherwood number

Sr Strouhal number

T temperature

T time

tc gas-liquid contact time

tm time span where bubbles behave like mobile fluid particles

tR bubble residence time

U turbulent velocity near the interface

Ug bubble rise velocity

V velocity of an eddy

vmax velocity relative to continuous phase

Vs gas-liquid relative velocity

vθ surface velocity

Z bubble radius function

A thermal diffusivity

Δ film thickness

ΔE difference between the interfacial energies on both sides of the interfacial
resistance film

Ε turbulent kinetic energy dissipation rate

Θ quadrant of the bubble

Λ integral length from the interface

Μ dynamic viscosity

μw dynamic viscosity of water

Ν kinematic viscosity

νL liquid kinematic viscosity

Ρ density

ρg density of gas

ρw density of water

Σ surface tension coefficient
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