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Mycobacterium tuberculosis is an organism that causes tuberculosis (TB), a common
infectious disease that has a high death and morbidity rate. Topological indices are
mathematical tools used to describe the structural properties of molecules or
networks. They provide a quantitative measure of the connectivity and
complexity of a system, and play a crucial role in numerous area such as
biochemistry and bioinformatics. The purpose of topological indices is to simplify
complex structures into numerical values that can be easily analyzed and compared.
QSPR modeling is a technique in chemistry that relates the structure of a chemical
compound to its physical or chemical properties. It is used to predict properties like
boiling points, solubilities, toxicities, and even biological activities of compounds. This
saves time, resources, and enables researchers to make informed decisions in drug
discovery, material science, and many other areas. In this study, we conducted an
analysis of several drugs used for the treatment of tuberculosis. We focused on
computing the reducible topological indices based on their degrees. Several
techniques and approaches are employed. To perform calculations, we used
edge partition methodology, analytical techniques, theoretical graph utilities, and
degree counting method. Additionally, we examined six physicochemical properties
of these drugs. To establish quantitative structure-property relationship models and
evaluate their effectiveness, we employed linear, quadratic, and logarithmic
regression analysis. By analyzing the reducible topological indices and
physicochemical properties, we aimed to gain a deeper understanding of the
drugs’ characteristics and their potential impact on tuberculosis treatment. This
study established a significant relationship between the defined indices with two key
properties: molar mass and collision cross section. The correlation coefficients for
molar mass range from 0.7 to 0.9, while the collision cross section range from 0.8 to
0.9. These results demonstrate a strong association between the indices and the
properties under investigation. Furthermore, it is worth noting that both molar mass
and collision cross section satisfy the requirements for p-value and F-test value
across all indices. This indicates the statistical significance of the observed
correlations and the reliability of our findings.
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1 Introduction

A dreadful disease in which a conflict between the soul and the body is so gradual, calm, and solemn, with such a sure outcome, that the
mortal half rots away day by day and grain by grain. A disease that “sometimes moves in enormous steps and sometimes at a tardy, sluggish
pace, but, slow or quick, is always sure and certain.” (Nicholas Nickleby; Charles Dickens). The things Charles Dickens said are still
true today [1].

Bacteria called Mycobacterium tuberculosis (MTB) are typically responsible for the infectious disease known as tuberculosis (TB).
Typically, tuberculosis primarily targets the lungs; nevertheless, it has the ability to impact various other regions of the body. In cases where
there are no symptoms, it is referred to as latent tuberculosis [2]. Active disease occurs in about 10 percent of latent infections and, when
untreated, results in a mortality rate of approximately 50 percent among those affected. TB is a global disease, although the majority of cases
occur in low and middle-income nations. There are eight countries, namely, Bangladesh, China, India, Indonesia, Nigeria, Pakistan,
Philippines, and South Africa, where approximately half of all individuals with TB can be located. It is believed that approximately 25 percent
of the world’s population carries a TB infection; however, the majority of individuals do not progress to acquire TB disease, and a small
percentage may be able to overcome the infection. It cannot be spread by those who are infected but not (yet) unwell with the illness. The
lifetime chance of developing tuberculosis is 5–10 percent for those with TB bacterium infection. Individuals with weakened immune
systems, including those with HIV, diabetes, malnourishment, or tobacco use, are more susceptible to illness. People who are most likely to
contract tuberculosis (TB) often fall into two distinct categories:

1. Those who have recently become infected with TB bacteria.
2. Those with weakened immune systems due to underlying medical conditions.

People who have active tuberculosis in their lungs cough, spit, speak, or sneeze can transmit the disease to others through the air. Latent
tuberculosis patients do not transmit the illness. Figure 1 represented a general overview of the prevalent ways that Mycobacterium
tuberculosis infections occur. In this illustration, the bacterium is released by an infected person (A) through sneezing or coughing, at which
point the pathogen exits from person (A)’s body and comes as an aerosol. At B point, a healthy individual (B) inhales particles in the air
containing MTB. The next stage is typically a pulmonary infection when the virus reaches the effective titre in person (B). When someone
self-inoculates, the infection travels from the lung to the gastrointestinal tract. Because it occurs when person (B), who has pulmonary
tuberculosis, swallows his own contaminated sputum, the term “self-inoculation” is employed.

TB illness symptoms vary depending on the location of the TB bacteria’s growth within the body. The lungs are where TB germs typically
grow called pulmonary TB. Chest pain, coughing up blood or sputum (phlegm from deep inside the lungs), and a severe cough lasting 3 weeks
or longer are some of the signs of tuberculosis (TB) sickness in the lungs. Additional indications of tuberculosis illness include weakness or
exhaustion, appetite loss, weight loss, chills, fever, and night sweats. TB illness symptoms vary depending on the affected area of the body.
Individuals with latent tuberculosis infection do not exhibit any symptoms, do not feel ill, and are unable to infect others. Other types of
tuberculosis (TB) are caused when the infection travels outside the lungs in 15–20 percent of active patients. All of these conditions are
referred to as extrapulmonary tuberculosis [3, 4]. Extrapulmonary tuberculosis (TB) is more common in young children and those with
weaker immune systems. This affects people who possess HIV in over 50 percent of situations. Tuberculosis can affect more than just the
lungs. It can spread to different parts of the body, leading to extrapulmonary infections. Notable sites of infection include the pleura, which is
the lining around the lungs, resulting in tuberculous pleurisy. The central nervous system can also be affected, causing tuberculous
meningitis. The lymphatic system, responsible for immune function, can be infected, leading to scrofula of the neck. The genitourinary
system, involving the reproductive and urinary organs, can also be targeted, resulting in urogenital tuberculosis. Additionally, tuberculosis
can affect the bones and joints, causing Pott disease of the spine. These are just a few examples of the various extrapulmonary infection sites
associated with tuberculosis. Figure 2A presented the main symptoms of variants and stages of tuberculosis.

It was estimated in 2018 that 25 percent of people on the planet may be subconsciously infected with tuberculosis. Every year,
approximately 1 percent of the population contracts a new infection. After COVID-19, TB is the second most common infectious disease-
related cause of mortality in 2020, with an anticipated 10 million cases of active TB and 1.5 million people dying. As of 2018, the majority of
tuberculosis (TB) cases were reported in three regions: South-East Asia (44%), Africa (24%), and the Western Pacific (18%). Interestingly,
more than half of all cases were diagnosed in just seven countries, namely, India (27%), China (9%), Indonesia (8%), the Philippines (6%),
Pakistan (6%), Nigeria (4%), and Bangladesh (4%) [5]. These statistics shed light on the global distribution of TB, highlighting the
concentration of cases in specific regions and countries. By 2021, there were only about 2% more new cases per year on average. When it
comes to tuberculin testing, almost 80% of individuals in several Asian and African nations test positive, compared to 5%–10% of Americans.
Humans have had tuberculosis from ancient times [6]. More than 2 million people globally per year pass away from tuberculosis (TB), the
most common infectious disease-related cause of mortality. Around the world, one in three people, or 2-3 billion people, are estimated to be
infected with Mycobacterium tuberculosis (M. tuberculosis), with a lifetime risk of active TB disease of 5%–15%. An estimated 9.6 million
individuals were diagnosed with TB in 2014, and 1.5 million died from it, including 1.1 million HIV-negative people and 400,000 people
living with HIV. Although TB exists in every country, themajority of TB patients live in low- andmiddle-income nations, particularly in areas
like Sub-Saharan Africa and South East Asia [7]. Since 2000 until 2020, Figure 2B illustrates the worldwide trends in estimated death counts
attributed to TB and HIV.
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Antibiotics are used in the treatment of tuberculosis. Both the illness and infection from tuberculosis should be treated. The most often
prescribed antibiotics include Lumefrantrine, Mefloquine, Piperaquine, Isoniazid, and Primaquine, among others. These drugs must be used
consistently for 4–6 months in order to be effective. It is risky to quit taking the drugs too soon or without consulting a doctor. This may cause
TB that is still alive to develop medication resistance.

The field of mathematics known as “graph theory” is devoted to the study of graphs’ characteristics and uses. A graph is a type of
mathematical structure made up of edges (links) connecting nodes (vertices). These nodes and edges can be represented a numerous real-
world scenarios, including social networks, transport systems, and computer networks. Graph theory offers a structure for using graph
representations to analyze and solve difficult issues. The concept of the degree of a node in graph theory identifies the quantity of edges that
are connected to that node. In order to grasp the connectivity and structure of a graph, it is crucial to understand this concept. An important
area of study in graph theory is graph coloring, where colors are designated to nodes within a graph to prevent neighboring nodes from

FIGURE 1
The common methods through which Mycobacterium tuberculosis causes infections are portrayed in the overall image.

FIGURE 2
(A) Symptoms of Tuberculosis (B) The global chart of the death rate of TB and HIV from 2000 to 2020.
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FIGURE 3
General methodology of a QSPR study.

FIGURE 4
Flowchart of this manuscript.
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sharing the same color. This concept is helpful in the realms of scheduling, resource allocation, and solving challenges related tomap coloring.
Graph theory plays a critical role in computer science, operations research, and biology due to its diverse range of practical applications. The
idea of graph algorithms is crucial in solving problems related to network routing, social media analysis, and data visualization in computer
science. Applying graph theory in operations research leads to the optimization of transportation networks, supply chains, and

FIGURE 5
Thirteen Chemical structure of drugs used to treat Tuberculosis disease.
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TABLE 1 Thirteen drugs related to tuberculosis disease with their calculated reducible topological indices.

Drug name RM1(G) RM2(G) RR(G) RSC(G) RHM1(G) RHM2(G)

Isoniazid 100 244.4445 77.2999 60.1129 1055.5555 7067.9012

Pyrazinamide 66 144 31.39 21.38 648 3179.25

Ethionamide 121 315.94 57.60 36.20 1418.39 10958.16

Levofloxacin 676 3736.78 321.87 138.80 16937.56 573688.23

Amikacin 1,600 1444.44 754.08 256.33 66755.56 6401975.31

Ofloxacin 676 3736.78 321.87 138.80 16937.56 573688.23

Cycloserine 59.5 78.94 23.13 18.39 362.06 996.71

4-aminosalicyclic acid 121 299.14 56.19 36.16 1425.11 9410.46

Ethambutol 196 735 94.89 50.05 3168.67 52021.67

Ciprofloxacin 576 2,960 277.41 123.84 13,024 376064

Bedaquiline 1,369 11123.13 662.38 235.43 48143.16 3525982.29

Kanamycin 1,089 7,986 511.81 192.98 37207.5 2349880.5

Streptomycin 1,444 11712.44 664.80 239.42 56275.89 4292548.49

RS(G) RF(G) RG1(G) RG2(G)

77.7778 566.6666 344.4445 2685.1851

72 360 210 1,431

154.61 665.5 469.13 3869.76

1990.44 9,464 4412.78 97481.70

8977.78 37866.66 16044.44 623847.41

1990.44 9,464 4412.78 97481.70

46.28 204.17 127.94 597.07

228.56 826.83 420.14 3635.60

228.67 1698.67 931 12576.67

1,184 7,104 3,536 69,248

3650.67 25896.92 12492.13 405399.88

5263.5 21235.5 9,075 289492.5

9426.11 32,851 13156.44 482670.37

FIGURE 6
Molecular structure of the Isoniazid drug.
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communication systems. The application of graph theory in the field of biology enables researchers to map out the connections among genes,
proteins, and diseases, resulting in breakthroughs in network biology and personalized medicine. In general, graph theory is an effective tool
that keeps discovering new uses in a variety of scientific and commercial fields.

The study of mathematical models of chemical phenomena using graph theory is known as chemical graph theory. Chemical graph
theory has a subfield called topological indices that correlates specific physico-chemical characteristics of the underlying chemical molecule.
Numerous publications on topological indices have been published to date, numbering in the hundreds [8]. A topological index is a function
called “Top” from a set of finite simple graphs to the set of real numbers, where “” is the property that Top(G) = Top(H) if both G and H are
isomorphic. A topological index is a numerical value related to chemical structure which asserts to show a relationship between chemical
structure and various physico-chemical qualities, chemical reactivity, or you could say biological activity [9]. In reality, topological indices are
created by converting a molecular graph into a number that describes the topology of that graph. In molecular modeling, we investigate the
connection between the structure, characteristics, and activity of chemical substances. Molecular descriptors have a key part in the main
chemical structure-related fields like chemistry, pharmacology, etc [10]. In 1998, the generalized Randi index was introduced independently
by Bollobas et al. [11] and Amic et al. [12]. Mathematicians and chemists both studied this index [13–17]. Quantitative structure–activity/
property/toxicity relationships (QSAR, QSPR, QSTR) modelling is a well-known and well-established field of study. In this type of modelling,
physicochemical and molecular descriptors are associated with a bioassay of a medication that is designed to elicit a conventional
pharmacological response. These connections have been recognized for a long time as an essential part of the drug discovery and
development process. They provide major insights into the role that molecular characteristics play in the biological activity of compounds
that are both similar to one another and unrelated to one another. The descriptor-based QSPR techniques make use of the entire structure of
the compounds by modelling the property as a function of chemical descriptors. This allows for the most accurate predictions possible. These
descriptors might simply be the quantity of such atoms, or they could be features that characterize the linkages between atoms or the form of

FIGURE 7
Bar graphs visually compared the r values between properties and reducible TIs.
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TABLE 2 Six physicochemical properties of anti-tuberculosis drugs.

Drug MM XLOGP3 C LOGP MP CCS

Isoniazid 137.14 −0.7 120 −0.7 340.5 125.6

Pyrazinamide 123.11 −0.6 115 −0.6 376 122.8

Ethionamide 166.25 1.1 147 0.5 327 135.8

Levofloxacin 361.4 −0.4 634 2.1 225 188.5

Amikacin 585.6 −7.9 819 −8.78 214 235.1

Ofloxacin 361.4 −0.4 634 −0.39 254 188.5

Cycloserine 102.09 −1.5 929 −0.9 155.5 —

4-aminosalicyclic acid 153.14 1.3 160 0.89 150.5 —

Ethambutol 204.31 −0.1 109 0.4 171.5 —

Ciprofloxacin 331.34 −1.1 571 0.28 255 185.3

Bedaquiline 555.5 7.2 715 7.74 118 —

Kanamycin 484.5 −6.9 638 −6.3 — 206.6

Streptomycin 581.6 −8 940 −2.53 230 231

TABLE 3 Statistical analysis for the reducible first Zagreb index.

Properties N a b c r r2 F p

For linear model

MM 13 121.4199 0.3174 — 0.9916 0.9833 647.5515 0.0000

XLOGP3 13 0.4445 −0.002938 — −0.4068 0.1655 2.1819 0.1677

C 13 254.0263 0.3989 — 0.7074 0.5004 11.0191 0.0068

LOGP 13 0.5154 −0.001852 — −0.272 0.074 0.8791 0.3686

MP 12 262.3759 −0.04733 — −0.3421 0.1171 1.3259 0.2763

CCS 9 128.5696 0.07279 — 0.9733 0.9472 125.6425 0.0000

For quadratic model

MM 13 96.0478 0.4654 −0.0001 0.9981 0.9963 139.5896 0.0000

XLOGP3 13 −0.3322 0.0016 0.0000 0.4353 0.1895 1.1689 0.3498

C 13 226.0558 0.5621 −0.0001 0.7109 0.5055 5.1118 0.0296

LOGP 13 −0.6961 0.0052 0.0000 0.3736 0.1396 0.8111 0.4716

MP 12 266.488 −0.0719 0.0000 0.3446 0.1188 0.6068 0.566

CCS 9 116.9132 0.128 0.0000 0.9947 0.9894 280.729 0.0000

For logarithmic model

MM 13 −524.7273 144.3139 — 0.9742 0.9491 85.4682 0.0001

XLOGP3 13 5.0647 −1.1031 — −0.3301 0.1089 1.5637 0.5241

C 13 −465.9574 165.6227 — 0.6346 0.4027 2.5423 0.0026

LOGP 13 2.6789 −0.5673 — −0.18 0.0324 1.7364 0.7342

MP 12 361.732 −22.0794 — −0.3417 0.1168 2.2635 0.8317

CCS 9 −31.3612 34.8091 — 0.9861 0.9725 94.6245 0.0003
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the molecule in three dimensions. In this manner, a 1D descriptor is a one-dimensional linear representation of the molecule, 2D descriptors
are a representation of the molecule in two dimensions on a plane, and 3D descriptors are a representation of the molecule in three
dimensions of space. The majority of topological and connectivity indexes can be rearranged using two-dimensional descriptors. Three-
dimensional descriptors provide a concise summary of the geometry, the surface, and the volume of the molecule. Quantitative structure-
activity relationships (QSARs) are mathematical models created to correlate several types of biological activity, chemical reactivity,
equilibrium, physical, and physicochemical qualities [18]. In the developing of QSAR models, twenty primary categories of mistakes have
been identified by Dearden et al. They do this by utilizing bad data, overfitting, and bad training and test sets [19]. Simply see Figure 3 for the
general overview of the QSPR method. Check out [20–24] for further details on QSPR analysis across various different fields.

The main objective of this article is to develop a quantitative structure-property relationship (QSPR) analysis for tuberculosis (TB) drugs.

• Firstly, we collected data on 13 drugs used in the treatment of TB, along with their six physicochemical properties. These properties
were obtained from reputable online sources such as PubChem and ChemSpider.

• Next, we calculated the numerical results of ten degree-based reducible indices to analyze the molecular structure of the 13 TB drugs.
Three techniques, namely, edge partition, vertex degree, and counting degree, were used to calculate the ten discussed reducible indices.

• The QSPR analysis was then used to establish a strong positive relationship between the indices and properties. To conduct this analysis, we
employed three regression equations: linear-regression, quadratic-regression, and logarithmic-regression. These models were chosen for their
strong significance in determining the relationship between the properties and indices.

• One of the statistical parameters used, known as the correlation coefficient (r), provides insight into the reliability and significance level
between the physical properties and calculated the numerical values of the TB drugs.

• Finally, we utilized line graphs to visually compare all correlation coefficients based on the numerical data. This graphical
representation allows for a comprehensive discussion of the relationships between the properties and indices.

In various fields, this paragraph covers the novel progress in the topic of topological indices. In 2023, AbidMahboob et al. [25] introduced
eight novel indices based on the degrees method. They determine the QSPR analysis by utilizing linear, quad, and log models to establish

TABLE 4 Statistical analysis for the reducible second Zagreb index.

Properties N a b c r r2 F p

For linear model

MM 13 197.8953 0.03537 — 0.8044 0.6471 20.1735 0.0009

XLOGP3 13 −0.9894 −0.0001 — −0.1163 0.01353 0.1509 0.7051

C 13 347.2226 0.04531 — 0.5849 0.3421 5.7199 0.0357

LOGP 13 −1.114 0.0001 — 0.1487 0.02212 0.2488 0.6278

MP 12 255.5193 −0.0068 — −0.3499 0.1224 1.3947 0.2649

CCS 9 152.867 0.0075 — 0.6928 0.48 6.4616 0.0385

For quadratic model

MM 13 158.6936 0.0776 0.0000 0.8410 0.7074 12.0901 0.0021

XLOGP3 13 −0.4226 −0.0007 0.0000 0.1957 0.0383 0.1991 0.8226

C 13 298.5519 0.0977 0.0000 0.6099 0.372 2.9624 0.0376

LOGP 13 −0.407 −0.0006 0.0000 0.2559 0.0655 0.3503 0.7128

MP 12 256.7221 −0.0082 0.0000 0.3502 0.1227 0.6292 0.5549

CCS 9 139.8961 0.0183 0.0000 0.7547 0.5696 3.97 0.0497

For logarithmic model

MM 13 −356.0103 95.0916 — 0.886 0.7849 63.4267 0.0032

XLOGP3 13 1.6578 −0.4286 — −0.177 0.0313 0.7357 0.5248

C 13 −208.1414 100.0905 — 0.5293 0.2802 3.7453 0.0005

LOGP 13 −1.2177 0.0817 — 0.0358 0.0013 1.7345 0.7254

MP 12 338.2667 −14.9125 — −0.3129 0.0979 0.7524 0.0735

CCS 9 10.3761 23.0143 — 0.8559 0.7325 72.5368 0.0001

Frontiers in Physics frontiersin.org09

Alam et al. 10.3389/fphy.2024.1383216

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1383216


relationships between the novel indices and physical properties of 18 molecular structures of cancer drugs. The significance of all the results is
evident as theymeet the criteria of a p-value (#0.05) and an F-test value (> 2.5). For example, the reducible 1st Zagreb index proves to be the
most accurate predictor for MR, MW, and P, with correlation values reaching 0.9. Abid Mahboob et al. [26] introduced two new terminal
descriptors called the “first” and “second” terminal Zagreb indices. These descriptors enhance the QSPR analysis by utilizing linear and quad
models to determine the best fit predictor for seven physical properties of 23 molecular structures associated with kidney cancer drugs. The
calculations revealed that all correlation “r” values exceeded 0.7, providing substantial evidence of a significant relationship between the
indices and drug properties. Muhammad Nazri Husin and Anamila Ariffin [27] conducted a comprehensive study on various graph
networks, including chain silicate networks CS1 and CSn, hexagonal networks HX2, HX3, and HX4, and oxide networks OX1 and OX2. They
focused on analyzing the generalize the Randic that is based on edge, geometric arithmetic, ABC, MABC, Zagreb indices. The researchers
employed the concept of line graphs to investigate these networks. In their study, Jia-Bao Liu et al. [28] conducted calculations to determine
various numerical descriptors derived from multiplicative degrees. These descriptors were specifically applied to analyze the structures of
three networks: the planar octahedron network [POH(2)], the triangular prism network [TP(2)], and the dominating planar octahedron
network [DPOH(2)]. Muhammad Shoaib Sardaret al. [29] conducted calculations to determine various topological indices using a degree-
based technique. These descriptors were calculated to analyze the structures of double silicon carbide Si2C3-I(p,q) where p = 1 and q = 1 and
its D[Si2C3-I(1,1)], as well as the strong double graph of silicon carbide and its D[Si2C3-I(1,1)]. Additionally, they compared the topological
indices both numerically and graphically. Zahid Raza et al. [30] calculated the expected values of the first Zagreb connection index in various
structures, including a random cyclooctatetraene chain, random polyphenyls chain, and random chain network with l consisting of octagons,
hexagons, and pentagons. They analyzed the maximum and minimum chains with COCl, PPCl, and PGl, specifically focusing on the expected
values of these chains. In 2024, Imran Nadeem et al. [31] conducted a study on the inequalities between general Randic type graph invariants,
specifically the general Randic and zeroth-general Randic indices. These indices are calculated based on the vertex-degree methodology. The
general Randic index is denoted as Rα, while the zeroth-general Randic index is denoted as Qα. The researchers identified linear inequality
relationships between these graph invariants. Additionally, they posed an open problem: to determine the linear inequality between the
general Randic index Rα and the zeroth-general Randic index Qα for any negative real number α.

TABLE 5 Statistical analysis for the reducible reciprocal Randic index.

Properties N a b c r r2 F p

For linear model

MM 13 120.8357 0.6734 — 0.9921 0.9842 685.6292 0.0000

XLOGP3 13 0.3582 −0.005922 — −0.3867 0.1495 1.9339 0.1918

C 13 255.4439 0.8391 — 0.7016 0.4923 10.6656 0.0075

LOGP 13 0.4514 −0.003701 — −0.2563 0.06569 0.7734 0.398

MP 12 262.8292 −0.1017 — −0.3468 0.1203 1.3674 0.2694

CCS 9 127.921 0.1565 — 0.9751 0.9508 135.2157 0.0000

For quadratic model

MM 13 96.7815 0.973 −0.0004 0.9980 0.9962 1318.2356 0.0000

XLOGP3 13 0.0001 0.0001 0.0000 0.3987 0.159 0.9451 0.4208

C 13 230.722 1.1469 −0.0004 0.7045 0.4964 4.9279 0.0324

LOGP 13 −0.5473 0.0087 0.0000 0.3339 0.1115 0.6272 0.6272

MP 12 263.1149 −0.1053 0.0000 0.3484 0.1203 0.6154 0.5617

CCS 9 116.6876 0.2695 −0.0002 0.9951 0.9903 305.2349 0.0000

For logarithmic model

MM 13 −399.3469 141.2089 — 0.9697 0.9402 163.6474 0.0002

XLOGP3 13 3.9097 −1.0407 — −0.3168 0.1003 1.6376 0.5237

C 13 −283.9748 154.5721 — 0.6025 0.363 6.7263 0.0.0245

LOGP 13 2.0468 −0.5277 — −0.1704 0.029 0.6245 0.0856

MP 12 336.1482 −20.3144 — −0.3202 0.1025 0.7653 0.6254

CCS 9 −6.5383 35.0199 — 0.985 0.9702 39.7256 0.0076
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2 Fundamental definitions with literature review

Let G= [V(G), E(G)] be a simple graph having |V(G)| the order and |E(G)| the size of a graph, where V(G) is considered as node set and
E(G) ⊆V(G) × V(G) is a bond set. Every vertex is considered as an atom in a graph, and bonding within the two atoms is known as edge. The
valency or degree of any node is the number of total edges which are incident to the node. Now, few useful reducible TI’s is explained which is
given below:

2.1 Reducible first and second Zagreb indices

Gutman and Trinajstic [32] introduced the two graph invariants known as the first Zagreb index, denoted as M1, is a graph theoretic
concept used to measure the molecular size or shape of a chemical compound. It takes into account the sum of the degrees of all the vertices in
a molecule. On the other hand, the second Zagreb index, denoted asM2, calculates the sum of products of degrees for pairs of adjacent vertices
in a graph. This index is related to the presence and distribution of bond lengths within a compound. These indices serve as valuable tools in
exploring and understanding molecular structures with significant applications across diverse fields including drug discovery, material
science, and environmental monitoring. S.R. Islam and M.Pal examined the relationship between the second Zagreb index and
physicochemical properties in QSPR research of fuzzy octane isomers graphs [33]. It is their conclusion that this index provides a
significantly accurate estimation of the acentric factor and entropy. For instance, the value of acentric factor and entropy for octane isomers
are taken from [34]. They calculate the correlation coefficient ofM2 with acentric factor is −0.977966531 and the correlation coefficients of the
M2 with entropy is −0.91961647. These outcomes declare the appropriateness of this index for octane isomers in chemical compounds. The
Zagreb indices and their variations have been utilized to study ideas such as heterosystems, chirality, ZE-isomerism, and molecular
complexity.

Abid Mehboob et al. [25] were motivated by the framework of these indices to propose the idea of reducible first and second Zagreb
indices. In QSPR modeling and chemical informatics, these indices has produced outstanding outcomes by establishing links between

TABLE 6 Statistical analysis for the reducible reciprocal sum connectivity index.

Properties N a b c r r2 F p

For linear model

MM 13 81.6943 2.0309 — 0.9981 0.9962 2911.0842 0.0000

XLOGP3 13 0.6249 −0.0172 — −0.3746 0.1403 1.7954 0.2073

C 13 207.3057 2.525 — 0.7044 0.4962 10.833 0.0071

LOGP 13 0.5319 −0.01001 — −0.2312 0.05348 0.6215 0.4472

MP 12 268.2718 0.4817 — −0.3441 0.1184 1.3433 0.2734

CCS 9 116.8003 0.4817 — 0.9923 0.9848 452.0602 0.0000

For quadratic model

MM 13 75.7318 2.1967 −0.0006 0.9982 0.9966 1448.3066 0.0000

XLOGP3 13 −0.4058 0.0115 −0.0001 0.3991 0.1593 0.1593 0.4199

C 13 231.8508 1.8426 0.0026 0.7056 0.4979 4.9591 0.0319

LOGP 13 −0.9455 0.0311 −0.0002 0.3120 0.0974 0.5398 0.5989

MP 12 264.3534 −0.1936 −0.0004 0.3452 0.1192 0.6088 0.5659

CCS 9 109.0213 0.6722 −0.0007 0.9973 0.9947 567.848 0.0000

For logarithmic model

MM 13 −79.3429 182.2592 — 0.9679 0.9368 57.5364 0.0062

XLOGP3 13 4.4663 −1.3357 — −0.3144 0.0989 2.1677 0.8544

C 13 −389.4377 203.5928 — 0.6137 0.3766 28.5367 0.0045

LOGP 13 2.2672 −0.6632 — −0.1656 0.0274 0.6534 0.0955

MP 12 350.0164 −26.7631 — −0.3264 0.1066 2.2675 0.6244

CCS 9 −24.2619 44.7407 — 0.9817 0.9637 45.7354 0.0005
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the structural characteristics of molecules and their corresponding properties or activities. RM1 is the notation for this index,
which represents the total sum of the “n” degrees of all vertices in a relevant molecular graph, while RM2 denotes the second reducible
zagreb index, defined as the summation of products of the “n” degrees for pairs of adjacent vertices in a molecular graph. In
which du and dv represent the degrees of the vertices while “n” indicates the order of the vertices. These indices are defined
mathematically as:

RM1 G( ) � ∑
uv∈E G( )

n

du
+ n

dv
( ),

RM2 G( ) � ∑
uv∈E G( )

n

du
×

n

dv
( ).

2.2 Reducible reciprocal randic index

Some of the most well-known topological indices in regard to chemistry and chemical graph theory was proposed by Milan Randic in
1975 [35] and is useful for evaluating the degree of branching of the carbon atom skeleton of saturated hydrocarbons. The first genuine
degree-based topological index in history was the Randic index. This index can help chemists predict certain properties of molecules such as
boiling points or toxicity levels. By knowing the level of complexity in a molecule using the randic index, scientists can make informed
decisions about its behavior and potential uses. Mingao Yuan derived the limits of the Randic index and its variants for an inhomogeneous
Erdos–Rényi random graph [36]. These results shed light on the impact of network heterogeneity on the indices and offer new insights into
the Randic index and its variants.

TABLE 7 Statistical analysis for the reducible first hyper Zagreb index.

Properties N a b c r r2 F p

For linear model

MM 13 162.7938 0.00754 — 0.9536 0.9094 110.3931 0.0000

XLOGP3 13 0.3402 −0.00008324 — −0.4666 0.2177 3.0619 0.108

C 13 308.3285 0.009365 — 0.6723 0.452 9.074 0.0118

LOGP 13 0.5904 −0.00005927 — −0.3524 0.1242 1.5598 0.2376

MP 12 254.006 −0.0009953 — −0.2934 0.08611 0.9423 0.3546

CCS 9 141.1509 0.001613 — 0.9029 0.8152 30.8694 0.0008

For quadratic model

MM 13 122.6824 0.0149 0.0000 0.9844 0.9691 156.8696 0.0000

XLOGP3 13 −0.4118 0.0001 0.0000 0.4090 0.259 1.7475 0.2234

C 13 267.8934 0.0168 0.0000 0.6867 0.4716 4.4622 0.0412

LOGP 13 −0.5996 0.0002 0.0000 0.4903 0.2404 1.5823 0.2529

MP 12 259.4173 −0.0021 0.0000 0.3024 0.0915 0.4532 0.6493

CCS 9 124.5373 0.0038 0.0000 0.9549 0.912 31.0833 0.0007

For logarithmic model

MM 13 −544.4697 96.6785 — 0.9306 0.8661 62.5484 0.0003

XLOGP3 13 5.6758 −0.7905 — −0.3373 0.1138 1.3476 0.2545

C 13 −348.72 95.2908 — 0.5207 0.2711 37.3654 0.0006

LOGP 13 3.3129 −0.4423 — −0.2002 0.0401 0.7547 0.3685

MP 12 315.7988 −9.2112 — −0.2037 0.0415 1.3564 0.0745

CCS 9 −51.3892 24.7484 — 0.9173 0.8414 174.5758 0.0001

Frontiers in Physics frontiersin.org12

Alam et al. 10.3389/fphy.2024.1383216

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1383216


In order to calculate the reducible randic index, you need to add up the square root of the distance between each bond. This distance is
calculated by multiplying the “n” degrees of the vertices in a molecular graph. This index are defined mathematically as:

RR G( ) � ∑
uv∈E G( )

�������
n

du
×

n

dv

√
.

2.3 Reducible reciprocal sum connectivity index

Zhou and Trinajstic [37] were the ones who initially brought the idea of the sum connectivity index. This index was developed
by drawing inspiration from the Randic-index. It is a concept used in chemistry to measure how connected different atoms are within a
molecule. It is a way to determine the overall structural complexity of a molecule and its ability to interact with other molecules. This
index is takes into account factors like bond lengths, angles, and types of bonds between atoms to calculate a numerical value.
Muhammad Hussain et al. [38] have conducted a comprehensive analysis to determine the sum connectivity index for
three subdivisions of the H3BO3 layer structure. These subdivisions include the subdivision S(H3BO3), the line graph L(H3BO3),
and the caged chain C(H3BO3). The researchers employed various mathematical and computational methods to accurately
calculate the sum connectivity index for each subdivision. The correlation between this index and the straight line graph is
significant [39].

A novel index known as the reducible sum connectivity index has been introduced. It is calculated by summing the square root of
each bonds distance, where the distance is obtained by summing the “n” degrees of the connecting vertices, and has a mathematical
definition as:

RSC G( ) � ∑
uv∈E G( )

������
n

du
+ n

dv

√
.

TABLE 8 Statistical analysis for the reducible second hyper Zagreb index.

Propeties N a b c r r2 F p

For linear model

MM 13 210.4404 0.00007 — 0.7775 0.8818 38.4358 0.0000

XLOGP3 13 −0.02199 −0.0000 — −0.4904 0.2405 3.4839 0.0888

C 13 366.7098 0.000097 — 0.6253 0.3911 7.0641 0.0222

LOGP 13 0.4716 −0.0000 — −0.4235 0.1794 2.404 0.1493

MP 12 248.8652 −0.000010 — −0.2872 0.08246 0.8987 0.3655

CCS 9 155.0311 0.00001 — 0.8217 0.6752 14.5521 0.0065

For quadratic model

MM 13 178.4115 0.0002 0.0000 0.9548 0.9117 51.6331 0.0000

XLOGP3 13 −0.3579 0 0.0000 0.4191 0.2695 1.845 0.2088

C 13 326.4705 0.0002 0.0000 0.6777 0.4593 4.2476 0.0462

LOGP 13 −0.2598 0 0.0000 0.4780 0.3341 2.5081 0.1315

MP 12 257.5147 0 0.0000 0.3841 0.1476 0.1476 0.4873

CCS 9 145.1945 0 0.0000 0.9003 0.8107 12.8492 0.0068

For logarithmic model

MM 13 −318.8317 54.8104 — 0.9632 0.9278 78.6536 0.0063

XLOGP3 13 3.4866 −0.4186 — −0.326 0.1063 1.6478 0.0173

C 13 −202.41 60.5619 — 0.6041 0.3649 28.7367 0.0027

LOGP 13 1.9401 −0.2215 — −0.183 0.0335 0.3645 0.7254

MP 12 336.6867 −8.9537 — −0.3603 0.1298 1.4538 0.0846

CCS 9 21.5129 13.0429 — 0.981 0.9623 479.3848 0.0001
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2.4 Reducible 1st and 2nd hyper Zagreb indices

Shirdel et al. [40] presented the concept of the hyper Zagreb index, which is a molecular descriptor referred to as distance-based
Zagreb index. These indices are numerical values that provide important information about a molecule’s structure. The first hyper Zagreb
index is obtained by summing up the squares of the degrees of all vertices in a molecule. On the other hand, the second hyper Zagreb index
is calculated by multiplying the degrees of adjacent vertices and then summing them all up. By examining both indices, researchers can
gain insight into the complexity of a molecule and make predictions about its chemical properties. Ishita Sarkar and Manjunath Nanjappa
[41] conducted a study on the combinatorial inequalities related to edges, vertices, and their corresponding neighborhood notions. They
also incorporated other molecular descriptors in their calculations to determine the exact expressions of the second hyper-Zagreb index
for specific corona products involving the semi-total point graph. Abdul Hakeem et al. [42] studied the QSPR analysis on heart attack
disease using degree-based indices. The researchers found that the first hyper Zagreb index exhibited a robust correlation with molecular
weight and boiling point within the range of 0.9. Similarly, the second hyper Zagreb index demonstrated a strong correlation with boiling
point within the same range.

In the molecular graph, the reducible first hyper Zagreb index is obtained by summing up the squares of the “n” degrees of all vertices. On
the other hand, the reducible second hyper Zagreb index is calculated by multiplying the “n” degrees of adjacent vertices and then summing
them all up. Mathematically these indices is defined as:

RHM1 G( ) � ∑
uv∈E G( )

n

du
+ n

dv
( )2

,

RHM2 G( ) � ∑
uv∈E G( )

n

du
×

n

dv
( )2

.

TABLE 9 Statistical analysis for the reducible sigma index.

Properties N a b c r r2 F p

For linear model

MM 13 192.419 0.04944 — 0.8966 0.8039 45.0836 0.0000

XLOGP3 13 0.7616 −0.0008381 — −0.6737 0.4538 9.1398 0.0115

C 13 335.0517 0.06534 — 0.6726 0.4524 9.0879 0.0117

LOGP 13 0.9285 −0.0006116 — −0.5214 0.2719 4.1076 0.0676

MP 12 246.1553 −0.004883 — −0.2049 0.042 0.4384 0.5229

CCS 9 146.93 0.01019 — 0.8899 0.792 26.6509 0.0013

For quadratic model

MM 13 138.522 0.129 0.0000 0.9766 0.9538 103.3206 0.0000

XLOGP3 13 −0.2409 0.0006 0.0000 0.7455 0.5558 6.2551 0.0173

C 13 280.8399 0.1454 0.0000 0.7080 0.5013 5.0259 0.0308

LOGP 13 0.0229 0.0007 0.0000 0.6045 0.3655 2.8798 0.1029

MP 12 267.6473 −0.04 0.0000 0.3945 0.1557 0.8299 0.4669

CCS 9 133.0309 0.0276 0.0000 0.9550 0.9121 31.1128 0.0007

For logarithmic model

MM 13 −294.8106 93.1536 — 0.9729 0.9465 368.6357 0.0002

XLOGP3 13 4.4765 −0.8895 — −0.4117 0.1695 1.3865 0.8384

C 13 −206.2213 107.5349 — 0.6375 0.406 4.5786 0.0028

LOGP 13 2.8294 −0.5261 — −0.2583 0.0667 0.3746 0.0628

MP 12 322.1681 −13.6067 — −0.3225 0.104 1.3654 0.2786

CCS 9 27.9428 21.7919 — 0.9922 0.9844 48.6577 0.0006
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2.5 Reducible sigma index

The concept of Albertson index served as motivation for Gutman, leading him to propose the idea of the Sigma index [43]. His
paper explores the inverse problem concerning the sigma index, demonstrating that an even value will always be obtained for this
index in any given graph. Merve and Ismail conducting a calculation of the sigma index for various graphs, adding the subdivision of
the cycle graph Cn, the graph of S(G), and the r-subdivision graph of Sr(G) [44]. Additionally, they provide examples of well-known
graph cycles. Ozge Colakoglu Havare [45] studied the QSPR analysis with curvilinear regression model by using various molecular
descriptors including Sigma index for the monocarboxylic acids.

The reducible sigma index can be obtained by subtracting the squares of the “n” degrees of each vertex in a molecule. This index is
mathematically defined as:

RS G( ) � ∑
uv∈E G( )

n

du
− n

dv
( )2

.

2.6 Reducible forgotten index

Furtula and Gutman conducted an analysis on the latest version of Zagreb indices, referred to as the Forgotten index [46]. Its definition
lies in using the sum of cubes of degrees in molecular graphs to examine the influence of structure dependency on different properties. The
purpose of presenting this index is to demonstrate its numerous significant features and emphasize its exceptional effectiveness in enhancing
the chemical attributes of the original Zagreb index. This index plays a crucial role in significantly enhancing the physico-chemical
applicability of the first Zagreb index. Some upper bounds for the F-index and certain applications were computed by Hosamani [47]. The
precise formulas for the graph operations with regards to the F-index were calculated by Nilanjan and other authors [48]. Recently, the
reducible forgotten index is introduced which is mathematically defined as:

TABLE 10 Statistical analysis for the reducible forgotten index.

Properties N a b c r r2 F p

For linear model

MM 13 169.4351 0.01312 — 0.9571 0.9161 120.0949 0.0000

XLOGP3 13 0.3495 −0.0001521 — −0.4918 0.2419 3.5092 0.0878

C 13 312.626 0.01665 — 0.6892 0.4749 9.9497 0.0091

LOGP 13 0.5932 −0.000108 — −0.3703 0.1371 1.7477 0.213

MP 12 253.8904 −0.001809 — −0.3071 0.09431 1.0412 0.3316

CCS 9 143.0493 0.002774 — 0.9169 0.8407 36.9467 0.0005

For quadratic model

MM 13 132.53 0.0267 0.0000 0.9934 0.987 379.2814 0.0000

XLOGP3 13 −0.4879 0.0002 0.0000 0.456 0.3136 2.2842 0.1524

C 13 268.6353 0.0329 0.0000 0.7123 0.5074 5.15 0.0296

LOGP 13 −0.5548 0.0003 0.0000 0.4373 0.2887 2.0298 0.1826

MP 12 266.2883 −0.0068 0.0000 0.3672 0.1349 0.7015 0.5211

CCS 9 128.9797 0.0067 0.0000 0.9757 0.9521 59.6012 0.0001

For logarithmic model

MM 13 465.5766 95.8217 — 0.9742 0.949 63.3654 0.0027

XLOGP3 13 4.9133 −0.7692 — −0.3466 0.1201 1.3745 0.7253

C 13 −357.8937 105.0634 — 0.6063 0.3676 73.7354 0.0235

LOGP 13 2.7509 −0.4138 — −0.1978 0.0391 0.3876 0.0975

MP 12 347.2109 −13.9873 — −0.3252 0.1058 2.1836 0.0754

CCS 9 −19.4979 23.3651 — 0.9901 0.9803 94.7648 0.0001
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RF G( ) � ∑
uv∈E G( )

n

du
( )2

+ n

dv
( )2( ).

2.7 Reducible 1st and 2nd Gourava index

The first and second Gourava indices were introduced by V.R. Kulli [49], who drew inspiration from the definition of the Zagreb indices
and their extensive usage. In calculating this index, Kulli applies the equation’s definition to both armchair and zigzag edge polyhex
nanotubes, with a particular focus on a few well-known graph types. Ying Wang et al. [50] prove the graphs uniqueness on trees with given
independence numbers with maximum both 1st and 2nd Gourava indices. The mathematical definition of the reducible first and second
Gourava indices was recently introduced, which is stated as:

RG1 G( ) � ∑
uv∈E G( )

n

du
+ n

dv

n

du
+ n

dv
( )( ),

RG2 G( ) � ∑
uv∈E G( )

n

du
+ n

dv
( ) n

du
×

n

dv
( )( ).

3 Methods and strategies

Topological indices are derived from various mathematical approaches, and one of the most popular methodologies is based on vertex degrees.
The degree of a vertex in a graph represents the number of edges connected to it. By analyzing the distribution of degrees in a system, we can obtain

TABLE 11 Statistical analysis for the reducible first Gourava index.

Properties N a b c r r2 F p

For linear model

MM 13 160.963 0.03131 — 0.9667 0.9344 156.8033 0.0000

XLOGP3 13 0.1775 −0.0003094 — −0.4234 0.1793 2.4032 0.1494

C 13 304.648 0.03917 — 0.4712 0.6864 9.8003 0.0095

LOGP 13 0.4452 −0.0002145 — −0.3114 0.09694 1.1809 0.3004

MP 12 256.6838 −0.004654 — −0.335 0.1122 1.2637 0.2872

CCS 9 140.455 0.006874 — 0.9283 0.8618 43.6559 0.0003

For quadratic model

MM 13 124.4735 0.016 0.0000 0.9959 0.9919 614.9352 0.0000

XLOGP3 13 −0.253 0 0.0000 0.4415 0.195 1.2113 0.3387

C 13 256.2399 0.0785 0.0000 0.7097 0.5038 5.0758 0.0301

LOGP 13 −0.4838 0.0005 0.0000 0.4234 0.1793 1.0925 0.3723

MP 12 263.8316 −0.0109 0.0000 0.3511 0.1233 0.6329 0.5531

CCS 9 126.0261 0.0155 0.0000 0.9834 0.9672 88.5105 0.0000

For logarithmic model

MM 13 −463.4443 104.0763 — 0.974 0.9486 174.7654 0.0006

XLOGP3 13 4.5578 −0.7904 — −0.3279 0.1075 1.3755 0.8548

C 13 −346.22 112.8723 — 0.5996 0.3595 37.7254 0.0075

LOGP 13 2.4916 −0.4162 — −0.1831 0.0335 1.7542 0.0645

MP 12 343.4525 −14.7187 — −0.3157 0.0997 0.6432 0.8654

CCS 9 −23.0011 25.8757 — 0.9896 0.9793 275.8643 0.0076
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valuable information about its structural features and properties. Degree-based topological indices are calculated using mathematical formulas that
take into account the degrees of vertices in a graph. We took several steps to get at the results, including gathering data on the pharmaceutical
properties of medications used to treat tuberculosis disease. The data for these properties has been collected from the PubChem website. The
numerical values of themolecular descriptors are determined by employing the techniques of vertex degree and edge division. This method involves
grouping or bundling the edges and vertices based on their specific attributes. To develop the QSPR analysis, a three regression-equation (linear-
regression, quadratic-regression, and logarithmic-regression) and eight statistical parameters (including p-value and F-test value) were employed.
Analyzing and predicting data patterns is made easier with the use of these valuable models. The coefficient correlation r results of these three
regression-model are determined through the use of the SPSS software. The illustration of the 2D molecular structures of these medications is
achieved through the use of software applications like Chem-Draw and Chem-Doodle. By visually representing the intricate structures, these
software enable a deeper understanding of the chemical properties of various compounds. Bar graphs have been employed to visually represent the
comparisons of all correlation values. These graphs are created through Microsoft Excel. All indices can be calculated using software like Matlab,
whereas Maple has been exclusively designed for graph sketching purposes. This methodology has the advantage that all the indices can be
computed rapidly. Thismanuscript presents a concise and comprehensible flowchart of the work, using Figure 4 tomake it easy and understandable
for readers.

4 Analyzing the structural and mathematical computations associated with anti-
tuberculosis drugs

This section provides an overview of the structural information and computational analysis of reducible indices for the treatment of
tuberculosis (TB) disease. The article primarily focuses on the planar and 2D forms of drugs, disregarding their actual 3D structures.
Within this context, the discussion revolves around thirteen prominent anti-tuberculosis drugs, namely, Isoniazid, Pyrazinamide,
Ethionamide, Levofloxacin, Amikacin, Ofloxacin, Cycloserine, 4-aminosalicyclic acid, Ethambutol, Ciprofloxacin, Bedaquiline,

TABLE 12 Statistical analysis for the reducible second Gourava index.

Properties N a b c r r2 F p

For linear model

MM 13 191.5845 0.0007926 — 0.9252 0.856 65.3868 0.0000

XLOGP3 13 0.09156 −0.00000918 — 0.2256 −0.475 3.2051 0.1009

C 13 342.2894 0.0009956 — 0.6597 0.4352 8.4765 0.0141

LOGP 13 0.4739 −0.000006913 — −0.3794 0.1439 1.8496 0.2011

MP 12 251.5699 −0.0001121 — −0.307 0.09427 1.0408 0.3317

CCS 9 149.7374 0.0001628 — 0.8707 0.7581 21.9342 0.0022

For quadratic model

MM 13 156.491 0.0018 0.0000 0.9794 0.9594 118.2158 0.0000

XLOGP3 13 −0.3882 0 0.0000 0.4134 0.2636 1.7899 0.2165

C 13 297.8582 0.0023 0.0000 0.6989 0.4886 4.7777 0.0356

LOGP 13 −0.4004 0 0.00000 0.5346 0.2858 2.0013 0.1858

MP 12 262.0989 −0.0005 0.0000 0.3806 0.1449 0.7626 0.4944

CCS 9 137.149 0.0004 0.0000 0.9445 0.8921 24.8128 0.0013

For logarithmic model

MM 13 −433.6237 73.2963 — 0.9727 0.9461 356.6357 0.0087

XLOGP3 13 4.4809 −0.5712 — −0.336 0.1129 1.3846 0.6432

C 13 −298.8449 78.0269 — 0.5877 0.3454 34.6535 0.0036

LOGP 13 2.5081 −0.3063 — −0.1911 0.0365 0.6532 0.6543

MP 12 338.4152 −10.2879 — −0.3124 0.0976 1.7363 0.7254

CCS 9 −16.0368 18.2656 — 0.9906 0.9813 476.7256 0.0007
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Kanamycin, and Streptomycin. The thirteen anti-tuberculosis drugs mentioned have been extensively studied and utilized in the
treatment of TB. Each drug possesses unique characteristics and mechanisms of action, making them valuable tools in combating this
infectious disease. Figure 5 visually displays the chemical structures of these medicine, which are commonly used to treat
tuberculosis disease. Additionally, this section provides a comprehensive overview of both the experimental data and the
calculation of reducible indices. The six physicochemical properties: molar mass, XLOGP3, Complexity, LOGP, melting point
and collision cross section were obtained from the PubChem website and are presented in Table 2. The values of the ten degree-based
reducible topological indices were computed using the formulas illustrated in Table 1. All the indices considered in this study are
based on vertex and edge degrees. It is noting that a total of thirteen structures were analyzed, each exhibiting eight distinct types of
edge bundles. In addition, the maximum vertex degree is restricted to four, and thus the node degree varies between one and four.
Therefore, these eight edge bundles are:

E 1,2( ) � e � uv ∈ E G( )|du � 1, dv � 2, E 2,2( ) � e � uv ∈ E G( )|du � 2, dv � 2
E 1,3( ) � e � uv ∈ E G( )|du � 1, dv � 3, E 3,3( ) � e � uv ∈ E G( )|du � 3, dv � 3
E 1,4( ) � e � uv ∈ E G( )|du � 1, dv � 4, E 2,4( ) � e � uv ∈ E G( )|du � 2, dv � 4
E 2,3( ) � e � uv ∈ E G( )|du � 2, dv � 3, E 3,4( ) � e � uv ∈ E G( )|du � 3, dv � 4

The use of isoniazid, alongwith othermedications, is necessary to treat active tuberculosis (TB) infections. Additionally, when an individual tests
positive for TB through a skin test and is suspected of having the infection, isoniazid is administered alone to prevent the development of active TB
infections. As an antibiotic, isoniazid functions by preventing bacterial growth. Only bacterial illnesses are treated by this antibiotic. Conversely, it
proves ineffective against viral illnesses such as the flu or the common cold. Themolecular formula of isoniazid isC6H7N3O. It consists of carbon (C),
hydrogen (H), nitrogen (N), and oxygen (O) atoms. Figure 6 illustrates the 2Dmolecular structure of Isoniazid. Themolecular structure of Isoniazid,
denoted as G, is composed of 10 vertices (dots) and 10 edges (lines). To analyze this structure, a technique of degree-based has been employed. The
vertex set of this structure, V(Isoniazid), consists of vertices Vv, where v ranges from 1 to 10. Similarly, the edge set, E(Isoniazid), is formed by the
edges {v1v2, v2v3, v3v4, . . . , v9v10}. There are three vertex partitions, namely, V1, V2, and V3, that can be identified within this structure. In the given
graph G, V1 represents the set of vertices that have a degree of 1. These vertices are connected to only one other vertex in the graph. On the other
hand V2, consists of vertices that have a degree of 2, meaning they are connected to two other vertices in the graph. Lastly, V3 represents the set of
vertices that have a degree of 3, indicating that they are connected to three other vertices in the graph. Therefore, five edge bundles of this structure is
obtained. The cardinalities of these bundles are as follows: |E(1,2)| = 1, |E(1,3)| = 1, |E(2,3)| = 3, |E(3,3)| = 1, and |E(2,2)| = 4. These edge bundles are utilized
to compute all ten defined reducible indices of the isoniazid structure, which will be discussed below. The same methodology can be applied to
determine the remaining indices of other drug structures.
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RS Isoniazid( ) � ∑
uvεE Isoniazid( )
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TABLE 13 Comparison table of correlation coefficient of linear regression.

Indices MM XLOGP3 C LOGP MP CCS

RM1(G) 0.9916 −0.4068 0.7074 −0.272 −0.3421 0.9733

RM2(G) 0.8044 −0.1163 0.5849 0.1487 −0.3499 0.6928

RR(G) 0.9921 −0.3867 0.70167 −0.2563 −0.3468 0.9751

RSC(G) 0.9981 −0.3746 0.7044 −0.2312 −0.3441 0.9923

RHM1(G) 0.9536 −0.4666 0.6723 −0.3524 −0.2934 0.9029

RHM2(G) 0.7775 −0.4904 0.6253 −0.4235 −0.2872 0.8217

RS(G) 0.8966 −0.6737 0.6726 −0.5214 −0.2049 0.8899

RF(G) 0.9571 −0.4918 0.6892 −0.3703 −0.3071 0.9169

RG1(G) 0.9667 −0.4234 0.4712 −0.3114 −0.335 0.9283

RG2(G) 0.9252 0.2256 0.6597 −0.3794 −0.307 0.8707

TABLE 14 Comparison table of correlation coefficient of quadratic regression.

Indices MM XLOGP3 C LOGP MP CCS

RM1(G) 0.9981 0.4353 0.7109 0.3736 0.3446 0.9947

RM2(G) 0.8410 0.1957 0.6099 0.2559 0.3502 0.7547

RR(G) 0.9980 0.3987 0.7045 0.3339 0.3484 0.9951

RSC(G) 0.9982 0.3991 0.7056 0.3120 0.3452 0.9973

RHM1(G) 0.9844 0.4090 0.6867 0.4903 0.3024 0.9549

RHM2(G) 0.9548 0.4191 0.6777 0.4780 0.3841 0.9003

RS(G) 0.9766 0.7455 0.7080 0.6045 0.3945 0.9550

RF(G) 0.9934 0.456 0.7123 0.4373 0.3672 0.9757

RG1(G) 0.9959 0.4415 0.7097 0.4234 0.3511 0.9834

RG2(G) 0.9794 0.4134 0.6989 0.5346 0.3806 0.9445

Frontiers in Physics frontiersin.org19

Alam et al. 10.3389/fphy.2024.1383216

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1383216
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5 Regression models

Regression models are fundamental tools in statistics that allow us to understand and analyze the relationship between variables. By
fitting a regression model to a dataset, we can make predictions, uncover patterns, and gain insights into the underlying factors that
influence a particular outcome. Regression analysis is like playing matchmaker for numbers. It helps us understand the relationship
between different variables and predicts how they interact with each other. Basically, it is a statistical method to find patterns and
connections within data. Regression models come in different types, Some popular types include linear regression, non-linear regression,
and multiple regression analysis. This article covering three regression models such as linear-regression, quadratic-regression and
logarithmic-regression.

Linear regression is like a good old-fashioned straight line. It is the simplest type of regression where we try to fit a line that best
represents the relationship between an independent variable and a dependent variable. The variable used for prediction is referred to
as the dependent variable (Y), while the term used to predict the value of another variable is known as the independent variable (TI).
The linear regression equation is in the form:

Y � a + b TI( ) (5.1)

Quadratic regression is a statistical modeling technique that allows us to analyze the relationship between a dependent variable and
one or more independent variables. It is an extension of linear regression, where the relationship between variables is assumed to be
quadratic rather than linear. Quadratic regression allows us to model relationships with a curved pattern, capturing more complexity
than linear regression. The quadratic regression equation is a fancy way of expressing a curved relationship between variables. In
quadratic equation (Y) is the dependent variable, (TI) is the independent variable, and a, b, and c are coefficients that determine the
shape of the curve. The quadratic regression model comprises three important components: the intercept (a), the linear coefficient (b),
and the quadratic coefficient (c). These components determine the position, slope, and curvature of the curve, respectively. The
quadratic regression equation is in the form:

Y � a + b TI( ) + c TI( )2 (5.2)

One commonly used type of regression model is logarithmic regression. Logarithmic regression offers a unique approach to
exploring a relationships by fitting a logarithmic function to the data. Logarithmic regression is a type of regression analysis where
the relationship between the dependent variable (Y) and the independent variable (TI) is modeled using a logarithmic
function. Unlike linear regression, which assumes a linear relationship between the variables, logarithmic regression
acknowledges that the relationship may not be linear and allows for a more flexible curve. The logarithmic regression equation
is in the form:

Y � a + b.ln TI( ) (5.3)

The ten reducible indices mentioned above serve as models for six physical properties: molar mass, XLOGP3, Complexity,
LOGP, melting point, and collision cross section of the thirteen molecular structures of the anti-tuberculosis drugs. Eqs 5.1–5.3,
presented above, are employed to determine the regression equations for degree-based reducible TIs. These equations represent
the linear model, quadratic model, and logarithmic model. All three models have been derived using SPSS statistical software.
These models are widely used in various fields, including economics, finance, marketing, and social sciences. They provide a
quantitative approach to understand the relationships between variables and make predictions based on the available data.
By examining the patterns and trends in the data, these regression models help us gain valuable insights and make
informed decisions.
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5.1 Reducible first Zag-index RM1(G)

MM � 121.4199 + 0.3174 RM1 G( )( ) MM � −0.0001 RM1 G( )( )2 + 0.4654 RM1 G( )( ) + 96.0478
XLOGP3 � 0.4445 − 0.002938 RM1 G( )( ) XLOGP3 � 0.0000 RM1 G( )( )2 + 0.0016 RM1 G( )( ) − 0.3322
C � 254.0263 + 0.3989 RM1 G( )( ) C � −0.0001 RM1 G( )( )2 + 0.5621 RM1 G( )( ) + 226.0558
LOGP � 0.5154 − 0.001852 RM1 G( )( ) LOGP � 0.0000 RM1 G( )( )2 + 0.0052 RM1 G( )( ) − 0.6961
MP � 262.3759 − 0.04733 RM1 G( )( ) MP � 0.0000 RM1 G( )( )2 − 0.0719 RM1 G( )( ) + 266.488
CCS � 128.5696 + 0.07279 RM1 G( )( ) CCS � 0.0000 RM1 G( )( )2 + 0.128 RM1 G( )( ) + 116.9132

MM � −524.7273 + 144.3139.ln RM1 G( )( )
XLOGP3 � 5.0647 − 1.1031.ln RM1 G( )( )
C � −465.9574 + 165.6227.ln RM1 G( )( )
LOGP � 2.6789 − 0.5673.ln RM1 G( )( )
MP � 361.732 − 22.0794.ln RM1 G( )( )
CCS � −31.3612 + 34.8091.ln RM1 G( )( )

5.2 Reducible second Zag-index RM2(G)

MM � 197.8953 + 0.03537 RM2 G( )( ) MM � 0.0000 RM2 G( )( )2 + 0.0776 RM2 G( )( ) + 158.6936
XLOGP3 � −0.9894 − 0.0001154 RM2 G( )( ) XLOGP3 � 0.0000 RM2 G( )( )2 − 0.0007 RM2 G( )( ) − 0.4226
C � 347.2226 + 0.04531 RM2 G( )( ) C � 0.0000 RM2 G( )( )2 + 0.0977 RM2 G( )( ) + 298.5519
LOGP � −1.114 + 0.0001391 RM2 G( )( ) LOGP � 0.0000 RM2 G( )( )2 − 0.0006 RM2 G( )( ) − 0.407
MP � 255.5193 − 0.006822 RM2 G( )( ) MP � 0.0000 RM2 G( )( )2 − 0.0082 RM2 G( )( ) + 256.7221
CCS � 152.867 + 0.00754 RM2 G( )( ) CCS � 0.0000 RM2 G( )( )2 + 0.0183 RM2 G( )( ) + 139.8961

MM � −356.0103 + 95.0916.ln RM2 G( )( )
XLOGP3 � 1.6578 − 0.4286.ln RM2 G( )( )
C � −208.1414 + 100.0905.ln RM2 G( )( )
LOGP � −1.2177 + 0.0817.ln RM2 G( )( )
MP � 338.2667 − 14.9125.ln RM2 G( )( )
CCS � 10.3761 + 23.0143.ln RM2 G( )( )

5.3 Reducible reciprocal randic index RR(G)

MM � 120.8357 + 0.6734 RR G( )( ) MM � −0.0004 RR G( )( )2 + 0.973 RR G( )( ) + 96.7815
XLOGP3 � 0.3582 − 0.005922 RR G( )( ) XLOGP3 � 0.0000 RR G( )( )2 + 0.0001 RR G( )( ) − 0.123
C � 255.4439 + 0.8391 RR G( )( ) C � −0.0004 RR G( )( )2 + 1.1469 RR G( )( ) + 230.722
LOGP � 0.4514 − 0.003701 RR G( )( ) LOGP � 0.0000 RR G( )( )2 + 0.0087 RR G( )( ) − 0.5473
MP � 262.8292 − 0.1017 RR G( )( ) MP � 0.0000 RR G( )( )2 − 0.1053 RR G( )( ) + 263.1149
CCS � 127.921 + 0.1565 RR G( )( ) CCS � −0.0002 RR G( )( )2 + 0.2695 RR G( )( ) + 116.6876

MM � −399.3469 + 141.2089.ln RR G( )( )
XLOGP3 � 3.9097 − 1.0407.ln RR G( )( )
C � −283.9748 + 154.5721.ln RR G( )( )
LOGP � 2.0468 − 0.5277.ln RR G( )( )
MP � 336.1482 − 20.3144.ln RR g( )( )
CCS � −6.5383 + 35.0199.ln RR G( )( )
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5.4 Reducible reciprocal sum connectivity index RSC(G)

MM � 81.6943 + 2.0309 RSC G( )( ) MM � −0.0006 RSC G( )( )2 + 2.1967 RSC G( )( ) + 75.7318
XLOGP3 � 0.6249 − 0.0172 RSC G( )( ) XLOGP3 � −0.0001 RSC G( )( )2 + 0.0115 RSC G( )( ) − 0.4058
C � 207.3057 + 2.525 RSC G( )( ) C � 0.0026 RSC G( )( )2 + 1.8426 RSC G( )( ) + 231.8508
LOGP � 0.5319 − 0.01001 RSC G( )( ) LOGP � −0.0002 RSC G( )( )2 + 0.0311 RSC G( )( ) − 0.9455
MP � 268.2718 + 0.4817 RSC G( )( ) MP � −0.0004 RSC G( )( )2 − 0.1936 RSC G( )( ) + 264.3534
CCS � 116.8003 + 0.4817 RSC G( )( ) CCS � −0.0007 RSC G( )( )2 + 0.6722 RSC G( )( ) + 109.0213

MM � −479.3429 + 182.2592.ln RSC G( )( )
XLOGP3 � 4.4663 − 1.3357.ln RSC G( )( )
C � −389.4377 + 203.5928.ln RSC G( )( )
LOGP � 2.2672 − 0.6632.ln RSC G( )( )
MP � 350.0164 − 26.7631.ln RSC G( )( )
CCS � −24.2619 + 44.7407.ln RSC G( )( )

5.5 Reducible hyper first Zag-index RHM1(G)

MM � 162.7938 + 0.00754 RHM1 G( )( ) MM � 0.0000 RHM1 G( )( 2+0.0149 RHM1 G( )( ) + 122.6824(
XLOGP3 � 0.3402 − 0.00008324 RHM1 G( )( ) XLOGP3 � 0.0000 RHM1 G( )( )2 + 0.0001 RHM1 G( )( ) − 0.4118
C � 308.3285 + 0.009365 RHM1 G( )( ) C � 0.0000 RHM1 G( )( )2 + 0.0168 RHM1 G( )( ) + 267.8934
LOGP � 0.5904 − 0.00005927 RHM1 G( )( ) LOGP � 0.0000 RHM1 G( )( )2 + 0.0002 RHM1 G( )( ) − 0.5996
MP � 254.006 − 0.0009953 RHM1 G( )( ) MP � 0.0000 RHM1 G( )( )2 − 0.0021 RHM1 G( )( ) + 259.4173
CCS � 141.1509 + 0.001613 RHM1 G( )( ) CCS � 0.0000 RHM1 G( )( )2 + 0.0038 RHM1 G( )( ) + 124.5373

MM � −544.4697 + 96.6785.ln RHM1 G( )( )
XLOGP3 � 5.6758 − 0.7905.ln RHM1 G( )( )
C � −348.72 + 95.2908.ln RHM1 G( )( )
LOGP � 3.3129 − 0.4423.ln RHM1 G( )( )
MP � 315.7988 − 9.2112.ln RHM1 G( )( )
CCS � −51.3892 + 24.7484.ln RHM1 G( )( )

5.6 Reducible hyper first Zag-index RHM2(G)

MM � 210.4404 + 0.00007769 RHM2 G( )( ) MM � 0.0000 RHM2 G( )( )2 + 0.0002 RHM2 G( )( ) + 178.4115
XLOGP3 � −0.02199 − 9.748e − 7 RHM2 G( )( ) XLOGP3 � 0.0000 RHM2 G( )( )2 + 0 RHM2 G( )( ) − 0.3579
C � 366.7098 + 0.00009706 RHM2 G( )( ) C � 0.0000 RHM2 G( )( )2 + 0.0002 RHM2 G( )( ) + 326.4705
LOGP � 0.4716 − 7.936e − 7 RHM2 G( )( ) LOGP � 0.0000 RHM2 G( )( )2 + 0 RHM2 G( )( ) − 0.2598
MP � 248.8652 − 0.00001071 RHM2 G( )( ) MP � 0.0000 RHM2 G( )( )2 + 0 RHM2 G( )( ) + 257.5147
CCS � 155.0311 + 0.00001535 RHM2 G( )( ) CCS � 0.0000 RHM2 G( )( )2 + 0 RHM2 G( )( ) + 145.1945

MM � −318.8317 + 54.8104.ln RHM2 G( )( )
XLOGP3 � 3.4866 − 0.4186.ln RHM2 G( )( )
C � −202.41 + 60.5619.ln RHM2 G( )( )
LOGP � 1.9401 − 0.2215.ln RHM2 G( )( )
MP � 336.6867 − 8.9537.ln RHM2 G( )( )
CCS � 21.5129 + 13.0429.ln RHM2 G( )( )
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5.7 Reducible sigma index RS(G)

MM � 192.419 + 0.04944 RS G( )( ) MM � 0.0000 RS G( )( )2 + 0.129 RS G( )( ) + 138.522
XLOGP3 � 0.7616 − 0.0008381 RS G( )( ) XLOGP3 � 0.0000 RS G( )( )2 + 0.0006 RS G( )( ) − 0.2409
C � 335.0517 + 0.06534 RS G( )( ) C � 0.0000 RS G( )( )2 + 0.1454 RS G( )( ) + 280.8399
LOGP � 0.9285 − 0.0006116 RS G( )( ) LOGP � 0.0000 RS G( )( )2 + 0.0007 RS G( )( ) + 0.0229
MP � 246.1553 − 0.004883 RS G( )( ) MP � 0.0000 RS G( )( )2 − 0.04 RS G( )( ) + 267.6473
CCS � 146.93 + 0.01019 RS G( )( ) CCS � 0.0000 RS G( )( )2 + 0.0276 RS G( )( ) + 133.0309

MM � −294.8106 + 93.1536.ln RS G( )( )
XLOGP3 � 4.4765 − 0.8895.ln RS G( )( )
C � −206.2213 + 107.5349.ln RS G( )( )
LOGP � 2.8294 − 0.5261.ln RS G( )( )
MP � 322.1681 − 13.6067.ln RS G( )( )
CCS � 27.9428 + 21.7919.ln RS G( )( )

5.8 Reducible forgotten index RF(G)

MM � 169.4351 + 0.01312 RF G( )( ) MM � 0.0000 RF G( )( )2 + 0.0267 RF G( )( ) + 132.5
XLOGP3 � 0.3495 − 0.0001521 RF G( )( ) XLOGP3 � 0.0000 RF G( )( )2 + 0.0002 RF G( )( ) − 0.487
C � 312.626 + 0.01665 RF G( )( ) C � 0.0000 RF G( )( )2 + 0.0329 RF G( )( ) + 268.6353
LOGP � 0.5932 − 0.000108 RF G( )( ) LOGP � 0.0000 RF G( )( )2 + 0.0003 RF G( )( ) − 0.5548
MP � 253.8904 − 0.001809 RF G( )( ) MP � 0.0000 RF G( )( )20.0068 RF G( )( ) + 266.2883
CCS � 143.0493 + 0.002774 RF G( )( ) CCS � 0.0000 RF G( )( )2 + 0.0067 RF G( )( ) + 128.9797

MM � −465.5766 + 95.8217.ln RF G( )( )
XLOGP3 � 4.9133 − 0.7692.ln RF G( )( )
C � −357.8937 + 105.0634.ln RF G( )( )
LOGP � 2.7509 − 0.4138.ln RF G( )( )
MP � 347.2109 − 13.9873.ln RF G( )( )
CCS � −19.4979 + 23.3651.ln RF G( )( )

TABLE 15 Comparison table of correlation coefficient of logarithmic regression.

Indices MM XLOGP3 C LOGP MP CCS

RM1(G) 0.9742 −0.3301 0.6346 −0.18 −0.3417 0.9861

RM2(G) 0.886 −0.177 0.5293 0.0358 −0.3129 0.8559

RR(G) 0.9697 −0.3168 0.6025 −0.1704 −0.3202 0.985

RSC(G) 0.9679 −0.3144 0.6137 −0.1656 −0.3264 0.9817

RHM1(G) 0.9306 −0.3373 0.5207 −0.2002 −0.2037 0.9173

RHM2(G) 0.9632 −0.326 0.6041 −0.183 −0.3603 0.981

RS(G) 0.9729 −0.4117 0.6375 −0.2583 −0.3225 0.9922

RF(G) 0.9742 −0.3466 0.6063 −0.1978 −0.3252 0.9901

RG1(G) 0.974 −0.3279 0.5996 −0.1831 −0.3157 0.9896

RG2(G) 0.9727 −0.336 0.5877 −0.1911 −0.3124 0.9906
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5.9 Reducible first Gourava index RG1(G)

MM � 160.963 + 0.03131 RG1 G( )( ) MM � 0.0000 RG1 G( )( )2 + 0.061 RG1 G( )( ) + 124.4735
XLOGP3 � 0.1775 − 0.0003094 RG1 G( )( ) XLOGP3 � 0.0000 RG1 G( )( )2 + 0 RG1 G( )( ) − 0.253
C � 304.648 + 0.03917 RG1 G( )( ) C � 0.0000 RG1 G( )( )2 + 0.0785 RG1 G( )( ) + 256.2399
LOGP � 0.4452 − 0.0002145 RG1 G( )( ) LOGP � 0.0000 RG1 G( )( )2 + 0.0005 RG1 G( )( ) − 0.4838
MP � 256.6838 − 0.004654 RG1 G( )( ) MP � 0.0000 RG1 G( )( )2 − 0.0109 RG1 G( )( ) + 263.8316
CCS � 140.455 + 0.006874 RG1 G( )( ) CCS � 0.0000 RG1 G( )( )2 + 0.0155 RG1 G( )( ) + 126.0261

MM � −463.4443 + 104.0763.ln RG1 G( )( )
XLOGP3 � 4.5578 − 0.7904.ln RG1 G( )( )
C � −346.22 + 112.8723.ln RG1 G( )( )
LOGP � 2.4916 − 0.4162.ln RG1 G( )( )
MP � 343.4525 − 14.7187.ln RG1 G( )( )
CCS � −23.0011 + 25.8757.ln RG1 G( )( )

5.10 Reducible second Gourava index RG2(G)

MM � 191.5845 + 0.0007926 RG2 G( )( ) MM � 0.0000 RG2 G( )( )2 + 0.0018 RG2 G( )( ) + 156.491
XLOGP3 � 0.09156 − 0.00000918 RG2 G( )( ) XLOGP3 � 0.0000 RG2 G( )( )2 + 0 RG2 G( )( ) − 0.3882
C � 342.2894 + 0.0009956 RG2 G( )( ) C � 0.0000 RG2 G( )( )2 + 0.0023 RG2 G( )( ) + 297.8582
LOGP � 0.4739 − 0.000006913 RG2 G( )( ) LOGP � 0.0000 RG2 G( )( )2 + 0 RG2 G( )( ) − 0.4004
MP � 251.5699 − 0.0001121 RG2 G( )( ) MP � 0.0000 RG2 G( )( )2 − 0.0005 RG2 G( )( ) + 262.0989
CCS � 149.7374 + 0.0001628 RG2 G( )( ) CCS � 0.0000 RG2 G( )( )2 + 0.0004 RG2 G( )( ) + 137.149

MM � −433.6237 + 73.2963.ln RG2 G( )( )
XLOGP3 � 4.4809 − 0.5712.ln RG2 G( )( )
C � −298.8449 + 78.0269.ln RG2 G( )( )
LOGP � 2.5081 − 0.3063.ln RG2 G( )( )
MP � 338.4152 − 10.2879.ln RG2 G( )( )
CCS � −16.0368 + 18.2656.ln RG2 G( )( )

6 Statistical parameters in QSPR models

QSPR (Quantitative Structure-Property Relationship) modeling has emerged as a powerful tool in the field of computational
chemistry to predict the properties and behaviors of chemicals and materials. In order to build reliable and accurate QSPR models, it
is crucial to understand and utilize statistical parameters effectively. Statistical parameters play a crucial role in model selection. They
help us identify the model that best captures the underlying relationship between chemical structure and property. By comparing
statistical parameters across different models, we can determine which one is more accurate, precise, and reliable for making
predictions. This ensures that we choose the most appropriate model for our specific needs. In QSPR modeling, several statistical
parameters are used to assess model performance. These include correlation coefficient (R and R2), F-test value and p-value. By
examining these parameters, we can determine whether our models are dependable and can consistently provide accurate
predictions. This study delves into the discussion of eight statistical parameters for reducible topological indices within three
regression models of QSPR. The variable “N” represents the size of the data set, which can vary from 9, 12, and 13. In correlation (r),
there are three possible cases. The first case occurs when r > 0, it means that as one term increases, the other term also tends to increase
at the same time. It can be inferred that there is a powerful or undeviating connection between the two terms. The second case occurs
when r < 0, implying that as one term increases, the other term tends to decrease. This indicates a negative or inverse connection
between the two variables. The third case occurs when r = 0, meaning that no relationship is present between the two variables. The
range of r values lies between −1 and +1 for the correlation coefficient. A value of +1 indicates a perfect positive correlation, while a
value of −1 signifies a perfect negative correlation. In simpler terms, when the value of r is close to 1, such as 0.9 or 0.8, it suggests a
strong and direct relationship between two variables. On the other hand, if the value of r is significantly far for 1, like 0.4, 0.3, or 0.2, it
indicates a very weak association between the variables. The same principle applies when the value of r is nearly equal or far to −1. The
correlation coefficient (R2) is a convenient tool for evaluating the QSPR models’ quality. R2 > 0.7 is essential for a good QSPR model.

The F-test is a statistical test used to compare the variances of two populations. In simpler terms, it helps determine if the means of
two groups are significantly different from each other, by comparing the variation within the groups to the variation between the
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groups. The p-value associated with the F-test indicates the probability of observing the data if the null hypothesis (usually that there is
no difference between the groups) is true. A low p-value (typically below 0.05) suggests that there is strong evidence against the null
hypothesis, meaning the difference between the groups is unlikely to be due to random chance alone. The evaluation of our model’s
reliability is greatly enhanced by the utilization of two test values: the p-value and the F-test value. These values help us determine
whether the relationship between properties and indices is significant or not.

In statistical analysis, a p-value #0.05 and an F-test value > 2.5 are often considered indicators of a statistically significant or strong
relationship. On the other hand, if the p-value is greater than 0.05 and the F-test value is less than 2.5, it suggests a lack of significance,
indicating a weak relationship between properties and indices. By assessing the p-value and F-test value, we ensure the validity of our models
and make informed decisions. The numerical values of 8 parameters, including p-values and F-test values, related to all the defined indices
and properties for tuberculosis disease are contained in Tables 3–12.

7 Graphical analysis

Bar graphs are a popular and effective way to visually represent data. The use of rectangular bars of different lengths to show the
magnitude of data points and make comparisons between different categories or groups for numerous drugs. By presenting data in a
graphical format, bar graphs make it easier for people to understand and interpret information quickly. In bar graphs, the x-axis and the
y-axis are commonly known as the two axes used. The horizontal axis (x-axis) represents the all reducible indices, while the vertical axis
(y-axis) showcases the values of all correlation related to properties. These vertical or horizontal rectangles represent the magnitude or value
of each category. The length or height of the bars is proportional to the data which are represent. In each graph, the squared symbol denotes
data points associated with the linear, quadratic, and logarithmic model. Microsoft excel has been used to create these graphs. In Figure 7,
there is a visual representation of the compared correlation graph showing the relationship between various reducible degree-based indices
and characteristics of tuberculosis drugs. Every single graph was created using the data from Tables 13–15. Figure 7 reveals a clear
visualization of the range of r values.

Figure 7A illustrates the comparison of correlation values with blue, orange, and grey bars representing the linear-model, quadratic-
model, and logarithmic-models, respectively. The correlation values between reducible indices and molar mass range from 0.77 to 0.99.
In Figure 7B, the inverse correlation values for the linear and quadratic models lie between −0.1 and −0.6. However, only RG2(G) does
not exhibit an inverse relationship in the linear model, as its correlation value is 0.2256. On the other hand, the range of positive
correlation values for the quadratic model lies between 0.1 and 0.7. The correlation r results for the three models in Figure 7C are all
positive and range from 0.4 to 0.7. In Figure 7D, the inverse correlation values for the linear and quadratic models lie
between −0.1 and −0.5. However, only RG2(G) does not show an inverse relationship in the linear and quadratic models, as its
correlation values are 0.1487 and 0.0358. On the other hand, the range of positive correlation values (r) for the quadratic model lies
between 0.2 and 0.6. In Figure 7E, both the linear and quadratic models exhibit an inverse relationship due to their negative correlation
values, which fall to −0.3. However, the quadratic model demonstrates positive correlation values ranging from 0.30 to 0.39. Lastly, in
Figure 7F, all models exhibit a positive relationship, ranging from 0.6 to 0.9.

8 Results with discussion

The main objective of this portion is to discuss a QSPR analysis that focuses on ten specified reducible topological indices (TIs) and six
distinct properties associated with tuberculosis disease. The mentioned properties comprise molar mass, XLOGP3, Complexity, LOGP, melting
point, and collision cross section. The data for these properties has been sourced from the PubChem website and is presented in Table 2. Vertex
partitions and edge partitions, which are degree-based TIs techniques, have been employed to compute the numerical values corresponding to
the reducible molecular descriptors. The values obtained through calculation for all indices are present in Table 1. The association between
reducible topological descriptors and physicochemical characteristics for anti-tuberculosis drugs has been determined in the three QSPRmodels
that were examined. The statistical parameters were computed to obtain these results. Tables 3–12 presents the summarized values of eight
statistical parameters that were calculated. All the results in the table include information on the p-values and F-test values for the ten reducible
TIs associated with anti-tuberculosis drugs. As a result, some outcomes hold significant and strong value. For instance, Table 3 represents the
statistical analysis for the reducible first Zagreb index. In this table, the linear model shows the F-test value with the highest and lowest
significance values as (647.5515, 0.8791), with corresponding p-values of (0.0000, 0.3686). The correlation r values for this model are
(0.9916, −0.272). In the quadraticmodel, the F-test value is (139.5896, 0.6068) with a p-value of (0.0000, 0.566). The correlation r values for
this model are (0.9981, 0.3446). Lastly, in the logarithmic model, the F-test value is (94.6245, 1.5637) with p-values of (0.0003, 0.5241).
The correlation r values for this model are (0.9861, −0.3301). This analysis provides valuable insights into the relationship between the
reducible first Zagreb index and the different models. Figure 7, represents the bar graphs which are visually compared the r values
between characteristics and reducible indices for anti-tuberculosis drugs. The graphs clearly illustrate the positive correlation r values
observed in Figures 7A, C, F. Interestingly, Figures 7A, F exhibit a stronger positive correlation compared to Figure 7C. On the other
hand, Figures 7B, D, E demonstrate that among the three models (linear, logarithmic, and quadratic), only the quadratic model
displays a positive correlation value. Below the results with discussion for all indices that is based on Tables 13–15 are presented.
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8.1 Linear regression model

By using Tables 3–13, we conclude that all of the defined reducible indices show a robust positive connection with molar mass
within the range of r = 0.7 to 0.9 with r2 = 0.6 to 0.9 having F-value, grater and lower value is (685.6292 and 20.1735) with p-value is less
than 0.05, as well as with collision cross section within the range of r = 0.6 to 0.9 with r2 = 0.4 to 0.9 having F-value, grater and lower
value is (452.0602 and 6.4616) with p-value is less than 0.05. The complexity property demonstrates a significant correlation with
RM1(G) at r = 0.7074, with r2 = 0.5004 having F-value is 11.0191, RR(G) at r = 0.7016 with r2 = 0.4923 and F-value is 10.6656, and
RSC(G) at r = 0.7044 and r2 = 0.4962 having F-value is 10.833. These three properties display a strong positive correlation with the
indices. On the other hand, the remaining three properties, namely, XLOGP3, LOGP, and MP, do not exhibit a strong correlation with
any of the indices, as their correlation r values range from −0.1 to −0.5 with r2 = −0.4 to 0.2 having very low F-value and p-value which is
greater than 0.05. These values indicate an inverse relationship, and have a very low significance level. Only XLOGP3 demonstrates a
moderate inverse relationship with RS(G) at r = −0.6737 with r2 = 0.4538 and F-value is 9.1398. Consequently, the properties of molar
mass and collision cross section offer valuable insights into the relationship with all of the indices.

8.2 Quadratic regression model

Based on the results obtained from Tables 3–12, 14, it is clear that there exists a robust positive correlation between molar mass
and all the specified indices, falling within the range of r = 0.8 to 0.9 with r2 = 0.7 to 0.9 having F-value, highest and lowest value is
(1448.3066 and 12.0901) with p-value is less than 0.05. Additionally, a similar association is observed with collision cross section,
ranging from r = 0.7 to 0.9 and r2 = 0.5,0.8 and 0.9 with F-value which is greater and lower is (567.848 and 3.97) having p-value which
is less than 0.05. These intriguing findings have a profound impact on the advancement of anti-tuberculosis drugs, as they provide
remarkably valuable insights into the development process. Only one index, namely, the reducible sigma index at r = 0.7455 with
r2 = 0.5558 and F-value is 6.2551, demonstrates a good association with XLOGP3. The relationship between complexity with
RM1(G), RR(G), RSC(G), RS(G), RF(G), and RG1(G) demonstrates a strong correlation, with r values exceeding 0.7 with r2 = 0.4 to
0.5. At a r = 0.6, this index demonstrates only a mediocre correlation with RM2(G), RHM1(G), RHM2(G), and RG2(G). LOGP show a
mediocre correlation with only reducible sima index at r = 0.6045 with r2 = 0.3655.

8.3 Logarithmic regression model

After analyzing the data presented in Tables 3–12, 15, we have reached the conclusion that all the reducible indices
demonstrate a very high positive correlation with molar mass within the range of r = 0.8 to 0.9 with r2 varies from to 0.7 to
0.9 having F-value, greater and lower is (368.6357 and 57.5364) with p-value which is less than 0.05, as well as with collision cross
section within the same r and r2 range having F-value greater and lower is (479.3848, 39.7256) and p-values which is less than 0.05.
This analysis reveals a noteworthy relationship between the defined indices and both molar mass and collision cross section. The
data clearly indicates a consistent and significant positive correlation within the specified range. The range of r = 0.6 with r2 varies
from 0.4 to 0.3 reveals a mediocre connection between the complexity property with six reducible indices, namely, RM1(G), RR(G),
RSC(G), RHM2(G), RS(G), and RF (G). It can be observed that there is no strong correlation and significance level between LOGP
and melting point across all defined indices due to the fact that the value of r falls between −0.1 and −0.3 with r2 = 0.0 to 0.1.

9 Conclusion

Degree-based topological indices prove exceptionally valuable in modeling and characterizing the molecular structure of
medications, allowing for the best prediction of physicochemical properties without conducting time-consuming experiments.
These indices, derived from the principles of graph theory, serve as numerical descriptors for molecular structures. When
analyzing drugs using QSPR, degree-based reducible topological indices serve as important tools for predicting drug properties by
providing molecular descriptors. This knowledge is vital for the development of effective treatments and the optimization of drug
design. The selected drugs such as Isoniazid, Pyrazinamide, Ethionamide, Levofloxacin, Amikacin, Ofloxacin, Cycloserine, 4-
aminosalicyclic acid, Ethambutol, Ciprofloxacin, Bedaquiline, Kanamycin and Streptomycin have been widely used in the
treatment of tuberculosis. By calculating the degree-based reducible topological indices for these compounds, we can better
understand their structural features and how they contribute to their pharmacological properties. Furthermore, we have developed
a three-regression model to investigate the correlation between these calculated values and experimental properties, including
molar mass, XLOGP3, Complexity, LOGP, melting point, and collision cross-section. Based on the statistical parameters and
topological indices employed in the three QSPR model, we can conclude that both molar mass and collision cross section exhibit a
highly significant association with all the specified indices. As an example, when examining the relationship between molar mass
and collision cross section with RM1(G) index, we observe varying correlation coefficients (r values) across different models. In

Frontiers in Physics frontiersin.org26

Alam et al. 10.3389/fphy.2024.1383216

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1383216


the linear model, the correlation coefficient ranges from 0.9916 to 0.9733. Meanwhile, the quadratic model yields a higher
correlation coefficient, ranging from 0.9981 to 0.9947. Lastly, the logarithmic model shows a correlation coefficient ranging from
0.9742 to 0.9861. There is a good correlation between complexity and RM1(G), RR(G), and RSC(G) indices in the linear model at
the value of r exceeds from 0.7. Similarly, in the quadratic model, the relationship between complexity and the RM1(G), RR(G),
RSC(G), RS(G), RF(G), and RG1(G) indices also demonstrates a good correlation, with r values exceeding from 0.7. Furthermore,
within the three discussed models, it can be observed that there is no strong correlation or significance level between LOGP and
melting point across all defined indices. This research indicates that theoretical assessment could allow chemists and other
professionals in the pharmaceutical sector to predict the characteristics of tuberculosis medications without the need for
conducting experiments. The analysis revealed a wide range of reducible topological indices, suggesting that alternative
formulations of these drugs could potentially be used to treat a variety of disorders. The research also determined the
correlation coefficient for several reducible topological indices, providing chemists with valuable information to develop new
medications by combining existing ones with high correlations. We aspire for this research to create a pathway for future
breakthroughs in drug design and therapy, ultimately resulting in enhanced results for individuals afflicted with this
incapacitating illness. Before ending this paper, we present the following open problem for further examination.

9.1 Open problem

The analysis of QSPR focused on the correlation between different topological indices that is based on distance-based methodology, and
physicochemical properties of anti-tuberculosis drugs through the use of exponential regression model and multi linear regression model.
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