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High-performance GNN obtains dependencies within a graph by capturing the
mechanism of message passing and aggregation between neighboring nodes in
the graph, and successfully updates node embeddings. However, in practical
applications, the inherent model structure of the graph is highly susceptible to
privacy attacks, and the heterogeneity of external data can lead to a decrease in
model performance. Motivated by this challenge, this work proposes a novel
framework called Personalized Federated Graph Neural Network for Privacy-
Preserving (PFGNN). Specifically, firstly, this work introduces a graph similarity
strategy. Based on the principle that clients with similar features exhibit stronger
homophily, this work divides all participating clients into multiple clusters for
collaborative training. Furthermore, within each group, this work employs an
attention mechanism to design a federated aggregation weighting scheme. This
scheme is used to construct a global model on the server, which helps mitigate
the difficulty of model generalization resulting from data heterogeneity collected
from different clients. Lastly, to ensure the privacy of model parameters during
the training process and prevent malicious adversaries from stealing them, this
work implements privacy-enhancing technology by introducing an optimized
function-hiding multi-input function encryption scheme. This ensures the
security of both model data and user privacy. Experiments on real datasets
show that our scheme outperforms FedAvg in accuracy, and the
communication overhead is linearly related to the number of clients. Through
this framework, PFGNN can handle all kinds of non-Euclidean structured data,
multiple clients collaborate to train high-quality and highly secure global models.
This work provides the foundation for designing efficient and privacy-preserving
personalized federated graph neural networks.
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1 Introduction

Cyber-physical-social systems (CPSSs) are a new paradigm extended by cyber-
physical systems (CPSs), which have attracted widespread attention in the academic
community Li et al. [1]. CPSS seamlessly connects networks, physical devices and social
spaces through data. CPSS provides a more comprehensive intelligent system for
federated graph neural networks, thus promoting the rapid development of artificial
intelligence (AI). However, the heterogeneous of graph data in CPSS, coupled with the
limitations of mobile devices and communication overhead during data transmission,
makes CPSS not only vulnerable to privacy attacks, but also the heterogeneity of external
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data can lead to model performance degradation Wang et al. [2].
Therefore, the security and privacy of CPSS graph data have
become a key research object of artificial intelligence.

The introduction of Graph Neural Networks (GNNs) has
successfully applied the concept of deep learning to non-
Euclidean space data sets Bronstein et al. [3]. With its powerful
spatial graph structure, Graph Neural Network helps various
industries deeply explore the value of their own data. GNN
obtains dependencies in the graph by capturing the message
passing mechanism and aggregation method between adjacent
nodes in the graph structure, and converts it into standardized
complete node embedding information and rich data information
Fu et al. [4], Liu et al. [5].

Graph neural network training requires a large amount of graph
data, which is distributed among different data owners. For instance,
as described in Zhang et al. [6], the hospital wishes to train a graph
neural network model for small cell carcinoma of lung (SCLC), each
hospital has its own patient graph network that tracks common
diagnoses of SCLC and other diseases. However, due to privacy
issues and legal and regulatory considerations, these graph data
cannot be shared with others, which leads to data isolation problems.
This prompts us to ponder deeply: How to collaboratively train
GNNs without leaking the local data of each institution? Federated
learning is a distributed machine learning paradigm that not only
protects the privacy of local data but is also the most effective way to
deal with data isolationMcMahan et al. [7]. Federated Learning (FL)
with GNNs, where each client trains a GNNmodel locally and learns
the local embedding information, and then the central server collects
the gradients or model parameters of each client for federated
aggregation Liu et al. [8].

However, an important challenge faced by federated graph
neural networks is the privacy leakage issue Hu et al. [9].
Different from Euclidean spatial data such as pictures and texts,
graph neural networks incorporate additional information because
of their powerful graph structure, such as the information of nodes
in the graph. It is this highly descriptive information that makes the
GNN model extremely vulnerable to privacy attacks Zhang et al.
[10] and even exploited by adversaries, resulting in leakage of
attribute and member information He et al. [11] or affecting data
set reconstruction Olatunji et al. [12]. Moreover, in a federated
graph neural network, the adversary can reversely infer the client’s
local data through node embedding information, leading to the
leakage or even abuse of sensitive data He et al. [13].

Also, a more important challenge is the heterogeneity of graph
dataWang et al. [14]. In the collaborative modeling process, the graph
data of different clients have varying degrees of heterogeneity in graph
structure and node features, so these stored graph data are generally
non independent and identically distributed (non-IID) Liu et al. [15].
This kind of graph data heterogeneity may cause the traditional
federated averaging algorithm (FedAVG) to seriously diverge,
resulting in global model performance degradation Zheng et al.
[16]. Therefore, how to design a federated graph neural network
framework suitable for non-IID graph data is particularly important.

Motivated by this challenge, this work proposes a novel
framework named Personalized Federated Graph Neural
Network for Privacy-Preserving (PFGNN), by which a high-
quality and highly secure global model is trained
collaboratively by multiple clients. The PFGNN framework is

built on a set of state-of-the-art training paradigms, including
graph similarity strategies, attention-based model aggregation
schemes, and implementation of privacy-enhancing techniques
to protect the uploading of sensitive model parameters. The
processing of PFGNN can be divided into three stages to
ensure high quality, high accuracy and high security of graph
neural network training. Based on the above description of the
PFGNN framework, our contributions are as follows.

• Enhanced the performance of federated learning in processing
non-Euclidean spatial data. This work designs a graph
similarity estimation strategy that takes stronger homophily
among clients with similar characteristics as a clustering
reference, while using random graphs as input of the GNN
model to measure the similarity between each client and
server, and dividing the clients into different clusters.

• Improved the accuracy of the global model. In order to
accurately handle model parameters and replace the average
mechanism, this work introduces the attention mechanism to
design a federated aggregation weighting scheme to build a
global model on the server. This global model can alleviate the
difficulty of global model generalization caused by the
heterogeneity of different client data.

• Realized personalized privacy protection. In order to hide the
model parameters during the model training process and
prevent malicious adversaries from stealing the model
parameters, the privacy enhancement technology is
implemented by introducing an optimized Function hiding
multi-input function encryption scheme to ensure the privacy
security of the model data and users.

2 Preliminaries

2.1 Federated learning

Federated learning is a type of distributed machine learning that
can aggregate multiple data sources for collaborative training Lyu et al.
[17]. During the model training process, data storage and model
training are performed locally, and only model parameters or
intermediate results are exchanged with the central server, the
central server integrates different terminal parameters to implement
a complete model training process. Federated learning effectively helps
multiple organizations jointly conduct training and model modeling
on the premise that data does not leave the domain and data security is
met, thereby improving the effectiveness of artificial intelligence
models and mitigating the costs and privacy risks in the traditional
machine learning process.

2.2 Graph neural network

Graph neural network is a framework that uses deep learning to
learn non-Euclidean spatial data. Its superior performance can help
various industries deeply mine data value from complex graph
structures. The GNN framework obtains the dependencies in the
graph by capturing the message passing mechanism and aggregation
method between adjacent nodes in the graph structure, and converts
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it into standardized and standard complete node embedding
information and rich data information. Therefore, GNN has been
rapidly developed and achieved good results in downstream tasks
such as node classification, link prediction, graph and subgraph
generation, etc.

In this work, PFGNN is modeled with the message passing
neural network framework (MPNN) Gilmer et al. [18]. The forward
passing process of MPNN includes two phases: Message Passing and
Readout. In our framework, assume that there are K clients, and the
data set of the kth client is D(k) � (G(k), Y(k)), where
G(k) � (V(k), E(k)), V (k) is the node set of G(k), E(k)is the edge set
of G(k), eij{ }

i,j∈V(k) is the edge feature set.
Phase 1: Message Passing. The function of this phase is to

aggregate the node’s neighborhood sampling information and
update the embedding information of the node itself, as follows:

m k,l+1( )
i � AGG Mt h k,l( )

i , h k,l( )
j , eij( ){ }j ∈ N i( )( ) (1)

h k,l+1( )
i � Ut h k,t( )

i , m k,l+1( )
i( ) (2)

where h(k,l)i � x(k,l)
i is the node feature of the Lth layer of the Kth

client. AGG is an aggregate function, and Mt is a message function,
Ut is the update function, N(i) represents a group of adjacent nodes
of node i.

Phase 2: Readout. The function of this phase is to calculate the
feature vector of the node based on the output layer for different
downstream tasks.

y � Q h k,T( )
i | i ∈ Gp{ }( ) (3)

whereQ is the readout function, which represents the features of
the entire graph neural network, and p represents different
downstream tasks.

2.3 Functional encryption

Function encryption is a lightweight public key encryption
algorithm designed to protect data security. However, function
encryption cannot be applied in real distributed scenarios, such
as federated learning. Therefore, multi-input function encryption
(MIFE) is an enhanced version of function encryption that emerged
for application in distributed scenarios Abdalla et al. [19]. In MIFE,
n participants are allowed to encrypt their own private data and
generate ciphertext CT � (c1, c2 . . . cn), generate the private key skf
through the key generation algorithm and jointly perform function
operations in the ciphertext state. That is to say, holding the
ciphertext CT � (c1, c2 . . . cn) and the private key skf can produce
the calculation result y � f(x1, x2 . . . xn) without revealing any
information about the plaintext. This shows that sensitive data
can be protected during the computing process while effectively
preventing data leakage and privacy violations.

3 Proposed framework

3.1 High-level overview

In this subsection, this work gives a detailed introduction of
PFGNN framework, that is, federated graph neural network for

privacy-preserving. The goal of PFGNN is to achieve accurate,
efficient, low communication cost, privacy-preserving
personalized federated graph neural network. Participants of
PFGNN include a trusted authority (TA) responsible for
public key distribution and private key generation, a central
server that coordinates model training and parameter
aggregation, and a large number of clients that collaboratively
train GNN models. Each client processes its own graph data by
training a local graph neural network and uploads model
parameters to the central server. Then the central server
aggregates the received model parameters and iterates
continuously until an excellent global model is trained. The
framework diagram of PFGNN is shown in Figure 1.

The PFGNN framework aims to achieve accurate, efficient, low-
communication-cost, and privacy-preserving personalized federated
graph neural networks. The specific steps of the PFGNN are
as follows.

1) Global Initialization and Security Parameter Setup: Initially, a
Trusted Authority (TA) conducts global initialization by
defining security parameters λ and generating the master
public key (mpk) and master private key (msk). and then
distributes them to clients.

2) Client Model Training Locally: Clients independently train
their graph neural network (GNN) models locally to obtain
initial node embeddings.

3) Client Grouping: Clients are organized into different
clusters based on the criteria defined by Algorithm 1.
This grouping facilitates cooperation and coordination
among clients.

4) Attention Proportion Generation: Within each cluster,
attention proportions are generated according to the
definition provided in Formula 7. These proportions will be
used to weight the contributions of different clients.

5) Client Upload of Attention Proportion: Each client uploads
their computed attention proportion to a trusted
third party (TA).

6) TA distributes cryptographic keys: TA generates the
corresponding private key according to the proportion of
attention uploaded by the client, and sends it to the server
for decryption, which helps to ensure the data security of
different clients.

7) Encryption ofModel Parameters andAttention Proportion: The
client’s model parameters and attention proportion are
encrypted using an optimized function-hiding MIFE algorithm.

8) Secure Aggregation: Upon receiving the encrypted model
parameters and attention proportion, the server performs a
secure aggregation operation to combine the client’s attention
proportion. Then, the server decrypts to obtain the aggregated
model parameters, thus completing one round of
model training.

3.2 Graph similarity estimation strategy

The heterogeneity of graph data is a major challenge in
federated graph neural network optimization. Consider this
scenario: Assuming there are three clients, the graph structure
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between client 1 and client 3 is significantly different, andmay even
exhibit completely opposite properties. At the same time, there
may be an overlap of nodes between Client 1 and Client 2. These
nodes have similar characteristics and can form a cluster. It is
known that clients with similar characteristics have stronger
homophily McPherson et al. [20]. In order to capture the data
heterogeneity between clients and train an accurate model suitable
for most client data, this work can analyze and measure different
clients based on the similarity of the client’s graph structure,
similar clients are grouped into a cluster. Regarding finding

similarity in graph structure, usually, everyone will use model
parameters or gradients to calculate similarity. In fact, because the
dimensionality is too high, the similarity between parameters will
continue to grow as the dimensionality of the model increases, so
this method has serious flaws.

Inspired by Jeong et al. [21], and making it clear that our
purpose is to measure the similarity between client graph
structures, this work can provide the same input to all client
graph structures (including the server model) and then analyze
the similarity of their output results. In other words, consider all

FIGURE 1
High-lever overview of Personalized Federated Graph Neural Network.

FIGURE 2
The overview of graph similarity estimation strategy.
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graph structure models as a black box function, input the same
graph data, analyze and evaluate the output distance to represent the
similarity between different graph structures. The specific algorithm
is shown in Algorithm 2, where the random graph is initialized by
the stochastic block model Baek et al. [22], and this randomness will
not bias the model structure of any client. The detailed graph
similarity strategy is shown in (Figure 2).

The server uses the similarity function to calculate the
similarity between any client and server model. The
expression is as follows:

S i( ) � ĥ0 · ĥi
ĥ0
�����

����� ĥi
�����

�����
(4)

the server classifies clients whose similarity is higher than a
threshold (such as 0.5) into a cluster.

• Public Parameters: N is the total number of clients, C

is the fraction of client, U is a set of all clients, B is

the local mini-batch size, E is the number of

local epochs.

• Input: the GNN model M(i) on the client G(i), the GNN model

M on the server side

• Output: C clusters.

/* Runs on Server */

Ensure Server executes:

for each round t = 1, 2, . . . do

m ← max (C · N, 1)

Sn ← ui | ui ∈ U{ }m1
Initialize random graph Ĝ

With Ĝ on model M, compute ĥ0

Send Ĝ to client i

end for

/* Runs on Client k */

Ensure Client k executes:

for each local epoch i from 1 to E do do

for for batch b ∈ B do do

With Ĝ on model M(k), compute ĥk

end for

Send ĥk to the server

end for

/* Runs on Server */

Ensure Server executes:

Similarity S(i) calculation with ĥ0 and ĥk based

on Eq. 2

Group into C clusters with S(i)

Algorithm 1. Graph similarity calculation strategy.

3.3 A function encryption optimization
algorithm with attentive aggregation

During the training process of the personalized federated
graph neural network, the client trains the GNN model locally,
generates local node embeddings, and directly uploads the model
parameters or gradients to the server through federated

aggregation, malicious adversaries can steal user data through
model reconstruction attacks. At the same time, since each
client’s graph data has differences in graph structure and node
features, this heterogeneity causes the traditional federated
averaging algorithm to be seriously divergent, so this work
needs to train an effective global model. To solve these
problems, this work proposes a function encryption
optimization algorithm based on attention aggregation, which
not only considers the contribution of the client model to the
global model, but also encrypts the aggregated model parameters
and fusion weights.

3.3.1 A federated graph neural network algorithm
with attentive aggregation

The most important part of the federated graph neural
network is the server-side federated aggregation. In the
traditional federated averaging algorithm, each client is given
the same weight. This averaging processing method is rough and
cannot well evaluate the advantages and disadvantages of the
local model, which will have an adverse impact on the
performance of the model. In order to train efficient global
models and focus on the importance of client models, this
work proposes a federated graph neural network algorithm
with attentive aggregation, focusing on using FL with a central
server to train GNN models.

The intuition behind federated graph neural network
optimization is to find a global model that can improve the
generalizability of distributed clients, the attentive aggregation
algorithm proposed is a simple reward mechanism that can
evaluate the contribution of client model parameters to the
global model. Next, this work focuses on the aggregation
mode of the client model. Specifically, this work takes the
server model parameters as the query and the client model
parameters as the key, calculate their similarity, and obtain
the attention proportion of each client through the SoftMax
function, finally, the model parameters are weighted and
summed according to the attention proportion.

Given the lth layer parameter of the server global model as hl,
h(k,l) represents the model parameter of the lth layer of the kth client,
and the similarity p(k,l) between hl and h(k,l) is calculated by the
Frobenius norm. Which is denoted as:

p k,l( ) � att h k,l( ), hl( ) � τ h k,l( ) − hl
����

����22 (5)

In order to further explore the relationship between client model
parameters and global model parameters, this work uses
hyperparameters τ to adjust the similarity online.

Then, since the similarity may have large differences and needs
to be normalized, this work applies SoftMax function to calculate the
attention proportion of each layer.

q k,l( ) � Sof tMax p k,l( )( ) � exp p k,l( )( )
∑k∈m exp p k,l( )( )

(6)

where q(k,l) represents the attention proportion of the lth layer
model parameter of the kth client. After the server obtains the
attention proportion of each client, it generates a global model based
on the proportion of each client.
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hlt+1 � ∑
m

k�1
q k,l( )
t h k,l( ) (7)

where q(k,l)t is the proportion of the kth client
at time t, and represents the global model parameters at
time t + 1.

3.3.2 Optimized function encryption algorithm
In the process of federated aggregation, in order to defend

against potential adversarial attacks, it is essential to encrypt the
model parameters during transmission. This work has adopted
the enhanced version of the MIFE algorithm, known as the
Function-Hiding Multi-Input Function Encryption (FH-MIFE)
scheme Abdalla et al. [19]. Specifically, in addition to
safeguarding the uploaded model parameters, this work
places particular emphasis on protecting the weights
proportion by each client. The traditional single-layer MIFE
falls short in adequately securing functions that may contain
sensitive information. The FH-MIFE scheme employs a double-
layer encryption process on both plaintext and keys, thereby
enhancing the overall security of the model.

In some actual distributed scenarios, the decryption key
contains a function f, and the function f itself also
contains sensitive information, which allows the decryptor
to obtain the weight value of each user in the decryption
result. This will lead to the leakage of the user’s plaintext
information, so a single layer of function encryption is not
enough to protect the function f with sensitive information.
Therefore, we choose the function hiding multi-input function
encryption scheme, which adds an extra layer of encryption on
the ciphertext and key of the original MIFE. This double-layer
encryption can not only ensure the security of the plaintext
and model, but also protect the function f security,
providing the model with high security and efficiency. In
addition, in the process of model training, the client will fail
due to network instability or connection problems, thus
affecting the secure communication between clients and the
server. However, the PFGNN scheme allows some clients to
exit and rejoin at any time during the training phase, because
the function-hiding multi-input function encryption scheme
does not require the order in which clients join, nor does it
require resetting keys for disconnected clients. Which
sum(Y)> n

2 indicates that TA collects the minimum number
of participating clients and then generates the corresponding
private key. In order to mitigate inference attacks, the sum of
the number of clients participating in aggregation should be
greater than or equal to n

2 ensure the normal progress of
aggregation.

Furthermore, to more effectively apply the function hiding
multiple-input function encryption in federated learning, this
work has optimized the scheme. This work has introduced a
key distribution phase in which the TA distributes
unique public keys to each client based on their respective
IDs. This allows each client to have their own unique public
key for encryption, rather than using a uniform public key.
This improvement enhances the security and flexibility of
the scheme.

• Public Parameters: N is the total number of clients, B

is the local mini-batch size, E is the number of local

epochs, t represents the number of layers of the neural

network, ht(k) represents the model parameters of the

client k.

/*Run on TA*/

Ensure TA executes:

Initialized with mpk, msk

function query − key(yk , εFH−MFH)
if sum(Y)> n

2 then

return sky1y2. . .‖yk
end if

/* Runs on Client k */

Ensure Client k executes:

for each local epoch i from 1 to E do do

for for batch b ∈ B do do

obtain exclusive public key based on ID

function collect-client (ht(k),b)
ck ← EncFH−MIFH

pkk
(ht(k))

end for

Send ck to the server

end for

/* Runs on Server */

Ensure Server executes:

generate batch indices {1, 2, . . . , B}

for b ∈ B do

for k ∈ K do

Ck ← collect-client (ht(k),b)
sky1‖y2‖...‖yk ← query − key(yk , εFH−MIFH)
ht(k) ← DecFH−MIFH

sky1 ‖y2 ‖...‖yk
( Ck{ }kϵK)

end for

end for

Algorithm 2. Optimized function encryption algorithm.

4 Security and privacy analysi

The goal of the PFGNN framework is to train a secure and
efficient personalized federated graph neural network. This work
analyzes the security and privacy of the PFGNN framework
in detail.

4.1 Security analysis

Function Encryption is a cryptographic technique designed
to protect data privacy, while allowing specific function
computations to be performed on encrypted data without
decrypting the data. This encryption method strikes a balance
between privacy preserving and data processing, and is
particularly suitable for scenarios such as federated learning.
To prevent gradient inversion attacks in federated learning,
PFGNN uses function-hiding multi-input function encryption
to prevent collusion between malicious servers and TA, privately
trade key parameters, and protect user encryption model
gradient, so as to protect user privacy.
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The cryptographic security of Function-Hiding MIFE is the top
priority of the security of the PFGNN framework. Function-Hiding
MIFE is a way to resist malicious adversaries from stealing model
parameters and aggregate weights. In this work, to apply function
hiding MIFE to federated learning more effectively, this work
introduces a key distribution stage, in which a third-party server
distributes an exclusive public key based on the ID of each client.
This allows each client to obtain its own unique public key for
encryption instead of using a unified public key. This improvement
does not involve core algorithm processes, such as public key
encryption and private key decryption. Therefore, this algorithm
has no impact on the security of Function-Hiding MIFE. Function-
HidingMIFE is proven to be many-SEL-wFH-IND-secure, the proof
process adopts a hybrid argument method, please refer to Abdalla
et al. [19] for detailed understanding.

4.2 Privacy analysis

Function hiding MIFE provides computational privacy
guarantees for secure aggregation in the PFGNN framework.
Function hiding MIFE provides computational privacy guarantees
for secure aggregation in the PFGNN framework. During the model
training process, the Function-Hiding MIFE protects the model
parameters and client weights from the client to the server, the
decrypted result only contains the aggregated results of the model
parameters, and the model parameters for any specific client are not
available at all. In other words, function hiding MIFE double-
encrypts the plaintext and key, effectively protecting the weight
information of each client during decryption. This method can
prevent malicious adversaries from using the weight of a single client
to effectively speculate on the source of a certain attribute, and
further prevents the adversary from identifying and leaking the
client’s identity through understanding the client’s
background knowledge.

5 Evaluation

In this section, this work evaluates the performance of the
PFGNN scheme. This solution is a federated learning framework
based on graph neural network, including n clients and a central
server. This work mainly studies protocol performance evaluation in
the semi-honest condition. In order to verify the effect of the
proposed scheme, this work implements a federated learning
prototype system based on graph similarity strategy, attentive
aggregation scheme and function encryption, and conducts
accuracy and efficiency experiments on it.

5.1 Experimental settings

In order to evaluate the performance of this scheme, PFGNN
chose to perform the node classification task on three graph
structure datasets, namely, Cora, Pubmed and Citeseer. The
statistical summary of the datasets is shown in Table 1. And
compare it with traditional graph neural network, thus proving

the accuracy and versatility of PFGNN in processing non-
Euclidean data.

During the process of model training, the client trains the graph
neural network locally, taking GraphSAGE as an example, the
propagation depth is L ∈ {1, 2, 3, 4, 5}, the number of iterations
of the client’s local model training is set as 10, the training batch size
is 60. In this work, the maximum layer of the fully connected neural
network is set as 2, and hyperbolic tangent (TanH) is adopted as the
activation function of the hidden layer. Parameter drop rate is d ∈
{0.0, 0.5}, learning rate lr ∈ 5e−4, 5e−3, 1e−3, 1e−2{ }. Since the task of
the graph neural network in this work is node classification, the loss
function adopts cross entropy. In order to prevent the model from
overfitting, an additional regular term L2 is added
L2 ∈ 5e−4, 5e−3, 1e−3, 1e−2, 0.0{ }. All experiments in this work are
conducted on a single machine without the Internet to simulate
communication in federated learning. The training set of the model
is used to train the model, the verification set is used to adjust
parameters, and the test set is used to measure the quality of model
training. When adjusting parameters, the grid search method is
selected to seek the highest accuracy under appropriate
parameter settings.

This work implements PFGNN in python. Like the function
encryption algorithm in MIFE Abdalla et al. [19], this work employs
gmpy2 to implement the Paillier function encryption system.

5.2 Accuracy analysis

5.2.1 Comparison of model accuracy under
different labels

To test the accuracy of the model, PFGNN chose to perform the
node classification task on three graph-structured datasets, namely,
Cora, Pubmed and Citeseer. In order to test the accuracy of models
under different labels, this work divides the Cora data set into C1, C2

and C3, according to the types of labels, where C1 has three label
categories with 1,296 nodes, C2 has two label categories, and finally
C3 has two label categories. Similarly, this paper also divides the
Pubmed and Citeseer data sets into three parts.

In order to study the accuracy of model aggregation under
different labels, this paper assumes that there are three clients (A,
B and C), the data of client A is composed of C1, the data of client
B is composed of C2, and the data of client C is composed of C3. In
other words, the labels for the three clients are different. Next,
comparative experiments were conducted between PFGNN,
traditional Centralized machine learning (Centralized ML),
and the classic FedAvg algorithm on three data sets. The local
model training of the three algorithms is the graph neural
network GraphSAGE. PFGNN is trained in the same way as

TABLE 1 Dataset statistic.

Dataset Node Edge Feature Classes

Cora 2708 5429 1433 7

Pubmed 19717 44338 500 3

Citeseer 3327 4732 3703 6
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FedAvg to verify the advantages of PFGNN with attentive
aggregation.

To evaluate the performance of PFGNN in classification tasks,
this paper examines its average accuracy on three different data sets.
As shown in Table 2, PFGNN performs best in average accuracy on
these datasets, significantly outperforming the other two models. In
particular, compared with the classical FedAvg model, the average
accuracy of PFGNN is improved by 5.4%. This result emphasizes the
superiority of PFGNN in classification tasks and shows that after the
introduction of the attentive aggregation mechanism, it has achieved
satisfactory results in handling data aggregation andmodel updating
in distributed learning scenarios.

5.2.2 Comparison of model accuracy under
different labels and different graphs

The framework of message passing neural network in this paper
is GraphSAGE, which mainly includes two steps: Sample and
Aggregate. Sampling is to sample the number of neighbors
through fixed-length sampling with replacement, thereby
ensuring that each node after sampling has the same number of
neighbors. GraphSAGE model training benefits from the transfer of
adjacent information. Therefore, in order to study the accuracy of
the model under different labels and graphs, this section divides the
data set Cora according to the average edges, the samples with edges
less than or equal to 3 in Cora are recorded as Ca, and the samples
with edges greater than 3 are recorded as Cb. Then, similar to Section
5.2.1, the data of client A comes from the sample number Ca1 of
three label categories in sample Ca, and the data of client B consists
of the sample number Ca2 of two label categories in sample Ca, the
data of client C comes from the Cb3 samples of the two label
categories in sample Cb. In the same way, the two data sets of
Pubmed and Citeseer can be divided.

In this work, PFGNN model and FedAvg model are trained on
three data sets respectively, and their accuracy is compared in
Table 3. The results show that under different labels and
different graphs, PFGNN model performs better than FedAvg,

and the average accuracy rate increases from 5.48% to 7.38%.
This shows that the PFGNN frame is suitable for handling
different scenarios of label and graph distribution, which further
emphasizes the superiority of the PFGNN model on non-IID data.

Centralized ML refers to uploading data to the server during the
training process, performing training and inference on the server,
and finally returning the results to the user. In this work, traditional
machine learning can be regarded as the case where the PFGNN
model has only one client. However, this method involves privacy
and security risks in data uploading, and can also lead to excessive
latency and waste the computing power of the terminal device. To
study the impact of the number of clients on model performance, we
increase the number of clients on the Cora dataset from 3 to 7, with
each client having a different label. The Figure 3 shows that the
accuracy of the PFGNN model increases with the number of clients
and eventually stabilizes. This shows that as the number of clients
increases, the types of tags each client has becomes smaller, but the
performance of the overall model is still improved. This finding
highlights the advantages of PFGNN in dealing with large-scale data
sets, which can effectively utilize attentive aggregation and improve
the performance and scalability of the model.

As shown in Figure 4, in order to test whether PFGNN is
versatility, PFGNN is applied in different graph neural networks
to test the Cora dataset, such as GCNKipf andWelling [23] and GIN
Hard et al. [24]. The green bar in the figure represents GraphSAGE
with PFGNN settings, and the orange bar represents pure

TABLE 2 Performance comparison on three datasets in terms of accuracy.

Dataset Centralized ML FedAvg PFGNN

Cora 0.8345 0.8924 0.9213

Pubmed 0.8134 0.8812 0.9315

Citeseer 0.7237 0.7723 0.8145

Average 0.7905 0.8486 0.8891

TABLE 3 Performance comparison on different labels and different graphs.

Dataset FedAvg PFGNN Improvement (%)

Cora 0.7546 0.8085 7.14

Pubmed 0.7435 0.7734 6.03

Citeseer 0.7137 0.7623 9.04

Average 0.7078 0.7814 7.38

FIGURE 3
Average accuracy comparison of different clients’ number with
different labels.

FIGURE 4
The generality of the PFGNN framework.
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GraphSAGE. The accuracy of PFGNN after 100 rounds of
communication in the figure is higher than 100 epochs iterative
of GraphSAGE, which shows that PFGNN is effective for federated
graph neural networks and can processes various non-Euclidean
structured data and can be easily embedded into other models.

5.3 Computational overhead analysis

The PFGNN runs all encryption schemes under LAPTOP-
OSDQQEMN equipped with lntel(R) Core (TM) i7-8565U CPU.
In order to evaluate the computational overhead of function hiding
MIFE in PFGNN, this work can set different numbers of clients and
compare the encryption time of different schemes.

Table 4 clearly shows that as the number of clients increases, the
time required for function encryption and decryption shows
completely different trends. Specifically, as the number of clients
increases, the encryption time on the client side remains almost
constant, while on the server side, the decryption time grows
linearly. However, the secure aggregation scheme of federated
learning has a computational overhead of O(N2). In comparison,
PFGNN only need O(N). Compared with the scheme proposed in
Yin et al. [25], the scheme adopted is not only more efficient, but also
keeps the encryption and decryption time within an acceptable
range even when the number of parameters reaches millions.

5.4 Communication overhead analysis

This work performs a detailed comparison between the PFGNN
framework and VFGNN, especially in terms of communication
overhead within one iteration. This solution is a federated
learning framework based on graph neural network, including n
clients and a central server. The detailed communication overhead is
shown in Table 5. During model training, there is no direct
communication between clients in the PFGNN scheme. This
improvement reduces the total communication overhead from
(n2 + n)/2 to n. This means that the communication overhead is
linearly related to the number of clients throughout the model
training process.

6 Conclusion

This work proposes the Personalized and Privacy-Preserving
Federated Graph Neural Network (PFGNN). The PFGNN
framework is built on a set of state-of-the-art training paradigms,
including graph similarity strategies, attention mechanism-based
model aggregation schemes, and optimized function hiding
encryption scheme to protect the upload of sensitive model
parameters. Experiments on real datasets show that our scheme
outperforms FedAvg in accuracy, and the communication overhead
is linearly related to the number of clients. Through this framework,
PFGNN can handle all kinds of non-Euclidean structured data,
multiple clients collaborate to train high-quality and highly secure
global models. This work provides the foundation for designing
efficient and privacy-preserving personalized federated graph
neural networks.
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TABLE 4 The time overhead of the function encryption scheme.

Clients Enc (Hybrid) Dec (Hybrid) Enc (PFGNN) Dec (PFGNN)

3 4.145 11.654 1.883 2.034

6 4.121 20.234 2.054 2.956

9 4.077 30.345 2.076 4.956

TABLE 5 Communication per iteration for n clients.

Phase Communication VFGNN PFGNN)

Training Process Secure SGD: clients ↔ CSP n n

Secure SGD: clients ↔ clients (n2 − n)/2 0

Secure SGD: TOTAL (n2 + n)/2 n
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