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The review describes the principles and examples of practical realization of
diagnostic approaches based on the coherence theory, optical singularities and
interference techniques. The presentation is based on the unified correlation-optics
and coherence-theory concepts. The applications of general principles are
demonstrated by several examples including the study of inhomogeneities and
fluctuations in water solutions and methods for sensitive diagnostics of random
phase objects (e.g., rough surfaces). The specific manifestations of the correlation-
optics paradigms are illustrated in applications to non-monochromatic fields
structured both in space and time. For such fields, the transient patterns of the
internal energyflows (Poynting vector distribution) and transient states of polarization
are described. The single-shot spectral interference is analyzed as a version of the
correlation-optics approach adapted to ultra-short light pulses. As a characteristic
example of such pulses, uniting the spatio-temporal and singular properties, the
spatio-temporal optical vortices are considered in detail; their properties,methods of
generation, diagnostics, and possible applications are exposed and characterized.
Prospects of further research and applications are discussed.
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1 Introduction

Electromagnetic fields are ubiquitous in Nature, and almost any process occurring in
the material World is associated with a sort of generation, radiation, absorption or
transformation of various electromagnetic waves. This stipulates the exceptional role of
electromagnetic fields as unique witnesses carrying information about the most important
physical phenomena, from the Big Bang and expansion of the Universe to the lepton and
hadron interactions on sub-nuclear scales. In all such processes, electromagnetic fields are
involved; they differ mainly by the characteristic wavelengths λ but the principles governing
their physical behavior are universal.

The waves of optical range that expands from sub-millimeter to nanometer scales (λ ~
10−4 ÷ 10−8 m) are compatible with the most common atomic, molecular and structural
processes occurring in various sorts of physical matter. That is why it is the optical methods
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that are especially suitable for testing, diagnostics and investigation
of diverse physical systems, as well as for their purposeful
transformations and manipulations. Such optical methods
demonstrate a remarkable progress in the past years, stipulated
by the development of new optical technologies based on the
enhanced opportunities of light structuralization which involves
not only spatial but also temporal and spectral dimensions [1–5].
The new possibilities for the light-field formation and
characterization essentially enhanced the technical power in the
optical means for study and control of matter but also have changed
some common-sense optical paradigms. Now, it is not surprising
that optical energy can be concentrated and fruitfully manipulated
in the volumes, orders of magnitude smaller than the wavelength,
and controllably released with the attosecond temporal resolution
[6]. Simultaneously, the powerful theoretical instruments, involving
the stochastic and correlation description of light fields [7–13]
preserve their value and heuristic abilities.

In this paper, we make an attempt of describing some modern
optical-diagnostic possibilities, based on the traditional correlation
optics, coherence theory and interference technique. This ground
enables us to consider, from the unified initial positions, different
problems of optical diagnostics. After the short introduction into the
optical coherence theory (Section 2), applications of its principles are
demonstrated in the study of physical inhomogeneities and fluctuations
in liquid media, especially, in water solutions (Section 3.1). The
interference technique for sensitive detection of the solutions’ optical
constants is discussed, as well as the approach of laser correlation
spectroscopy for analysis of non-stationary perturbations in the sample.
In Section 3.2, the methods for sensitive diagnostics of random phase
objects, e.g., rough surfaces, are exposed and discussed.

In Section 4, the correlation-optics principles are refined and
further adapted for optical fields with essential temporal
structuring, e.g., non-monochromatic fields. The specific
transient patterns of the light energy distribution, non-
stationary polarization states, and the internal energy flows are
discussed, with the special attention to their singularities and
possible manifestations in the observable (time-averaged) field
behavior. This way naturally brings the presentation to
the topic of spatio-temporal light fields which are characterized
by the non-separable structure variations in the space and
time (spectral) coordinates (Section 5). As an example of such
fields, the spatio-temporal optical vortices are considered in more
detail as optical objects in which the high degree of 4D
structuralization is combined with the essential singular nature.
These features make them exemplary objects of highly developed
and topologically organized wave packets. Their unique properties,
methods of investigation, generation, and possible applications are
described and characterized. Traditionally, the review is finished
by Conclusion presenting a summary of the results achieved and
some prospects of further activity in research and applications.

2 Modern approaches in the theory
of coherence

Modern approaches for quantitative characterization of light fields
with arbitrary degree of coherence, structured both in time and space,
start with the Wolf’s introduction of the field’s statistical correlation

moments [7–13]. The matter is that the underlying field parameters
(instantaneous electric andmagnetic vectors) are not observable but the
field is characterized by their spatial and temporal (and, possibly, mixed
spatio-temporal) correlation moments. This paradigm enables to
quantitatively describe the optical-field state, its transformations and
evolution in a unified physically consistent manner compatible with
usual conditions of optical experiments and applications. On this base,
multiple methods for metrological assessment of the light field’s
characteristics including the distributions of amplitude, phase,
polarization, etc., have been developed, and novel approaches, with
additional capacities and metrological power, regularly appear. In these
methods, the possibilities of studying the field structure in linear (first-
order moments), quadrature (second-order moments) and higher
approximations (involving the higher-order statistical moments of
the underlying field characteristics) are realized [7–13].

The basic instrument of the correlation optics is the cross-
coherence function defined as [7, 12].

Γ R1,R2, τ( ) � 〈E* R1, t1( )E R2, t1 + τ( )〉 (1)
where E(Ri, ti) denotes the (non-observable directly) electric field in
the spatial point Ri and at the time moment ti, and 〈. . .〉 denotes an
ensemble average (practically coincides with the time-average). The
cross-coherence function 1 obeys the wave equation with respect to
both spatial variables:

∇2
1 −

1
c2

∂2

∂τ2
( )Γ R1,R2, τ( ) � 0, ∇2

2 −
1
c2

∂2

∂τ2
( )Γ R1,R2, τ( ) � 0

(2)
where ∇2

i is the Laplace operator in the vector space Ri. According to
Eq. 2, statistical properties of light modify in the course of the wave
propagation, and the main task of the coherence theory is to employ
the regularities of these modifications for analysis of the optical
fields’ evolution in space and time. In general, Ri in Eqs 1, 2 is a 3D
vector but in many practical cases, the physically selected
longitudinal direction (direction of propagation) exists, and the
2D field distributions across fixed transverse planes or smooth
surfaces is analyzed. In such cases, the field correlations mainly
depend on the transverse (x, y)-coordinates while the longitudinal
coordinate z appears as a parameter [9].

Temporal behavior of the fields is closely related to their
spectral inhomogeneity [11–13]. Accordingly, the correlation
properties of the field can be characterized by the cross spectral
density which is defined via the Fourier transform of the cross-
correlation function (1):

W R1,R2,ω( ) � 1
2π

∫∞
−∞

Γ R1,R2, τ( )e−iωτdτ. (3)

Generally, the cross spectral density can be expressed through the
single-point spectral density

S R,ω( ) � 1
2π

∫∞
−∞

Γ R,R, τ( )e−iωτdτ (4)

and the spectral degree of coherence μ(R1,R2,ω) as [13]

W R1,R2,ω( ) � �������
S R1,ω( )√ �������

S r2,ω( )√
μ R1,R2,ω( ). (5)
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The spectral density (4) determines the correlation properties of
the field in the same point R, whereas the spectral degree of
coherence μ(R1,R2,ω) offers a measure of correlation between
the field values in points R1 and R2 at the frequency ω.

Quantities 1-5 supply an exhaustive statistical characterization of
scalar optical fields whose polarization is homogeneous and linear. But
most of optical phenomena essentially involve the vector nature of light
waves, and their statistical characterization requires to consider the
vector stochastic processes which can be analyzed based on the Maxwell
theory [14]. In general, the different orthogonal polarization components
behave independently, and their mutual correlations can be considered
in the frame of the coherence matrix [9, 10, 14–20] which is an
immediate generalization of the scalar cross-correlation function 1.
For paraxial fields mainly characterized by the transverse electric-field
components Ex, Ey, the coherence matrix obtains the general form

Γ̂ R1,R2, τ( ) � 〈 E*
x R1, t1( )

E*
y R1, t1( )( ) Ex R2, t1 + τ( ) Ey R2, t1 + τ( )( )〉

� Γxx R1,R2, τ( ) Γxy R1,R2, τ( )
Γyx R1,R2, τ( ) Γyy R1,R2, τ( )( ) (6)

where Γij(R1,R2, τ) � 〈E*
i(R1, t1)Ej(R2, t1 + τ)〉 (i, j = x, y) is the

cross-correlation function of the corresponding field components.
Akin to (3), (6), the spectral correlation matrix Ŵ(R1,R2,ω)
[15–21] can be introduced, which enables to describe the
polarization properties of fields with imperfect coherence. It
determines the spectral degree of polarization P(R,ω) that
expresses the ratio between the spectral density of the polarized
part of the field to its total spectral density:

P R,ω( ) �
�����������������
1 − 4DetŴ R,R,ω( )

TrŴ R,R,ω( )[ ]2
√√

(7)

where Det and Tr denote the matrix determinant and trace,
correspondingly.

The relations (6), (7) and their derivatives, as well as the concepts
these involve, form a basis for fruitful studies of the vector optical fields
and their metrological applications in many applied and fundamental
problems [18–21]. Coherence matrices, combining the coherence and
polarization features of optical fields, constitute the ground for a
powerful methodological approach to describing the optical-fields
characteristics and their variations induced by light-matter interactions.

3 Correlation optics in
optical metrology

3.1 Correlation-optics approaches in
diagnostics of liquid systems and
water solutions

3.1.1 Interference techniques for investigations of
water solutions

The general framework schematically outlined in Section 2 can
be employed for multiple applied problems. In this context, it is
especially interesting to consider the potential capabilities of the
optical metrology methods for parametric characterization of some
well-known systems, which have been traditional objects of

comprehensive studies for a long time. On the one hand, this
activity offers good opportunities for the methods’ evaluation and
testing; on the other hand, it shows the aspects that require
additional in-depth research and analysis of future prospects. In
this Section, we illustrate the main characteristics, capacities and
prospects of the interference approach, based on the typical
examples stemmed from the authors’ experience.

In this context, we consider several demonstrative situations
illustrating the power of the correlation-interferometry technique.
The first one concerns the problem of high-precision measurement
of the refractive-index variations in optically transparent aqueous
solutions [22, 23]. Such measurements are highly important because
the nature of the molecular interaction in a liquid determines the
polarizability of molecules, and hence the refractive index.
Consequently, the changes of polarizability, that accompany
changes in the physical state of a solution, can be used to assess
the short- and long-range molecular interactions. The long-range
molecular interactions in a liquid manifest themselves in the form of
a quasi-crystalline structure of water, similar to the structure of ice
[22, 23]. For such media, the refractive index is related with the
medium permittivity ε and can be described by relation [24]

n2 � ε � 1 + 4πNαθ (8)
where θ is the polarizability-correlation parameter, N is the
concentration of particles (molecules of water and/or solved
substance), and α is the polarizability of a single particle.
According to Eq. 8, knowledge of the refractive index
distribution gives a possibility to estimate spatial variations of the
parameters θ, N and α which characterize fine processes of the
molecular interactions and structure formation.

In the scheme of [22, 23], a Mach—Zehnder or Michelson
interferometer is used, formed by the elements 3, 5, and 7
(Figure 1). The CW radiation generated by laser 1 passes the
collimator 2 whence the quasi-plane-wave beam enters the beam
splitter, and the two linearly-polarized beams with equal intensities
are formed. One of these beams passes through the water-medium
sample 4; the reference beam is obtained by reflection frommirror 7,
and its polarization is set orthogonal by the quarter-wave plate 6. At
the interferometer exit (branch 3–14), the beams are arranged
strictly coaxial, and their polarizations are transformed into
orthogonal circularly polarized states by means of the quarter-
wave plate 10. Their interference results in a linearly polarized
beam with the polarization direction depending on the phase
retardation of the signal beam, i.e., on the refractive index of the
investigated sample 4. Accordingly, any changes in the refractive
index (8) caused by any external or internal impact (temperature,
chemical transformations, mechanical disturbances) are manifested
in a change of the linear-polarization azimuth at the interferometer
output, which can be detected, e.g., by the analyzer 11. Modern
modulation systems for the polarization measurements enable to
evaluate the change in the linear-polarization azimuth at the level of
one arc second. This, in turn, makes it possible to measure changes
in the wave-path difference between the interferometer arms at a
level of 0.5–1 nm [22, 23].

Therefore, at the same level of accuracy one can measure
variations in the refractive index of the solution, and thus judge
on the underlying microscopic phenomena [25–27]. This means
that optical interference instruments, involving the principles of
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heterodyning, enable to study the intra-atomic and intra-molecular
processes in optically transparent, weakly absorbing aqueous media.

In the above-described example, the interference technique was
applied to spatially homogeneous fields with the phase difference
being the only determinable parameter. This situation can be treated
as an interference pattern with the single fringe of infinite width.
However, the interference approaches can be equally useful for
optical diagnostics of spatially inhomogeneous fields where the
phase difference between the compared beams depends on
transverse coordinates. The corresponding techniques can be
applied for investigation of the influence of fluid mechanical
disturbance (dynamics) on the spatial and/or temporal variations
of the refractive index. To date, these processes have been studied
insufficiently; only small steps have been taken in this direction. In
particular, Ref. [27] presents the results related to anomalous light
scattering [28, 29] in water-glycerol solutions that were prepared by
diffusion in a gravitational field. This made it possible to cover the
entire concentration range of existence of solutions in a single
sample. The spatial distribution of the solution concentrations
was obtained by the modification of the interference method
known as the electronic speckle-pattern interferometry
(ESPI) [30, 31].

3.1.2 Dynamical light scattering and laser
correlation spectroscopy

Among various approaches to optical diagnostics of the
condensed states of matter, especially liquids, one of the most
efficient is the method of laser correlation spectroscopy (LCS)
[32, 33]. Its first applications in the middle of the 20th century
were associated with astrophysics at the intersection of optics and
radio-physics. But with the appearance of lasers in physical
laboratories, it quickly became popular for determining the

properties of dispersed systems, liquid crystals, biological
molecules, as well as spatial inhomogeneities and matter flows of
various scales [34–36]. Because this technique is based on the
scattering of light by moving objects, it is sometimes referred to
as “dynamic light scattering” (DLS). However, the DLS is a broader
category and includes a number of other methods based on the
interaction of highly coherent radiation with moving objects, for
example, laser Doppler anemometry [35].

In most works, the LCS principles are interpreted based on the
radio-physical approach, where fluctuations of the scattered-light
intensity δI are described as beatings that arise as a result of the
interference of waves with frequencies shifted due to the Doppler
effect. Within the framework of classical spectroscopy, when light is
scattered by a system of moving objects, the monochromatic probe-
radiation spectral line broadens by the Doppler-shifted sidebands.
However, the characteristic spectral-line broadening in various
problems is about Δω ~ (1 ÷ 103) s–1, which cannot be measured
by conventional spectral instruments. This problem is solved by LCS
that offers possibilities of the “super-high-resolution spectroscopy.”
It uses not the usual power spectrum S(ω) (5), but a “time
spectrum”—the temporal correlation function which in scalar
fields can be expressed as a normalized single-point correlation
function (1), g(τ) � Γ(τ)/〈I〉 � 〈E(0)E(τ)〉/〈I〉 (〈I〉 is the average
intensity, and the spatial arguments are omitted, as the
characteristics are considered in a single spatial point).

According to Eqs 3, 4, S(ω) and g(τ) are connected by the
Fourier transform. For Gaussian statistics, g(t) � exp (−τ/τc)
where τc � 1/Δωc is the characteristic time of the random
process, related to the spectral line broadening Δωc. For example,
upon scattering of light by particles performing the Brownian
motion [35], τc � 1/(Dq2), where q � (4πn/λ) sin(θ/2) is the
scattering wave number, n is the medium refractive index, and

FIGURE 1
Experimental arrangement for measurement of the refractive-index variations in aqueous solutions: (1) single-mode laser; (2) collimator; (3) beam
splitter; (4) liquid sample; (5, 7) mirrors; (6, 10) quarter-wave plates; (8, 9) piezoceramicmodulators; (11) analyzer; (12) field diaphragm; (13) photodetector;
(14), phase-sensitive electronic amplifier; (15) power supply; (16) recorder.
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D � kT/(6πηrg) is the Einsteinian diffusion coefficient of a particle
with the hydrodynamical radius rg in the medium with the viscosity
coefficient η under temperature T. Accordingly, the correlation
analysis of the scattered signal gives access to all the above
parameters and, through them, to fine details of the underlying
molecular phenomena.

The principles of LCS can be easily understood using the
example of the frequently employed experimental arrangement of
optical homodyning (Figure 2). Here, highly coherent probing
radiation is scattered by optical inhomogeneities of the object,
which performs random phase modulations. The size of the
observed scattering volume is limited by the aperture d1. The
scattered wave possesses a characteristic speckle structure [30,
31], and the second aperture diaphragm d2 separates a small
portion of scattered light propagating at an angle θ. Since
scattering occurs in the object with movable optical
inhomogeneities, the speckle pattern is variable, and its changes
in time are determined by the arrangement parameters and by the
nature of the motions in the object of study. In order to record the
temporal intensity variations, the diaphragm d2 should select no
more than one speckle. Therefore, the geometry of the experiment
must satisfy the relation d1d2 ≪ Lλ.

Remarkably, in this method, the scattered light is observed
immediately, without intermediate confrontation to the delayed
or shifted probing-beam copy, immanent in the interference
schemes (see, e.g., Section 3.1). This circumstance is favorable for
simplicity and controllability of the equipment but puts additional
requirements to the probing-radiation stability and spectral purity.
In the scheme of Figure 2, the photodetector behind the diaphragm
d2 measures the time-dependent intensity of the scattered light I(t),
whose fluctuations δI are determined, e.g., by the Brownian motion
of suspended particles, local fluctuations of solutions’ parameters, or
by conformal variations in protein macromolecules. These data
can be recovered from the registered signal but the difficulty
in the inverse problem solution is that the detector measures the
wave intensity rather than its amplitude, and the experimental
procedure determines the second-order autocorrelation function

g(2)(τ) � 〈I(0)I(τ)〉/〈I〉2. In case of Gaussian statistics, the
simplifying relations can be used:

g 2( ) τ( ) � 1 + g τ( )∣∣∣∣ ∣∣∣∣2,
and, for more complex situations

g 2( ) τ( ) � a + b · g τ( )∣∣∣∣ ∣∣∣∣2 � a + b · exp −2Dq2τ + Cτ2 + . . .( )
with properly adjusted parameters a, b, C.

The second problem is associated with the very low intensities of
scattered light. Therefore, photomultipliers in the photon-counting
mode have traditionally been used as photodetectors, which in
modern devices are replaced by the avalanche diodes. Then, the
photo-counts can be recorded with a rather simple optical
equipment, after which the entire data stream is easily converted
into digital format, and the further signal processing and storage of
both the original data and the results of their processing depend only
on the power of the digital part of the device and software solutions.
In particular, the correlation function of intensity can be found via
accumulation of photo-counts registered for several consecutive
pulses [37, 38].

Normally, in the LCS method, the light scattered by Brownian
particles is more intense and therefore more conveniently registered
than the signal formed directly by the medium fluctuations. For this
reason, the particles can be used as sensitive microscopic probes
providing access to specific details of the molecular processes in
liquid. For example, when studying the cluster structure of water-
ethanol solutions in the vicinity of their singular point (the
isotemperature point of contraction at 0.08 mol fraction of
alcohol), latex particles were used in such low concentrations
that they did not change the solution properties [39, 40]. It was
found that at alcohol concentrations lower and higher than the
singular point, the specific features in the particles’ mobility exist,
which confirmed the emergence of micro-inhomogeneous
structures of such solutions with different types of ordering.

In application to liquid and aqueous media, the interference
techniques, briefly outlined in this Section, can be used for detection

FIGURE 2
Homodyning scheme for the LCS (explanations in text).
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and characterization of specific topological wave structures whose
existence in such systems has been recently demonstrated: phase
vortices, skyrmions, merons, etc. [41–43]. These structures are well
known in quantum physics and classical optics but the gravity and
capillary surface waves in liquids offer very demonstrative and easily
attainable realization of their principles illustrating the universal
topological phenomena associated with wave fields. These
topological structures naturally appear during interference of
linear surface waves in water and can be efficiently controlled via
regulation of the amplitudes, phases, frequencies (spectral
composition) of the interfering waves, i.e., the same set of
instruments that is used for optical fields in the correlation-optics
framework. Their observation can be realized in the arrangements
similar to those of Figures 1, 2 with the spatially-resolving detection
of local phase differences via the spatially inhomogeneous
interference patterns [21]. Additionally, their specific dynamical
features may be favorable for implementation of the dynamical
influence on the optical characteristics of liquids, in particular, on
their refractive index (discussed in Section 3.1.1).

3.2 Interference methods for precise
diagnostics of random phase objects

As a general inference of the above presentation, one may note
that, currently, the idea of metrological assessment of the statistical

consistency, both in time and in space, for wave fields has been
practically implemented. Flexible, reliable and attainable
interference approaches for metrological evaluation of the field
correlation moments (including the mixed moments, describing,
e.g., correlations between the amplitudes and phases of the fields
involved) of different orders have been developed [44].

The ideology underlying the design and composition of such
metrological systems is based on the concept of phase object (PO).
From now on, the term “PO” means a material object whose
influence on the input radiation can be reduced to the phase
modulation of the output (reflected or transmitted) beam; of
course, this “pure” phase modulation can only be observed
immediately after the light-object interaction, i.e., in the
“boundary zone” [44, 45] (with further propagation, the phase
modulations inevitably induce the amplitude inhomogeneities).
In many cases the PO-induced phase transformations are
random and are directly associated with the irregularities of the
object transmission or reflection coefficients, which can be described
in a unified way as

Eout x, y( ) � TPO x, y( )Ein;

TPO x, y( ) � TPO| | exp iφ x, y( )[ ], TPO| | ≡ 1 (9)
where the input field amplitude Ein is supposed homogeneous, as
well as the modulus of the transformation coefficient TPO. Eqs. 9
show that the phase characteristics of the output radiation Eout(x, y)

FIGURE 3
(A) Schematic view of the setup for measuring the correlation moments of the random PO [48]; (B) Optical arrangement for surface roughness
measurements with sub-wavelength transverse size of inhomogeneities; (C) Experimental arrangement for PO diagnostics with large longitudinal
inhomogeneities. Notations: (L) laser; (TS) temporal source; (T) telescopic system; (S) sample; (P, P1, P2, P3) polarizers, (O, O1, O2, O3, O4) objectives;
(MO1, MO2) micro-objectives; (AD) aperture diaphragm; (FD) field diaphragm; (BS) beam-splitter; (PBS) polarizing beam-splitter; (QWP) quarter-
wave plate; (IS) integrating sphere; (CW) calcite wedges; (EM) electromechanical modulator; (M1) movable mirror; (M2) mirror; (PC) piezo-ceramics; (PD,
PD1, PD2) photodetectors; (CCD) camera.
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are uniquely related to the phase characteristics of a random PO.
Ultimately, the optical diagnostics of such a PO mainly requires a
selection of appropriate methods for describing its phase structure;
according to Eqs. 9, a complete description of such a random PO can
be performed, akin to stochastic optical fields, via the probability
density of the stochastic phase-modulation field φ(x, y) and its
correlation and cross-correlation functions. Generally, Eqs. 9
constitute a basis for the flexible and efficient approach to
description of the PO and the probing optical field interactions,
which can be referred to as the “random phase screen
model” [45, 46].

3.2.1 Objects with Gaussian statistics and super-
wavelength transverse size of inhomogeneities

Since the information about a random PO is obtained from the
optical radiation interacting with it, the random PO diagnostics
must be carried out in two stages. The first one is identifying the
relationships between the object statistical properties and the probe-
field correlation parameters for different recording zones; the second
one is the practical measurement of the probe field correlation
parameters of necessary orders and with appropriate accuracy [47].

The problem is usually considered using a model of infinitely
extended random POs. It is based on the approaches proposed,
tested and implemented within the framework of statistical radio-
physics [44]. Its main assumptions are: 1) all spatial-frequency
components corresponding to the PO phase structure contribute
to formation of the radiation field resulting from the light-object
interaction; 2) the dispersion σ2φ0

of the object phase distribution
satisfies the condition σ2φ0 < 1, which means that the optical-path
difference between separate points of the object-beam cross section
is noticeably less than π; 3) the correlation radius lφ0 of the random-
PO inhomogeneities exceeds the radiation wavelength λ. Meaningful
examples of practical realization of this scheme are presented in a lot
of publications, in particular, see Refs. [47–55].

The diagnostics of the PO structure is relatively simple if the
random phase modulations obey Gaussian statistics. In this case, a
complete description of the object is supplied by its mean phase and
phase dispersion [54]. There is a unique and direct relationship
between the phase dispersion of an object and the relative contrast of
the speckle field obtained due to its interaction with the probing
optical field [54]. By measuring the speckle-field contrast in different
recording zones, one can obtain the object phase dispersion σ2φ0

. In
this case, it is necessary to know the number of inhomogeneities that
contribute to the output field formation, and to perform a laborious
procedure of the field scanning with subsequent computer
processing of the results.

Within the framework of this formulation of the diagnostic
problem [48, 50], the unambiguous relation was found between the
transverse coherence function Γ⊥(ρ) of the output field, arising from
interaction of the incident plane wave with the object, and the phase
dispersion of the object:

Γ⊥ ρ( ) � exp σ2φ0 kφ0 ρ( ) − 1[ ]{ } (10)

where ρ � ������
x2 + y2

√
is the transverse displacement, σ2φ0

is the object
phase dispersion, and kφ0(ρ) is the phase correlation coefficient.

For objects with σ2φ0 < 1, the transverse coherence function 10 is
strictly related with the transverse coherence function of the

boundary field (i.e., the optical field observed immediately behind
the sample, if the random PO is transparent, or after the rough-
surface reflection, if the object is reflecting; in other words, it is the
near field for the scattered wave). If ρ exceeds the PO correlation
radius lφ0, then kφ0

(ρ) � 0, and the measurement of Γ⊥(ρ> lφ0) gives
an immediate access to the value of σ2φ0

. This can be performed with
the help of a modified Mach–Zehnder interferometer
[48] (Figure 3A).

In this scheme, a quasi-plane-wave beam is formed by the laser
source L and the collimator T, after which it is divided into the object
arm (elements P1, S) and the reference arm (element P2). The
object-arm beam impinges the sample S perpendicular to its surface
(in Figure 3A, the transparent sample of fused quartz is implied but
simple modifications of the same scheme enable testing the
reflecting surfaces). The resulting beam obtained after passing the
sample is superimposed with the reference beam; the mixed output
beams are collinear. The unwanted displacements of the compared
beams in the longitudinal direction somewhat hamper measuring
the object inhomogeneity. To avoid this difficulty, a method for
measuring the phase dispersion was chosen, which connects the
mixed third-order correlation moment of the amplitude fluctuations
with the phase dispersion function. The imaging system, containing
the objective O and diaphragms AD, FD, projects the resulting
intensity distribution onto the photodetector PD input plane. The
observed pattern expresses the interference between the plane
reference wave and the phase-modulated object wave, which
enables to find the relation between the phase dispersion and the
normalized value of the intensity inside the averaging area [48]

〈Is x, y( )〉/I0 � σ2φ0 .

Here Is(x, y) is the resulting field intensity, I0 denotes the
reference-wave intensity. Herewith, σ2φ0 � σ2A + σ2φ, where σ2A is
the mixed third-order correlation moment of the amplitude
fluctuations. For the near-boundary zone, σ2A � 0, which enables
to assume 〈Is(x, y)〉/I0 � σ2φ. Simultaneously, these measurements
give access to the 3rd- and 4th-order correlation moments, i.e., the
asymmetry coefficient ka and excess kk:

ka � 〈 Is x, y( )[ ] 3 /

2〉
I0

3 /

2
, kk � 〈 Is x, y( )[ ]2〉

I20
− 3.

There is a connection between the field scintillation index and its
phase dispersion, on the one hand, and a set of statistical moments
that characterize the statistical structure of an object [44]. In
particular, knowledge of the correlation moments of a random
field up to the fourth order enables to approximate the
characteristic function (spatial-frequency distribution) of this
field θ(κ) [56]. In turn, the characteristic function determines the
distribution function of the heights h of irregularities for the
examined rough surface in the form

F h( ) � 1
2π

∫∞

−∞
θ κ( ) exp −iκh( )dκ. (11)

This way determines the distribution function with relative error
not exceeding 5%–7% [56]; the available sensitivity of the roughness
irregularity measurements reaches ~5 Å [48, 54]. In a whole, the
above results form a basis for the development of metrology
methods for high-speed, high-precision device prototypes, which
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have been successfully verified in a series of consistent
metrological tests.

3.2.2 Phase objects with sub-wavelength
transverse size of inhomogeneities

Optical diagnostics of surfaces with a roughness transverse
size comparable to λ require extracting the information that is
contained in high-spatial-frequency components of the reflected
(scattered) field. This problem can be solved with a modified
approach in which the regular and diffuse parts of the reflected
radiation are spatially separated [49, 50], and the surface
roughness characteristics are evaluated from the interference
measurement of the regular part and photometric
measurement of the diffuse part of the object wave.

To this end, in the optical arrangement of Figure 3B [49], a
single-mode He-Ne laser radiation (λ = 632.8 nm) is used, which
forms a quasi-plane-wave beam after passing a telescopic system T.
Then, a homogeneous component of the beam is separated bymeans
of the diaphragm AD. Its polarization is directed according to the
transmission plane of the polarizer cube PBS, making a 45° angle
with the principal axis of the quarter-wave plate QWP. Afterwards,
the beam enters the integrating sphere IS to interact with the surface
of the tested sample S. The resulting beam intensity Ip is composed of
three contributions: 1) coherent part Ic, which leaves the
photometric sphere after being reflected from the surface, 2)
stochastically reflected light Is propagating within the coherent
beam aperture, and 3) diffusely reflected light Id which is
“caught” by the photometric sphere. The beams Ic + Is pass
through the quarter-wave plate QWP twice, thus experiencing a
90° rotation of the plane of polarization. Therefore, the beams Ic + Is
undergo a total reflection from the beam-splitting face of the cube
PBS and enter the displacement interferometer formed by two
calcite wedges CW that implement a plane-parallel plate and a
polarizer. The principal axes of the wedges coincide and make a 45°

angle with the plane of polarization of the beam approaching from
the cube PBS, while the polarizer P transmission plane makes a 90°

angle with this plane. The image of the surface S is projected onto the
field-diaphragm plane FD, after which it is registered by a
photodetector PD1. The diffusely reflected beam intensity Id is
measured by a power detector PD2. The transverse relative
displacement of the beams mixed in the polarization
interferometer, which is necessary for measuring the coherence
function Γ⊥(ρ), is performed by an electromechanical modulator
EM. The displacement ρ is set to be larger than the roughness size
lφ0. Finally, the coherence function for such displacements and the
phase dispersion are determined by equations [49]

Γ⊥ ρ> lφ( ) � Imax − Imin

Imax + Imin

Ip − Id
Ip

( ),
σ2φ0 � − log

Imax − Imin

Imax + Imin
( ) − log

Ip − Id
Ip

( ).
The schemes and approaches outlined in the above paragraphs

form the basis of efficient diagnostic systems for various surfaces,
e.g., those assigned for applications in optical, semiconductor, and
microelectronic techniques. These are especially valuable for the
quality control of ultra-smooth, slightly rough surfaces, where the
achieved sensitivity, estimated by the height parameter (the standard

deviation of the rough surface profile from the baseline) is ~3–5 Å,
and the response speed is at the level of 1 s [50].

3.2.3 Phase objects with large longitudinal
inhomogeneities

Further developments of the correlation-optics techniques,
based on the random PO model, for the rough surface
diagnostics, are coupled with their extension to objects with non-
Gaussian statistics, fractal random surfaces, and coarse surfaces with
the height variations exceeding the probing beam wavelength [21].
In such cases, the statistical properties of fractal surfaces can be most
naturally described via the spatial power spectrum of the surface
inhomogeneity h(x,y) rather than by the correlation
function [50–52].

Relating the spatial structuring of light scattered by rough
surfaces of different natures, interesting problems emerge in the
framework of their distant diagnostics. Here, the two situations can
be singled out and separately analyzed. The first one appears when
the dispersion of the surface-inhomogeneity heights is comparable
or exceeds the wavelength of the probing coherent beam, and there is
no specular component of the reflected radiation. Accordingly, the
unambiguous connection between the statistical parameters of
roughness and scattered field is lost. To diagnose such surfaces,
new approaches of fractal and singular optics are employed [51, 52].
However, such approaches only provide classification of rough
surfaces, distinguishing the random and fractal ones.

In this case, the task of optical diagnostics requires an
employment of additional means from the arsenal of correlation-
optics tools. Namely, together with the usual transverse field
correlations, it is necessary to study how the longitudinal
coherence function of the incident beam is transformed, and to
quantitatively assess this transformation. It is quite appropriate to
assume that the longitudinal coherence function of the object field
appears as a convolution of the longitudinal coherence function
Γ0(Δz) of the probing beam and the distribution function F(h) of the
heights of irregularities of the surface under study [53]:

Γ Δh( ) � ∫hmax

0
Γ0 h − Δh( )F h( )dh (12)

where F(h) describes the statistical distribution of the partial signal
delays determined by the surface inhomogeneities (cf. Eq. 11).

The experimental determination of the longitudinal coherence
function is coupled with difficulties caused by the unequal visibility
of the resulting interference pattern, which originate from the,
generally, polychromatic nature of waves with finite coherence
length lc. To overcome these difficulties, a Michelson
interferometer was engaged (see Figure 3C), in which a
monochromatic or polychromatic image of the rough surface
(formed by elements MO1, O4 at the CCD input plane) is mixed
with a monochromatic or polychromatic reference field formed by
the mirror M2 [53, 54]. Herewith, it is admissible that the depth of
phase modulations caused by the surface relief may exceed the
coherence length of the probing radiation.

Nevertheless, the interference between the phase-modulated
object beam and a coherent reference beam having a smooth
simple-shape wavefront, supplies sufficient information for
solution of the diagnostic problems [53, 54]. The 3D interference
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pattern depends on the local value z of the optical path difference
between the beams:

I x, y, z( ) � I0 + Is x, y( )
+ 2

��������
I0Is x, y( )√

Γ z − z0( )| | · cos 4π
λ

h x, y( ) − z[ ]{ }
(13)

where I0 is the reference wave intensity, Is (x,y) is the object-wave
intensity distribution (the rough-surface image) in polychromatic
light, and z0 is an arbitrary starting position, which is controllable by
means of piezoceramics PC (Figure 3C). This example demonstrates
that the data, obtained using partially-coherent (in time) probing
radiation, supply an additional channel for information on the
structure of rough surfaces with large inhomogeneities h > λ.
The results can be obtained after the proper analysis of the
interference fringes and are related to the last (cosine) multiplier
of Eq. 13 responsible for the pattern visibility.

Another situation occurs in the opposite case of slightly rough
(weakly structured) surfaces, where the phase inhomogeneities are
distributed with dispersion much less than 1, and their transverse
dimensions are significantly smaller than the wavelength. In this case, it
seems that the most efficient and facilitative method is based on the use
of micro- or nanoparticles that “feel” the surface-induced optical-field
structure via optical forces that cause their concentration near special
points (intensity minima, maxima, saddle points, etc., forming the field
“skeleton” [1, 57–59]) and, in this manner, visualize the details of the
surface relief. In this context, the specially designed carbon
nanoparticles look especially useful as metrological probes [21, 47,
55, 60]. The latest results demonstrate the possibility of studying distant
objects in real time by analyzing the skeleton of the scattered speckle
field and studying the behavior of carbon nanoparticles under the
influence of internal energy flows of this field. The carbon nanoparticles
have been successfully used for reconstruction of the 3D landscape of
super-smooth surfaces, with the lateral resolution ~10 nm, fairly
surpassing the well-known Abbe limitations of optical imaging
systems [47, 55, 60].

4 Spatio-temporal light: correlation
optics and dynamical properties of
polychromatic waves

Last examples of the previous Section have illustrated the useful
utilitarian properties of probing beams with low temporal
coherence, and thus lead us to understanding the special
importance of non-monochromatic (although spatially coherent)
light for optical-diagnostic problems. Such fields show certain
specific statistical and dynamical features which are briefly
discussed in this Section.

4.1 Transient superposition: Interference of
waves with different frequencies

The concept of transient superposition was introduced for
characterizing the phenomena obtainable with quasi-
monochromatic beams of slightly different central frequencies

[61]. Let us consider two waves for which the electric field values
can be represented by Fourier integrals:

~E1 R, t( ) � ∫∞

−∞
U1 R,ω( )e−iωtdω, ~E2 R, t( ) � ∫∞

−∞
U2 R,ω( )e−iωtdω

(14)
(from now on, symbols with tilde “~” denote “true” instantaneous
characteristics, in contrast to the time-averaged ones which will be in
the focus of further analysis). Here R = (x, y, z)T denotes the spatial
coordinates (superscript “T” means the matrix transposition), the
spectral densities can be presented in the form U1,2(R,ω) �
A1,2(R,ω) exp[iφ1,2(R,ω)] where A1,2(R,ω) and φ1,2(R,ω) are
real functions, and A1,2(R,ω) � A1,2(R,−ω) is an even while
φ1,2(R,ω) � −φ1,2(R,−ω) is an odd function of ω (otherwise
integrals 14 do not represent real-valued functions). Generally,
the spectral densities in (14) satisfy the real-value conditions

U1,2 R,−ω( ) � U1,2
* R,ω( ). (15)

In turn, it is suitable to suppose the separability of the spatial and
spectral arguments in A1,2(r,ω),

A1,2 R,ω( ) � a1,2 R( )ρ1,2 ω( ), (16)

so the waves’ amplitudes are determined by a1,2(R)while the spectra
ρ1,2(ω) are normalized by the condition

∫∞

−∞
ρ1,2 ω( )dω � 1. (17)

Additionally, to reflect the real situation of quasi-
monochromatic waves, we suppose

�ω2 – �ω1 ≪| �ω, δω1 ≪ �ω, δω2 ≪ �ω| (18)
where �ω1, δω1 and �ω2, δω2 are the central frequencies and widths of
the spectra ρ1(ω) and ρ2(ω), respectively, �ω = | �ω2 + �ω1 |/2 is the
mean central frequency of the waves (14). For determinacy, the
assumption �ω2 > �ω1 is accepted in further reasonings.

We consider superposition of waves (14) that forms a resulting
field ~E1(R, t) + ~E2(R, t). Its observable characteristic is the intensity
proportional to the energy density,

~I R, t( ) � ~E1 R, t( )[ ]2 + ~E2 R, t( )[ ]2 + ~I12, ~I12 � 2~E1 R, t( )~E2 R, t( ).
(19)

According to the classic theory of the second-order coherence
[61], the waves ~E1(R, t) and ~E2(R, t) are mutually incoherent. At
the same time, under conditions (18), a certain statistic relation
exists between the waves (14), which can be revealed by
observations of the time-average behavior of the intensity
(19). In general, expressions (19) contain the terms oscillating
with zero or low frequencies (those are formed by the products of
spectral components with positive and negative frequencies) and
the rapidly oscillating ones in which spectral components with
frequencies of the same sign are combined. The physically
observable behavior is described by the quantities (19)
averaged over the rapid oscillations.

Themost important results are associated with the last (interference)
term of (19), I1,2. By using relations (15)–(18), its time-averaged value
with sufficient accuracy can be described by equation
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I12 � 2a1 R( )a2 R( )∫
0

�ω

μ R,Δω( )eiΔωt + μ* R,Δω( )e−iΔωt[ ]d Δω( )
(20)

where

μ R,Δω( ) � ∫∞

0
ρ1 ω( )ρ2 ω + Δω( ) exp iφ1 R,ω( ) − iφ2 R,ω + Δω( )[ ]dω

+∫∞

0
ρ1 ω( )ρ2 ω − Δω( ) exp −iφ1 R,ω( ) + iφ2 R,ω − Δω( )[ ]dω.

(21)

The quantity μ(R,Δω) characterizes the statistical and, possibly,
regular interrelations (“coupling”) between the waves (14). The main
properties of the transient superposition (20), (21) can be illustrated by
the simple situation where both waves are quasi-monochromatic,

ρ1,2 ω( ) � 1
2

δ ω − �ω1,2( ) + δ ω + �ω1,2( )[ ] (22)
and possess similar phase distributions such that

φ1,2 R,ω( ) � φ0 ω( ) + ω

c
ζ R( )

where the function ζ(R) characterizes the (common) wave-front
shape, and φ0(ω) � τ0ω means that the initial phases of all spectral
components are determined by linear phase retardations with
respect to a certain initial moment of time common for both
constituents. Under these conditions,

I12 R, t( ) � 2a1 R( )a2 R( ) cos Δ�ω t − ζ R( )
c

− τ0( )[ ], Δ�ω ≡ �ω2 − �ω1

(23)
which supplies the usual expression of beatings observable in the
superposition of waves with different frequencies. Eq. 23 describes
the slowly-varying interference pattern moving with the velocity
determined by the difference of the central frequencies.

4.2 Bi-chromatic superposition of paraxial
vector beams: polarization beatings

The latter results of the previous Section testify that some
essential features of the non-monochromatic optical fields can be
understood via the simplified analysis of a bi-chromatic
superposition containing only two frequencies (Eq. 22). In
Section 4.1, the scalar field model was considered which is
applicable to beams with a homogeneous linear polarization [58,
59]; now we address a bit more complex situation where the
superposition includes two vector paraxial beams with arbitrary
polarization in the transverse cross section.

In this case, it is suitable to start with the explicit expressions for
bi-chromatic superposition that follow immediately from the vector
analogs of Eqs. 14, 22:

~E r, z, t( ) � ~E1 r, z, t( ) + ~E2 r, z, t( ),
~E1,2 r, z, t( ) � Re E1,2 r, z, t( )[ ], E1,2 r, z, t( ) � u1,2 r, z( ) exp ik1,2s( )

(24)
where s � z − ct, c being the light velocity, r = (x, y)T is the transverse
radius-vector, E1,2(r, z, t) is the complex vector corresponding to the

positive-frequency part of the spectral expansion (14) (simplified
form of the analytical signal [14]); the frequencies ω1, ω2 coincide
with the corresponding central frequencies �ω1, �ω2 so there is no need
for their separate notation, and the wavenumbers k1,2 = ω1,2/c. The
transverse vector functions u1,2(r, z) are the slowly-varying paraxial
complex amplitudes which can be expressed via the (x, y)
components [58, 59]:

u1,2 � exu1,2x + eyu1,2y (25)

(ex, ey, and ez are the unit vectors of a Cartesian frame). In turn, the
complex amplitude components are characterized by their own
amplitudes

u1,2x r, z( ) � a1,2x r, z( ) exp iφ1,2x r, z( )[ ],
u1,2y r, z( ) � a1,2y r, z( ) exp iφ1,2y r, z( )[ ]. (26)

For illustration, we consider the field behavior in a single point
of the beam cross section, which allows one to omit the coordinate
dependence of (26). Then, Eqs 24, 26 determine the instantaneous
behavior the electric field components. It is suitable to choose the
time-scale origin so that φ1x � 0 at the considered point, and to
characterize the polarization of each wave by the phase shift between
the x- and y-components Δφ1 � φ1y − φ1x, Δφ2 � φ2y − φ2x. As a
result, denoting the initial phase shift between the x-components as
φ2x − φ1x � φ21, one obtains

Ex t( ) � a1x cos k1z − ω1t( ) + a2x cos k2z − ω2t + φ21( ),
Ey t( ) � a1y cos k1z − ω1t + Δφ1( ) + a2y cos k2z − ω2t + Δφ2 + φ21( ).

(27)
These relations describe the instantaneous behavior of the

electric field in a bi-chromatic polarized wave [62–66]. In
contrast to the usual linear or elliptic polarizations, observed in
monochromatic fields, here the electric vector describes rather
complex trajectories. If the frequencies ω1 and ω2 are
commensurate, the trajectories are similar to the Lissajous figures
[67] repeatedly reproduced with the beating period T �
2π(N1/ω1) � 2π(N2/ω2) where N1 and N2 are the smallest
integer numbers satisfying the equality N1/ω1 � N2/ω2. Their
forms depend on the relations between the amplitudes, phases
and frequencies of the composing waves (27), and can be rather
intricate. Generally, these forms are characterized by the
symmetric matrix

M � mxx mxy

mxy myy
( ) � 〈E2

x〉 〈ExEy〉
〈ExEy〉 〈E2

y〉
( ) (28)

where 〈. . .〉 means the average over the beating period (“moments
of inertia tensor” of the Lissajous figure [62, 63]). This matrix is
similar to the real coherence matrix (6) at τ = 0 and to the moment
matrix in parametric characterization of the beam transverse profile
[20, 68]. The Lissajous singularities appear as the generalizations of
the usual monochromatic polarization singularities [69, 70] in
points where the eigenvalues of the matrix (28) are equal and
where at least one of the eigenvalues vanishes (analogs,
respectively, of the C-points and s-contours [69, 70]). Such
structures naturally appear in the processes of higher-harmonic
generation where N1 = 1, N2 = 2, 3, . . . [62–64], and the involved
beams are spatially inhomogeneous.

Frontiers in Physics frontiersin.org10

Angelsky et al. 10.3389/fphy.2024.1383256

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1383256


Here, we briefly consider the instantaneous field in a single
point; in this case, Eqs 27 allow to disclose the formation mechanism
of the time-averaged characteristics in the general polychromatic
case [71]. Some numerical results are presented in Figure 4, which
illustrates the case of superposition of beams with orthogonal linear
(circular) polarizations. This situation is free from the limitations
associated with the harmonic generation, and the conditions N1 = 4,
N2–N1 = 1 (ω2/ω1 = 1.25) are accepted. Accordingly, the electric-
field-vector motion is periodic with the period depending of the
frequency difference, T � 2π/ |ω2 − ω1|. The electric-field behavior
illustrated by Figure 4 represents a sort of beatings whose specific
features are dictated by the vector nature of electromagnetic field.
However, this motion cannot be treated as slow oscillations because
there are many “fast” details inside this “slow” period.

Notably, in Figures 4A, B, the electric vector always rotates in the
positive (counter-clockwise) direction while in Figures 4C, D, the
rotation handedness changes inside the single period (in points A
and B). This corresponds to the zero average handedness of the
electric field rotation, which is an example of the Lissajous
singularity [62, 63] analogous to that realized at points of
s-contours in monochromatic fields [1, 59, 70]. The complicated
electric-vector trajectories associated with arbitrary bi-chromatic
and, generally, polychromatic fields [71, 72] cause the complex states
of polarization whose systematic studies are yet at the early stage.
Specific analytical instruments for their description are being

developed, in particular, the bi-chromatic Stokes parameters and
the polarization matrices (Eq. 28 and its 3D generalization [63, 73]),
the technique based on the time-dependent modified Jones vector
[72], etc. Such fields show interesting properties, especially in the
tightly-focused state; for example, their spin AM and the spin vector,
indicating the circulation handedness and the axis, around which
the electric field circulates, may be different, and thus supply
independent characterization of the field [73]. Also, the Lissajous
figures supply impressive manifestations of the SU (2) symmetry
group transformations in optics [74]. It may be expected that the
purposeful creation and application of desirable electric-vector
patterns, akin to those depicted in Figure 4, will be helpful for
realization of specific fine features in the light-matter interaction,
with applications for optical manipulation and data processing
techniques.

4.3 Energy flows and momentum in bi-
chromatic paraxial waves

In the previous Sections, the light fields description was mainly
based on the non-observable amplitudes and phases; the only
observable characteristic was the intensity—the light energy
density averaged over the rapid oscillations. However, the light
fields can be fruitfully and instructively characterized by the

FIGURE 4
Trajectories described by the electric-field vector in the cross section z = 0 of the superposition (27) of (A, B) circularly polarized waves with a1,2y =
a1,2x = a1,2, Δφ1 = π/2, Δφ2 = –π/2 and (C, D) linearly polarized waves with a1y = 0, a2x = 0, Δφ1 = Δφ2 = 0. In all cases the frequencies relate as ω2/ω1 = 1.25;
the ratio of amplitudes a2/a1 is (A) 0.5, (B) 0.8 and (C, D) 1 (a2y = a1x); the initial phase difference φ21 is (A, B) 0; (C) 0.1π and (D) 0.25π. Thin gray arrows
starting at the coordinate origin show some current electric vector positions, the red asterisk denotes its initial position at the moment t = 0, red
arrows show the direction of its motion with time; in points A and B (black asterisks), handedness of the electric-vector rotation changes. The whole
duration of the trajectory evolution equals to the beating period T � 2π/ |ω2 − ω1| = 4T1 where T1 is the period of wave 1. In all panels, the trajectories are
closed; in case (D), the same trajectory is described twice during the beating period, showing the retrograde motion after reaching points (A) and (B).
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internal energy flows which form a physically meaningful and
application-oriented framework for the optical field
characterization [58, 59]. Their importance for monochromatic
fields is obvious and well recognized; now we briefly outline their
generalizations for polychromatic (at the first stage, bi-chromatic)
light fields [57].

Generally, the field dynamical properties are characterized by
energy flow density (Poynting vector) P whose instant value P is
determined by equation [14]

~P � c

4π
~E×~H (29)

where ~H is the instantaneous magnetic-field vector. In a paraxial
beam satisfying Eqs. 24, the complex vectors characterizing the
transverse electric and magnetic fields (see the comments to Eqs. 24)
are determined by the standard relations [58, 59]

E � exEx + eyEy, H � exHx + eyHy � −exEy + eyEx. (30)

Additionally, there is a weak longitudinal field [58, 59] described
by equations

Ez � E1z + E2z, Hz � H1z +H2z (31)
where

E1,2z � i

k1,2

∂u1,2x

∂x
+ ∂u1,2y

∂y
( ) exp ik1,2s( ),

H1,2z � i

k1,2

∂u1,2x

∂y
− ∂u1,2y

∂x
( ) exp ik1,2s( ) (32)

(definitions of Eqs 24, 25 are used). Relations (30)–(32)
determine the complex positive-frequency quantities similar to
the 3rd Eq. 24; the instantaneous values are determined akin to the
2nd Eq. 24.

For paraxial fields, the Poynting vector (29) can be
decomposed into the longitudinal (main) and transverse
(internal) parts,

~P � ~Pz + ~P⊥.

The explicit expressions for the summands of this equation follow
directly from Eqs 29–32. However, their interpretation depends on
the assumed conditions of observation; the general approach here is
the same as in the intensity analysis of the superposition of
partially-coherent monochromatic components (Section 4.1).
Results of observation are determined by the observation time in
comparison with the period of beatings T � 2π/Δ�ω � λ22/cΔ�λ + λ2/c,
where λ2 is the shorter wavelength corresponding to ω2, and
Δ�λ � λ1 − λ2. Here, the first summand can be identified with the
coherence time, the second one is the wave 2 oscillation period.
Naturally, under the typical conditions (18), the period of beatings
practically coincides with the coherence time.

After averaging of the fast-varying terms (oscillation
frequencies 2ω1, 2ω2 and ω1 + ω2), the slowly-varying part of
the longitudinal flow density Pz can be found from equations

Pz � ezPz, Pz � c

8π
u1| |2 + u2| |2 + u1 · u2

*e−iΔk·s + u2 · u1
*eiΔk·s( )

(33)

where Δk � k2 − k1 � Δ�ω/c (see Eq. 23; in this Section, due to identity
ofω1 and �ω1,ω2 and �ω2,Δ�ω � |ω2 − ω1|). The longitudinal flow (33) is
proportional to the superposition intensity; the expression in
parentheses can be derived from Eqs. 14–16 upon the condition
(22). The transverse Poynting vector (TPV) distribution is more
interesting. It is associated with the longitudinal field (31), (32), and
its value follows from the expression

~P⊥ � c

4π
−exRe E1z + E2z( ) · Re H1y +H2y( )[
−eyRe E1x + E2x( ) · Re H1z +H2z( )] (34)

whence, after omitting the rapidly oscillating terms proportional to
exp(± 2ik1,2s) and exp[± i(k1 + k2)s], one obtains the time-
averaged expression

P⊥ � PO⊥ + PS + Pint. (35)
In Eq. 35, the first term characterizes the summary orbital

(canonical) energy flow [58, 59] of both frequency components

PO⊥ � c

8π
1
k1

Im u1x
* ∇⊥u1x + u1y

* ∇⊥u1y( ) + 1
k2

Im u2x
* ∇⊥u2x + u2y

* ∇⊥u2y( )[ ]
� c

8π
1
k1

a21x∇⊥φ1x + a21y∇⊥φ1y( ) + 1
k2

a22x∇⊥φ2x + a22y∇⊥φ2y( )[ ]
(36)

where the representation (26) has been used, ∇⊥ � ex(∂/∂x) +
ey(∂/∂y) is the transverse gradient operator. Likewise, the second
term of (35) expresses the summary spin flow [58, 59],

PS � − c

8π
∇∅

1
k1

Im u1y
* u1x( ) + 1

k2
Im u2y

* u2x( )[ ]
� − c

8π
∇∅

1
k1
a1xa1y sin φ1x − φ1y( ) + 1

k2
a2xa2y sin φ2x − φ2y( )[ ]

(37)
where ∇∅ is the “skew gradient” operator,

∇∅ � −ez × ∇⊥ � ex
∂
∂y

− ey
∂
∂x

.

The contributions (36) and (37) are time-independent, while the last
term of (35) describes the slowly varying part, emerging due to
interference between the monochromatic components ~E1,2(r, z, t) of
Eqs. 24, oscillating in space and time with frequencies Δk and Δ�ω,
correspondingly:

Pint � c

8π
Im

1
k1

u2y
* ∇⊥u1y + u2x

* ∇⊥u1x( )e−iΔk·s[
+ 1
k2

u1y
* ∇⊥u2y + u1x

* ∇⊥u2x( )eiΔk·s
+ 1
k1

u2x
* ∇∅u1y − u2y

* ∇∅u1x( )e−iΔk·s
+ 1
k2

u1x
* ∇∅u2y − u1y

* ∇∅u2x( )eiΔk·s]. (38)

The first and second lines of (38) unite the terms with identical
polarizations of the waves 1 and 2; on the contrary, each term in the
third and fourth lines combines orthogonal polarizations of the
composing waves. For this reason, the first- and second-line terms
are non-zero in case when both waves are polarized identically, and
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vanish if the waves 1 and 2 are polarized orthogonally. The third and
fourth lines vanishe if both waves have identical linear polarizations
and do not vanish if these identical polarizations are circular. One
can treat the first-line contributions as the two-frequency
modification of the orbital flow, whereas the second line
performs the similar spin-flow corrections.

In turn, Eq. 35 and its constituents determine the longitudinal
angular momentum (AM) density [1, 58, 59] of the beam as

Lz � 1
c2

x − xc( )Py − y − yc( )Px[ ] (39)

where (xc, yc) specify the reference point with respect to which the
AM is defined. The local behavior of Lz is associated with the
peculiar points in the TPV distribution. In particular, this
distribution may possess singularities where the TPV magnitude
is zero and its direction is indeterminate [1, 58, 59]. In this case, the
TPV circulation (vortex) is observed near the singularity, which
indicates the presence of a non-zero AM (39) with respect to the
singular point in this area. In a non-monochromatic wave, the TPV
pattern is non-stationary, and its evolution in time discloses physical
mechanism of the formation and evolution of the TPV singularities.

Eqs 36–38 illustrate the general scheme of interactions (or
“coupling”) between the separate monochromatic contributions
of a polychromatic field. Each pair of discrete spectral
component forms its own set of orbital, spin and interference
contributions which, in complex, produce a rather complicated
picture of the internal energy flows. However, the resulting
observed picture depends on the observation time. For example,
in the special situation where the polychromatic field is formed by
the equidistant frequency comb ([2], part 3), not only the TPV
pattern but also the intensity and phase distributions show periodic
variations, including the beam profile expansions and contractions,
rotations (near the wave-packet “center of gravity” (xc, yc), see Eq.
39) and revolutions (around the propagation axis so that (xc �
0, yc � 0) in Eq. 39) [76, 77] with associated two forms of the orbital
AM [2, 78], etc.

In the limit case, when the observation time exceeds the
maximum period of oscillations, the observed TPV structure is
determined exclusively by the time-independent terms (36) and
(37), which describe the simple sum of contributions caused by each
spectral component. Obviously, this conclusion can be extended to
arbitrary polychromatic field: for large enough observation times the
resulting TPV structure looks as a direct superposition of the TPVs
of all spectral components,

Px,y � ∫∞

0
Px,y ω( )dω

Accordingly, the AM density can also be found via the simple
summation of expressions like (39): Lz � ∫∞

0
Lz(ω)dω.

When the observation period approaches the beating periods,
then the temporal variations, whose periods are determined by
differences between the spectral-component frequencies, become
noticeable. This case is described by Eqs 36, 37 supplemented with
the interference contributions (38). The most interesting (although
hardly observable) situations occur if an observer can resolve the
time intervals “inside” the beating period. Then, the complex non-
stationary TPV behavior can be realized (see, e.g., Figure 5 [79]). The
instantaneous structures with strong TPV circulation and,

consequently, with high AM may exist (Figures 5A, B). However,
just the opposite TPV circulations occur in other moments inside
the beating period, and for larger observation times the
structures disappear.

Nevertheless, the instantaneous vortices similar to those
depicted in Figure 5, like other optical vortices known from the
literature [1, 58, 59, 69, 80–82], can be used for implementing the
light-induced mechanical action on small particles, optical trapping
and micromanipulation.

5 Singular optics of spatio-temporal
wave packets: spatio-temporal
optical vortices

Presentation of the above Section 4 illustrates how the main
concepts and approaches of the correlation optics, primary
introduced for quasi-monochromatic fields with, generally, time-
independent behavior of the main observable characteristics, can be
extended to fields that are essentially non-stationary, and whose
temporal evolution comprises their characteristic features important
for the fields’ description and applications. Hence, we approach the
intriguing and fascinating realm of spatio-temporal (ST) light fields
where the temporal structure is of the main importance. This vivid
branch of optical research started from the discovery of ultra-short
pulses generated by lasers in the mode-locking regime (the history
can be found in Ref. [83]), and shows the fruitful progress during the
past decades, which was confirmed by the Nobel Prizes awarded in
2005, 2018 and 2023 [6]. Numerous captivating effects and
impressive applications are described in a huge massive of
literature (see, e.g., the recent compendia [2–5]), and the whole
ST-optics domain cannot be properly reflected in the limited frame
of this work. However, in this Section we present a few examples
illustrating the productivity of the ideas of correlation and singular
optics in this vibrant area of research.

5.1 Single-shot interferometry of transient
optical fields

First of all, we emphasize that in the ST optics, as well as for the
stationary fields, the main way for extraction the optical-field
parameters is the interference with a properly chosen reference
wave. However, in case of ultra-short (femtosecond) pulses, the
interference requires some special precautions. The main one is that
the whole measurement process should be completed within the
limited spatial and temporal duration of a single pulse (see [2], part
14); the second precaution is that both the object and reference
waves are essentially polychromatic, and the interference pattern
contains a “mixture” of overlapping monochromatic contributions,
which implies the additional task of its deciphering and
interpretation. These factors have led to the development of
“single-shot spectral interference” (SSSI) schemes [84, 85] where
the reference beam Eref and probe beam Ein

pr are formed from (or are
governed by) the same initial laser pulse that is used for generation
of the object (sample) beam ES.

In the arrangement of Figure 6A, the interference occurs in the
0.5 mm thick fused-silica “witness plate” where the Kerr effect
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produces the interference pattern. Regarding the regime, the
interference signal is generated in the form Eout

pr (I) ~ χ(3)ESE*
SE

in
pr

or Eout
pr (P) ~ χ(3)ESE*

i E
in
pr, χ

(3) being the non-linear susceptibility (in

the latter case, the auxiliary reference pulse Ei with the same central
wavelength and bandwidth 2 nm is applied). The resulting probe
pulse Eout

pr is analyzed in the imaging spectrometer which forms a set

FIGURE 5
The structure of instantaneous energy flows (arrows) for the superposition (24) of linearly orthogonally polarized beams with different
frequencies: a1x = a2y ≠ 0, a2x = a1y = 0, φ2y–φ1x = π/2, ω2 = 2ω1 (cf. Eqs 27). Images differ by the time moments t: (A) t = 0; (B) t = π/(ω2–ω1);
(C) t = π/2 (ω2–ω1); (D) t = 3π/2 (ω2–ω1). The TPV structures in the second half-period (B, D) reproduce the mirror-reflected structures of the first
half-period. The background of the panels (A–D) illustrate the TPV magnitude by the color saturation (see the colorbar).

FIGURE 6
Setup for the single-shot spectral interference analysis: (A) three-beam Kerr-based SSSI for the STOV characterization [85]; (B) two-beam linear
spectral interferometry (generalized scheme of Refs. [2, 86]). Further explanations see in text.
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of images of separate spectral components of the observed pulse thus
enabling the instantaneous detection of the spectrally-resolved
spatial distributions, whence the time-resolved pulse shape can be
extracted via the Fourier transform. The data of Eout

pr (I) give access
to the transient intensity of the sample pulse ES, whereas Eout

pr (P)
contains its transient phase in the form of time-dependent grating
~ IS(x, t) cos [�kx sin θ + Δφ(x, t)] where �k � �ω/c is the central
wavenumber, θ is the angle between the main axis and the
auxiliary reference beam Ei (see Figure 6 where θ = 6° [85]).

Another version of SSSI presented in Figure 6B involves only
linear interactions [2, 86]. Here, the reference and sample (tested)
pulses are collimated and spectrally resolved in the horizontal
direction by the diffraction grating. The cylindrical lens projects
the spectral distribution onto the camera input. In the vertical
dimension, the reference and sample pulses’ trajectories cross at a
small angle so that their images overlap at the camera thus forming
the interference fringes. In this simple configuration, the spatial
resolution is not high and is limited to the vertical direction only,
but, using the beam-splitter, the same procedure can be
simultaneously applied to the orthogonal transverse direction.
Additionally, several copies of the sample pulse, with prescribed
transverse shifts with respect to the reference position, can be
analyzed simultaneously to improve resolution and signal-to-
noise ratio.

In this way, the SSSI enables to obtain a spatially and spectrally
resolved map of the sample-pulse field distribution. However,
achievement of high spatial and spectral (temporal) resolution on
a single-shot basis is still a challenge and its practical realization
meets many difficulties, despite the crucial importance for high-
power and low-repetition-rate laser systems.

5.2 Gaussian spatio-temporal vortex
structures

Upon the conditions of Ref. [85], the SSSI is used for the
experimental characterization of the ST optical vortex (STOV),
which is a representative of a new family of singular ST light fields.
Due to their unique physical properties, uniting the essential ST
coupling with expressive topological and singular-optics features, the
STOVs are in the focus of the most scrupulous and permanently
growing attention during the last years [2, 3, 5, 85, 87–99]. Prior to
discuss the physical properties and manifestations of the STOVs, we
briefly outline their formal description.

To this purpose we start with considering the simplest Gaussian
ST wave packet [100]. In the scalar paraxial approximation, its
electric field distribution can be presented as E(0)

ST � u(0)ST e
i�ks

where s � z − ct,

u 0( )
ST � exp − s2

2ζ2
( )uHG

00

� A

b
��
π

√ exp −x
2 + y2

2b2
− s2

2ζ2
+ i�k

x2 + y2

2R
− iχ( ), (40)

A is the normalization constant, and uHG
00 (x, y, z) denotes the

Gaussian complex amplitude distribution (zero-order Hermite-
Gaussian mode) [58, 59, 80, 101]. The packet (40) propagates
along the longitudinal axis z as a usual Gaussian beam, and is

additionally modulated by the longitudinal Gaussian envelope
exp(−s2/2ζ2), with the length ζ = cτ and duration τ. Upon
propagation, coefficients of Eq. 40 vary according to the known
Gaussian-beam rules [58, 80]

b � b0

������
1 + z2

z2R

√
, R � z2 + z2R

z
, χ � arctan

z

zR
( ), zR � �kb20 (41)

where b0 is the beam waist radius, and it is supposed that the beam
waist is situated at z = 0. Based on the wave packet (40), the usual
(longitudinal) optical vortex (OV) can be constructed as

u 1( )
XY � y

b
e−2iχ − iσ

x

b
e−2iχ( )u 0( )

ST

� A

b
��
π

√ y

b
e−2iχ − iσ

x

b
e−2iχ( ) exp −x

2 + y2

2b2
+ i�k

2
x2 + y2

R
− s2

2ζ2
( )

(42)
where σ = ±1 denotes the OV sign. Quite similarly, the STOV
appears if the pre-exponential multiplier involves the spatial
transverse (say, x) and longitudinal (temporal) s coordinates:

u 1( )
ST � s

ζ
+ iσ

x

b
e−iχ( )u 0( )

ST

� A

b
��
π

√ s

ζ
+ iσ

x

b
e−iχ( ) exp −x

2 + y2

2b2
− s2

2ζ2
+ i�k

x2 + y2

2R
− iχ( ).

(43)
Like Eq. 42, this expression is a solution to the paraxial wave

equation but its z-dependent evolution differs in some important
aspects: in (42), the coefficients of x and y in the first parentheses
evolve identically while in (43), the coefficient of x, exp (–iχ)/b varies
according to the rules (41) but the coefficient of s remains constant.
This stipulates peculiar features of the STOV propagation which are
discussed below.

The properties of the STOV (43) are illustrated in Figure 7.
The intensity distribution in the (x, s) plane, calculated for the
case ζ = b0, σ = +1 and z = 0 (Figure 7A) is doughnut-shaped, with
bright ring and dark spot in the center. Moreover, the isolated
amplitude zero in point (s = 0, x = 0) is coupled with the phase
singularity: the field phase is indeterminate at s = 0, x = 0, and
grows by 2π upon the circulation near this point (Figure 7B).
These features resemble the field pattern of a circular OV (42) in
the transverse (x, y) plane depicted in Figure 7C for a
comparison. The 3D spatial profile (instantaneous intensity
distribution) of the STOV forms, generally, a toroidal
structure that can be illustrated by the equal-intensity surfaces
(Figures 7D–F). For the STOV (43), the toroid is situated in the
longitudinal plane (s, x) containing the propagation axis [90, 95],
while a light pulse with the conventional transverse OV forms a
similar toroid in the (x, y) plane illustrated by Figure 7D; the
“depth” of the latter toroid (its size along the s-direction) is
determined by the pulse duration ζ/c.

The energy flows in the STOV are determined by Eq. 43 and the
scalar versions of Eqs 33, 36 with k1 = k2 = �k:

Pz � cw � c

8π
s

ζ
( )2

+ x

b
( )2

+ 2σ
sx

ζb
sin χ[ ] u 0( )

ST

∣∣∣∣ ∣∣∣∣2 (44)

(w is the STOV energy density, |u(0)ST |2 is determined by Eq. 40);
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Px � c2

8π �ω
σ
s

bζ
cos χ · u 0( )

ST

∣∣∣∣ ∣∣∣∣2 + x

R
Pz

� c

8π�k
σ
s

ζ

b0
b2

1 + 2x2

b20
1 − b20

b2
( )[ ] +

�kx

R

s2

ζ2
+ x2

b2
( ){ } u 0( )

ST

∣∣∣∣ ∣∣∣∣2,
Py � y

R
Pz.

(45)

The TPV pattern in Figure 7A shows a sort of circulatory energy
flow associated with the corresponding orbital angular momentum
(OAM) of the STOV [90, 94–96]. It also resembles the OAM of a
conventional OV (Figure 7C) but is directed orthogonally to the
beam propagation (Figure 7E). Additional distinctions follow from
the fact that the STOV (43) contains only the x-directed TPV
component in the (s, x) plane. In contrast to the conventional
circular OV (Figure 7C), in the STOV, a certain “imbalance”
exists in the transverse energy flows between the regions s >
0 and s < 0, which is well seen in Figure 7A and Eqs. 45. Due to
this imbalance, the spatial configuration of the STOV does not
preserve the circular symmetry and changes in the course of
propagation (see Figure 8).

As a result, the “perfect” circular STOV is only realized in a
single cross section (under conditions of Figure 8, this is the waist
section but proper adjustment of the parameters ζ, b0 and χ enables
to get the circular STOV in any longitudinal location up to the far
field [85]). In other cross sections, the intensity pattern is typical for
the anisotropic (“non-canonical”) OV [20, 21, 101]. Ultimately, the
energy-flow imbalance causes the intensity profile distortion, and
the two-lobe structure appears. The whole evolution of the

propagating STOV looks as a sort of rotation. The sense of this
rotation is dictated by the sign of the STOV topological charge which
is positive in Figure 8.

A STOVwith the ring-like structure in a certain cross section z =
z1 is described similarly to (43) with the only difference that the
parameter ζ in the pre-exponential parentheses is replaced by the
complex quantity ζc � ζeiχ(z1) so that

u 1( )
ST � s

ζ
e−iχ z1( ) + iσ

x

b
e−iχ( )u 0( )

ST . (46)

In general case, when b ≠ ζ , the STOV is not circular even in the
ring-like cross section but shows a certain anisotropy, similar to the
astigmatic longitudinal OVs [101].

Like in the case of conventional OVs [58, 59, 80], the STOVs
of any integer order l (also called topological charge) may exist,
in which the phase increment on a circulation near the vortex
center is 2πl. For a higher-order STOV, at least in a single cross
section z = z1 the complex amplitude distribution can be
represented as

u l( )
ST x, y, s, z1( ) � s

ζ
+ iσ

x

b
( ) l| |

e−iχ z1( )u 0( )
ST x, y, s, z1( ) (47)

where l = σ|l|. However, in other cross sections this simple form is
destroyed: the pre-exponential binomial must be expanded in a
series in degrees of (s/ζ), (x/b), and each summand evolves in its own
way [94, 101]. This fact stipulates a rather rich and non-trivial
picture of the STOV profile evolution, and enables purposeful

FIGURE 7
Characteristics of the STOV (43) with b0 = ζ = 0.1 mm, �k = 105 cm–1, z = 0, σ = +1. (A) Intensity distribution in the plane (s, x), arrows indicate the TPV
lines calculated according to (45); (B) phase distribution in the plane (s, x); (C) transverse profile of the symmetric transverse OV described by Eq. 42.
Bottom row represents a comparison between the (D) optical pulse with the conventional transverse OV carrying the longitudinal OAM and (E) the STOV
carrying the transverse OAM: green tori are the surfaces at which the intensity is 0.5 of maximum. (F) Illustration of the obliquely oriented STOV [92].

Frontiers in Physics frontiersin.org16

Angelsky et al. 10.3389/fphy.2024.1383256

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1383256


formation of a necessary profile (e.g., ring-like one) at any specific
position along the propagation axis up to the far field [85, 94].

The STOVs (43), (46), (47) considered so far are oriented such
that their intensity toroids and the energy circulation are concluded
within the plane (z, x) (see Figures 7A–E, 8). However, the STOVs
with other toroid orientations may also exist [92]. For example, the
following function is the solution of the ST paraxial wave
equation [100]:

u 11( )
ST � A

b
��
π

√ α
s

ζ
+ β

y

b
e−iχ + iσ

x

b
e−iχ( ) exp −x

2 + y2

2b2
− s2

2ζ2
+ i�k

x2 + y2

2R
− iχ( ).
(48)

This STOV propagates along axis s but its equal-intensity toroid is
adjusted along the plane (x, w) which is inclined at an angle ϑ

(Figure 7F); the OAM orientation in the (z, y) plane is characterized
by the angle ϑOAM which, generally, differs from ϑ. For example, if
by = ζ, χy = 0 (conditions of Figure 7F) and α = β = 1/√2, ϑ = π/4.
Practically, STOVs of arbitrary orientation can be realized [92].

5.3 Orbital angular momentum of spatio-
temporal optical vortices

It was already mentioned in comments to Eqs. 45 that the
specific TPV distribution in the plane (x, s) is coupled with the
transverse OAM with respect to any y-oriented axis. It is suitable to
consider the OAM defined with respect to the moving axis (x = 0, s =
0) crossing the wave-packet center. Thus, the y-component of the
Poynting vector gives no contribution, and the OAM density can be
determined as

Ly � 1
c2

sPx − xPz( ). (49)

(cf. Eq. 39). The total OAM of the STOV is obtained via the
integration of (49) over dxdyds. In this procedure, the term xPz

gives a zero contribution due to the symmetry of expression (44),
and the total OAM can be calculated as

Λy � ∫ Ly dxdyds � ∫ sPx dxdyds

� A| |2b0
8π2 �ωb4

σ

ζ
∫ s2 1 + 2x2

b20
1 − b20

b2
( )[ ]

× exp −x
2 + y2

b2
− s2

ζ2
( )dxdyds � A| |2σ

16
��
π

√
�ω

ζ2

b0
.

(50)

In agreement with the angular momentum conservation, the
result does not depend on z, despite that the pulse configuration
changes rather impressively (as is seen, for example, in Figure 8).
The quantity (50) depends on a set of the STOV parameters.
However, like the longitudinal OAM of the conventional OV
beams, the transverse OAM expresses the deep topological
properties of the field which are largely “masked” by the specific
parameters of the beam shape. To disclose this topological essence,
the numerical OAM value (50) should be normalized by the beam
energy. The total STOV energy is determined by the energy density
distribution (44),

W � ∫w x, y, z, s( )dxdyds � A| |2
8

��
π

√ ζ (51)

which, in view of Eq. 50, determines the OAM per unit energy of the
STOV [95, 96]

Λy

W
� σ

2�ω
ζ

b0
� σ

2
γ

�ω
(52)

where γ � ζ/b0 is the parameter of the STOV ellipticity (anisotropy).
This result can be immediately generalized to the higher-order
STOV whose transverse OAM obeys the condition

Λy

W
� l

2�ω
ζ

b0
� l

2
γ

�ω
.

It is instructive to compare this transverse OAM with the
longitudinal OAM Λz of the conventional OV. In view of the
generally astigmatic character of the STOV, for comparison we
consider the light pulse with the astigmatic transverse OV, for which
the longitudinal OAM Λz, normalized per unit energy, obeys the
relation [96, 101]

Λz

W
� l

2�ω
γxy + γ−1xy( ) (53)

FIGURE 8
Spatial evolution of the STOV (43) with σ = 1 during propagation; for σ = −1, the patterns are mirror-reflected with respect to axis z (s). Other
parameters are the same as in Figure 7.
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where γxy � b0y/b0x is the ratio of the orthogonal beam-waist
dimensions. Remarkably, in the symmetric case, when in Eq. 52
γ � 1, and in Eq. 53 γxy � 1, the simple correspondence takes place:

Λy

W
� l

2�ω
� 1
2
Λz

W
. (54)

This relation was the subject of a controversial discussion [95,
96] but it finds a simple qualitative support in juxtaposition of the
corresponding energy flow patterns presented in Figures 7A, C [95].
The energy circulation in the conventional OV (Figure 7C) is
“complete” and contains the “full” circulation including the
contributions along both orthogonal transverse components while
in the STOV field, only the ± x-oriented circulation contributions
are present, so the circulation loses a half of its “complete” value.

5.4 Generation of spatio-temporal vortices

There are several prospective approaches to the practical STOV
generation discussed in literature [2, 91–93]. Conceptually, all of

them employ one or several “source” light pulses without special
structure, usually obtained from the mode-locked laser, which
undergo certain structuring manipulations. In this regard, the
most direct method is based on the superposition of properly
prepared and phase-shifted non-vortex pulses, for example, those
described by the first and second summands in pre-exponential
parentheses of Eq. 43 [87]. In principle, this approach is applicable
for obtaining any of the complicated STOV structures, e.g.,
characterized by Eqs 47, 48, as well as by their generalizations.
But it requires preparing a number of special light pulses with
prescribed configurations and their precise alignment, which is
practically difficult.

Another group of approaches involves manipulations with the
STOV Fourier-spectra,

U kx, ky, k( ) � ∫ u x, y, s( ) exp −i kxx + kyy( ) − i k − �k( )s[ ]dxdyds
(55)

where k = ω/c is the wavenumber corresponding to the spectral
frequency ω, and u(x, y, s) is the complex amplitude; here we

FIGURE 9
Examples of the STOV generation principles. (A, B) Beam-shaper schemes with (A) the reflecting SLM [90] and (B) phase plate [85] which introduce
the spatio-spectral coupling (57) (β = 0) in the Fourier plane; the subsequent elements perform the inverse Fourier transform with the STOV formation at
the prescribed longitudinal distance; (C) photonic-crystal grating with the spectral-depending transmittivity [92]; (D) ST differentiator with enhanced
topological robustness [93] (additional explanations in text).
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conventionally consider the STOV characteristics at a certain fixed
longitudinal position z = const, and the fourth argument z is
omitted. For example, in application to arbitrarily oriented
STOV (48),

U kx, ky, k( ) � 23/2πAζb −iζα k − �k( ) − iβkyb + σkxb[ ]
× exp −1

2
k2x + k2y( )b2 − 1

2
ζ2 k − �k( )2[ ]. (56)

Such spectral density in the Fourier space (kx, ky, k) can be obtained
if a Gaussian pulse (e.g., that described by Eq. 40) passes an optical
system with transmission function

T kx, ky, k( )∝ − iζα k − �k( ) − iβkyb + σkxb. (57)

A sort of such transformation is implemented in the 2D pulse
shaper [85, 90] (Figures 9A, B) where the general principle of
“structuring light in time” ([3], part 21) is realized. Namely, the
input dispersion element performs “spectrum-to-space”
transformation such that different spectral components are
spatially separated; ideally, each spectral component enters its
own spatial channel. Then, in each channel, the prescribed
modulation of the spatial (amplitude and phase) and, if
appropriate, polarization distributions is executed, after which the
spectral channels are recombined by another dispersion element
operating in the inverse mode. The schemes of Figures 9A, B employ
the simplified version of this principle. The dispersion elements are
diffraction gratings that disperse the input wave packet components
with different values of k along the horizontal direction. Then, in the
cylindrical-lens focal plane, the complex amplitude distribution is
formed proportional to Uin(kx, k)–Fourier spectrum of the input
wave packet uin(x, s). In this plane, the distribution Uin(kx, k) is
transformed: in Figure 9A, due to reflection at the programmable
spatial light modulator (SLM), in Figure 9B, upon transmission
through the phase plate. The output field recombination is
performed by the same (in the reflection scheme Figure 9A) or
similar (in Figure 9B) cylindrical lens and grating. In Figures 9A, B,
the Fourier-plane modulation introduces the spiral phase
distribution which, in vertical direction, is accepted by the spatial
kx-components, but its horizontal “part” is imparted to the
temporal-frequency components. Accordingly, the transmission
∝ − iζα(k − �k) + σkxb is approximately realized in the Fourier
plane (cf. Eq. 57), which forms the longitudinal STOV with the
transverse OAM at the shaper output. Alternatively, a π-step phase
mask can be placed in the Fourier plane. Depending on the mask
orientation angle α, the two-lobe structure is realized at the shaper
output (see the leftmost or rightmost images of Figure 8), which
produces the ring-like STOV in the far field [85]. This method is
rather flexible for generation of STOVs with variable positive or
negative topological charges and prescribed ring-like structure
localization, dictated by the phase mask or the SLM loading.

But the most universal approaches for the STOV generation
involve the specially designed metasurfaces [92]. The main element
of the corresponding arrangement (Figure 9C) is the photonic-
crystal slab furnished with the grating formed of material with
permittivity ε = 12 (the grating profile is shown by the yellow inset).
The whole system is polarization-sensitive and is placed between the
polarizers with prescribed input and output polarization. With
specially adjusted sizes w1, w2, h1, h2 (see Figure 9C), very

narrow Fano resonance is excited in the slab due to which its
transmission for normally incident light of the central frequency
�ω � c�k vanishes, T(0, 0, �k) � 0, but for small deviations it can be
expressed via the Taylor expansion

T kx, ky, k( )∝ ak k − �k( ) + axkx (58)

with, generally, complex coefficients ak and ax. The phase difference
between ak and ax is determined by the slab properties and can be
adjusted to π/2, which realizes the transmission function (57) with
β = 0 responsible for the longitudinal STOV (43). The terms
proportional to ky appear in the Taylor expansion if the slab is
slightly tilted around the x- or y-axes, and in this manner the STOV
with arbitrary orientation (see, e.g., Eq. 48) can be produced [92].

Other similar approaches employ other properties of specially
designed nanostructures. For example, a ST differentiator based on
1D periodic silicon structure with two rods, of different heights and
widths, per period (Figure 9D) has been used [93] to realize the
transmission function (58) after which the STOV carrying
transverse OAM appears immediately without special Fourier-
transforming elements: the necessary transformations happen
during free propagation of the pulse. The structure of nonlocal
mirror-symmetry-breaking metasurface of Figure 9D is prospective
for the STOV topological stability [91, 102]. Its properties can be
regulated via the rod height h1: It was found that the phase
singularity in the transmission spectrum only exists if h1 lies
between 238.5 nm and 388.7 nm; in this case, the mirror
symmetry is broken and phase singularities appear in pairs. For
h1 within this range, the STOV can be generated with the structure
stable to the metasurface random deviations and fabrication
imperfections.

5.5 Further prospects and applications of the
ST singular optics

The specific features of the STOVs stipulate their possible
applications in many areas. First of all, the STOVs can be
employed for executing the functions traditionally associated with
conventional longitudinal OVs, providing additional benefits of high
speed and high energy concentration. They can be used for optical
manipulation [103], free-space optical communications [104], in
space-time differentiators [93], etc. The STOV has been successfully
harnessed to manipulate light in nanostructures, to study the optical
properties of molecular transparent media (e.g., for investigation of
the molecular chirality [105]), and supply additional instruments for
excitation and investigation of the light-matter interactions [91].
Using STOV, optical metrology of nonlinear media, as well as fast
processing and transmission of information with intense
concentration and release of energy are possible.

An important property of STOVs is the possibility to form the
prescribed (ring-like or another) structure with the required ST
behavior at a given propagation distance. In this regard, the
attractive topic for future developments is the ability to control
light in different dimensions and degrees of freedom. This is relevant
when high-intensity light fields are assigned to control complex ST
processes, such as plasma dynamics, dynamics of free electrons and
X-ray radiation ([2], part 2). The problem arises of forming
appropriate radiation sources in the form of a multimode
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nonlinear laser system that would organize and coordinate the light
modes with the desired ST characteristics, and the STOVs can be
helpful for its solution.

The non-trivial phase and topological structure of STOVs
coupled with the high energy concentration opens interesting
prospects in applications associated with the non-linear optical
transformations [2]. In particular, in the processes of higher-
harmonic generation, a possibility emerges to transform the
structured light from infra-red to ultra-violet or X-ray diapason.
A unique opportunity opens up to transfer the spin and orbital AM
into ultrashort pulses of femtosecond to attosecond ranges [2, 106].

Important manifestations of the intrinsic coupling between the
spatial and temporal properties of STOVs come to light in the
processes of their reflection and refraction at a flat isotropic interface
between two media. In this situation, in addition to the conventional
Goos-Hänchen and Imbert-Fedorov shifts [107], a number of new
spatial shifts and time delays are found, which are controlled by the
value and orientation of the intrinsic optical AM [97]. In this
approach, due to the special combination of spatial and temporal
degrees of freedom in space-time vortices, time delays and spatial
shifts occur without the frequency dependence of the reflection/
refraction coefficients, and the “slow” and “fast” propagation of
pulses can be realized without the medium dispersion. These results
can be important for scattering of localized vortex states of light with
the transverse AM, both in classical and quantum formulation [97].

An interesting version of the STOV, especially suitable due to
relative simplicity of its generation, is the partially coherent STOV
[108–111]. In contrast to other (coherent) STOVs, which are obtained
using the source pulses of the mode-locking lasers, these wave packets
originate from the amplified spontaneous emission or from the noise-
like pulse states of the fiber laser. In such regimes, the source pulses
show some stochastic features that can bemodelled by a combination of
randomly distributed spectral phase and a Gaussian spectrum profile.
The coherence time τc of such fields exceeds the pulse duration τ �
�λ
2
/(cΔλ) expected from the bandwidth Δλ. With growing phase

randomness, the regular shape of the partially coherent STOV is
destroyed, singularities occur at various ST locations, and multiple
amplitude peaks appear in the (x, s) plane. Parameters of the spatial and
temporal coherence of such STOVs are adjustable and can be used for
controlling their phase and amplitude structures as well as the
singularity position. The authors [109] predict new fruitful
applications of the partially-coherent STOVs because of convenience
and low cost of their generation.

The use of the STOV as an information carrier is stipulated by
the transverse OAM which adds an additional degree of freedom to
the conventional OAM-based data-processing schemes [112].
Moreover, toroidal structures like those described in Figures
7D–F, are closely related to particle-like waves such as hopfions
[113]. The latter can be considered as high-dimensional data-
carriers whose employment for the information processing will
increase the information dimension per pulse for optical
communication [91].

6 Conclusion

The general overview of the correlation- and singular-optics
approaches in the optical-diagnostic problems, presented in the

above Sections, convincingly illustrates the intensive development
and increasing influence of the optical science and technology in
both fundamental and applied problems. It should be noted that,
actually, the general topic, announced in the title, is practically
spanless, and the limited frame of this paper prevent us from
reflecting many important facts and data. Forcedly, we restrict
ourselves to selected examples that are closest to the authors’
research interests and work experience.

Nevertheless, we hope that the materials presented in the current
review supply distinct illustrations of the correlation-optics ideology
and its development in the wider framework of singular and
transient fields, e.g., non-monochromatic fields and localized
wave packets. Below, we briefly summarize the main issues
addressed in this review, the most important (to our
understanding) subjects that are left beyond our scope, and some
prospects of future development.

6.1 Correlation optics of singular fields in
problems optical diagnostics

In many situations associated with the statistical analysis of
singular light fields, the correlation properties of light can be
considered as a sort of additional degree of freedom and
additional channel of controllable light-matter interaction, which
can be used, for example, in optical diagnostics of complex random
objects, as is shown in Section 3.2 [52–54]. The corresponding
opportunities constitute a base for several promising directions of
research among which the peculiar interest is attracted by the rapidly
developing branch of optical coherence tomography [114–118],
especially useful in application to biological objects.

Another important direction of possible advances concerns the
interrelations between the correlation optics and optical
singularities. This topic has been briefly discussed in connection
with the non-monochromatic ST fields, polarization beatings and
transient energy flows (Section 4.2, Section 4.3). The important
feature of singular optical fields is their topological nature dictating
the stability of the qualitative field patterns and their robustness
against external perturbations. Especially, singularities of the
transverse energy flows are crucial for understanding the
transient field patterns and principal mechanisms regulating the
formation and evolution of observable time-averaged field
characteristics. These issues are mainly fundamental; attractive
application-oriented aspects associated with combination of the
singular-optics and correlation-optics paradigms have been
recently displayed in more detail [21].

Despite the multitude of novel branches of research and areas of
application, which arise almost every day, the main traditional
elements of the correlation and singular optics retain their
fruitfulness and practical power. First of all, this relates to the
principle of interference according to which the tested-field
characteristics are obtained via its comparison with the time-
delayed or spatially-shifted copy of the probing wave (the LCS
approach described in Section 3.1.2 constitutes an exclusion but it
puts increased demands on the probing-radiation stability and
coherence). In this context, the most interesting, to our opinion,
developments and applications of the correlation-optics techniques
are associated with the vibrant area of structured ST optical fields,
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whose properties, description, methods of generation and
applications are considered in Section 5. Simultaneously, some
ingenious modifications of the correlation methods, adapted to
ultra-short light pulses with ultra-wide spectral bands (including
various versions of the single-shot spectral interferometry), are
briefly outlined.

6.2 Spatio-temporal light fields

In order to focus on principles and to avoid inessential technical
difficulties, in Section 5 the physical nature, theoretical foundations and
experimental characterization of the STfields have been presented, based
mainly on the examples associated with Gaussian (in space and time)
wave packets. Herewith, a number of other instructive and meaningful
examples of the STOV fields have been inevitably missed. In particular,
there should be mentioned the important family of Bessel STOVs [119,
120] which represent the ST version of the known Bessel-Gaussian
beams [121] with the transverse OAM. Additionally, one cannot omit
the very impressive class of “ST wave packets” which are also based on
the Bessel beam model [4]. These optical structures demonstrate the
unique propagation-invariant behavior: they can be “rigidly” transported
in linear media preserving the spatial and temporal configuration during
the whole evolution. Besides, these wave packets can be endowed with
controllable group velocities in free space, showing both subluminal and
superluminal propagation.

Furthermore, the analysis of the ST pulses has been restricted to the
scalar approximation, which, enabling the simplified and pictorial
demonstration of the principles governing the ST organization and
evolution, neglects some fundamental details dictated by the vector
nature of light waves. At the same time, it is the vector-based topological
structures (toroidal and supertoroidal ST pulses, optical skyrmions,
merons, hopfions, etc.) which attract the very intense and promising
efforts of researchers ([2], part 11; [122–125]). Such optical structures
are essentially singular and topologically determined. Their theoretical
prototypes, being the exact solutions of the Maxwell equations,
demonstrate the impressive fundamental features of light fields
localized within a few oscillation cycles: 1) non-trivial vector nature
with complex orientation of the electric andmagnetic vectors; 2) fractal-
like and self-similar singular building; 3) essential ST non-separability
resulting in non-diffracting propagation over arbitrarily long distances;
4) expressive superoscillations [126] (i.e., the actual field oscillations
occur with frequency higher than the highest spectral component).
Toroidal and supertoroidal ST fields (also termed “flying doughnuts”)
are so short that the usual time-averaged field characteristics, discussed
in Section 4, are not applicable to them. Their instantaneous patterns
show a rich set of singular textures in the electric and magnetic field
distributions as well as in the instant energy flows; the regions of
anomalous “back flow”may exist where the Poynting vector is directed
oppositely to the direction of propagation [125]. These stable and robust
topological structures are prospective for information encoding
and transfer.

Very interesting and important features of the ST fields with
singularities stem from their complex non-separable structure in
space and time [127–129]. Investigations of such fields can be
considered as the first step towards the formation of
multidimensional structured light. In this process, the usual
spatial degrees of freedom are supplemented by the time and

spectral coordinates. Additionally, the light acquires specific
degrees of freedom associated with the field vector directions and
the internal energy flows, as well as stochastic ones associated with
the spatial and temporal coherence [108–111]).

The development of complex light-shaping tools, as well as
advances in nanotechnology will discover new ways to manipulate
magnetic, molecular, and quantum excitations at the nanoscale with
high resolution in four dimensions. In particular, the toroidal pulses
are promising for the studies of subtle phenomena occurring at the
frontier between classical and quantum optics, including the effects
of quantum coherence and entanglement [130, 131].

In this regard, the recent achievements of the attosecond pulse
techniques are especially exciting [2, 106]. Such pulses provide
opportunities for observation and control of the electron
processes inside atoms and molecules [6]. Their attractive
physical features include the ability to carry OAM changing in
time and accompanied by variation of their own momentum [106];
besides, trains of attosecond pulses can be created with controllable
and variable pulse-by-pulse characteristics, e.g., polarization [132].

All these examples confirm the exceptional importance and
necessity of further development of the singular and correlation
optics in novel applications to highly structured light fields and
material objects. Hopefully, this review will facilitate consistent and
profitable advances in this direction.
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