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An external-cavity wavelength-swept laser, characterized by its exceptional
temporal coherence and extensive tuning range, serves as a crucial light
source for cutting-edge fields such as fiber sensing, lidar, and spectroscopy.
The burgeoning growth of optical communication technology has escalated the
demand for lasers with narrow linewidth and broad tuning range, thereby
catalyzing the swift advancement of external-cavity wavelength-swept diode
lasers and their diverse applications. This article comprehensively presents the
configurations and operating principles of these lasers, and provides an in-depth
review of their development status, specifically focusing on those with narrow
linewidth and wide tuning range. The aim is to offer a valuable reference for
researchers involved in the development and application of wavelength-
swept lasers.
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Introduction

Narrow-linewidth lasers with extensive spectral tunable ranges are indispensable
for a variety of applications, including quantum optics, molecular physics, gas
detection, and space detection [1–4]. However, achieving a balance between narrow
linewidth and tunable wavelength continues to pose a significant challenge in the field
of laser technology. Currently, prevalent strategies for attaining laser output with these
characteristics encompass the use of spectral selection devices (viz. gratings, prisms,
etc.) and nonlinear optical frequency conversion (viz. Raman scattering, optical
parametric oscillator/amplifier, etc.) [3–8]. Semiconductor-based wavelength-swept
lasers, such as external-cavity tunable lasers (ECTLs), distributed Bragg reflector lasers
(DBRs), and distributed feedback lasers (DFBs), are renowned for their highly
controllable emission properties. These lasers have become indispensable in a
multitude of applications, including distributed optical fiber sensing [9–11], atomic
and molecular laser spectroscopy [12, 13], reconfigurable optical add/drop multiplexing
systems [14], trace gas analysis [15], laser lidar [16], space strontium optical clocks [17,
18], and laser cooling [19]. The swift progression and application of these lasers have
led to heightened requirements for linewidth and tunable range. Compared to
semiconductor-based wavelength-swept lasers operating with internal-cavity
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feedback, ECTLs boast prestigious characteristics such as
narrower linewidth, wider tuning range without mode-
hopping, higher signal-to-source spontaneous emission ratio,
and lower cost, making them one of the most versatile
measuring tools. Consequently, research into narrow linewidth
and wide tuning range ECTLs has emerged as a hot topic in recent
years [20–22]. Over the past few decades, synchronous tuning
with mode matching and mode selection has matured, leading to
constant updates in the configurations of external-cavity
wavelength-swept lasers [23, 24].

This article reviews typical external-cavity configurations of
wavelength-swept lasers, summarizing the characteristics,
operating theories, and development status of each ECTL.
Finally, it provides a summary and an outlook for the future
development of narrow linewidth and wide tuning range
external-cavity wavelength-swept lasers.

Configurations and operating
principles of the wavelength-
swept laser

In the realm of optical communication networks and other
fields, there exist at least four distinct configurations of the
wavelength-swept laser. One such configuration involves the use
of a microring resonator (MRR) external-cavity, which can adjust its
resonance wavelength through the thermo-optic effect (i.e., thermal
control) or the carrier-dispersion effect (i.e., electrical control).
Typically, an MRR-based external-cavity configuration comprises
a semiconductor optical amplifier (SOA), a phase-adjustment
region, and a double-microring optical waveguide structure with
unequal radii, which can be based on silicon (Si), silicon oxynitride
(SiON), or silicon nitride (Si3N4) [25–27]. Figure 1A highlights a
schematic drawing of the MRR-based external-cavity configuration.
The main mode-selection element in the external-cavity is the
superimposed spectrum of two MRR spectra with different free
spectral ranges (FSRs), which facilitates wavelength tuning and
linewidth narrowing. The Vernier spectrum FSRVernier shaped by
the double-microring resonators can be described as follows [28]:

FSRVernier � FSR1 × FSR2

FSR1 − FSR2| | (1)

where FSRm is FSR of the mth ring. When the double-microring
optical waveguide undergoes synchronous tuning, the output
spectra maintain alignment and shift collectively as described in
Eq. 1, thereby achieving a continuous wavelength-tunable output.

The subsequent configuration involves filter-based tunable
external-cavity semiconductor lasers that incorporate an optical
filter component within the external lasing cavity. Typical filter
components encompass the Fabry-Perot interferometer (FPI)
[29], nematic liquid crystal [30], birefringence filter [31],
acousto-optic tunable filter (AOTF) [32], interference filter
(IF) [33], electro-optic tunable filter [34], among others. A
general structure diagram is depicted in Figure 1B. The
principle of outputting different lasing wavelengths is
predicated on the shift in the position of the maximum
transmission peak wavelength. This can be achieved by
altering the external angle of incidence, the external medium
refractive index, or the FSR of the periodic comb spectrum.
Concurrently, through the precise mode selection of the
chosen optical filter component and a flexible increase in
effective cavity length, the spectral linewidth can be
further narrowed.

As depicted in Figure 1C, another configuration is the Littman-
Metcalf cavity. The primary components of the Littman-Metcalf
cavity encompass the gain chip, the collimating lens, the diffraction
grating, and the tuning mirror. The diffraction grating, which
includes transmission [35], reflection [36], and blazed gratings
[37, 38], functions as the principal mode selection element,
facilitating wavelength tuning and spectral linewidth narrowing.
Light emanating from the gain chip impinges on the diffraction
grating, which spatially segregates the spectral components of the
gain chip output. The mode-selective effect of the diffraction grating
can be expressed by a function associated with its equivalent
reflectance RG. The output of the Littman-Metcalf configuration
is the coupled effect of the diffraction grating, external-cavity, and
internal-cavity. Consequently, the output mode structure, EMS, can
be described as follows [39]:

FIGURE 1
(A) Schematic drawing of the MRR-based external-cavity configuration, (B) configuration of the filter-type external-cavity tunable laser, (C) the
Littman-Metcalf cavity configuration, and (D) the Littrow cavity configuration.
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EMS � TGGICGEC RG( )E0 (2)
where TG, GIC, GEC, E0 denotes the equivalent transmittance of the
diffraction grating, the gain of the internal-cavity, the gain of the
external-cavity, the initial energy, respectively. By rotating the
tuning mirror, the wavelength is tuned. The linewidth of the
Littman-Metcalf cavity is given by the formula [40]:

Δυ � Δυ0 1 + τ/τ in 1 −
�������
R2/Rout

√( )[ ]−2 (3)

where Δυ0 is the intrinsic linewidth of the gain chip, τin and τ are the
times that the photons take to travel back and forth between the
external-cavity and the active region of the gain chip, respectively, R2

is the reflectivity of the output end face of the gain chip, and Rout is
the reflectivity of the external-cavity. Obviously, the linewidth is
closely related to the parameters described in Eq. 3.

The final configuration is the Littrow cavity shown in Figure 1D.
In this geometry, the tuning mirror is removed compared to the
Littman-Metcalf cavity. The lasing wavelength is tuned by rotating
the diffraction grating and thereby changing the wavelength of the
optical feedback. The output wavelength that satisfies the resonant
condition is determined by Eqs 4, 5, respectively [41]:

L � q λq/2( ) (4)
λ � 2dsinθ (5)

where L denotes the effective cavity length, q denotes a positive
integer, λ denotes the lasing wavelength, d represents the diffraction
grating period, and θ represents the diffraction angle of the mode
selection element. The linewidth of the Littrow cavity can be express
as [42] (namely Eq. 6):

Δυ � Δυ0
1 + α2( )cos 2 ϕ

R2

1 − R2( )2Rd

nl

L
( )2

(6)

where α, cos ϕ, Rd, l is the linewidth expansion factor, the phase-
matching factor, the 1st-order diffraction efficiency of the mode
selection element, the length of the gain chip’s internal-cavity,
respectively. Using the diffraction grating to construct an
external-cavity can significantly increase the lasing cavity length,
thus making the output linewidth narrower.

Research progress of waveguide-
type ECTL

Owing to the combination of the availability of complementary
metal oxide semiconductor (CMOS) fabrication technology and high
index contrast. Thus, the silicon photonics (SiPh) dual MRRs ECTLs
with a wide tuning range and narrow linewidth have attracted
increasing research attention. In 2009, the first ECTL fabricated with
SiPh wire waveguides on a silicon-on-insulator (SOI) substrate was
demonstrated by Chu et al. [25], achieving a maximum tuning span of
38 nm in the 1,530 nm–1,565 nm (namely, C-band) or
1,565 nm–1,610 nm (namely, L-band) and a side-mode suppression
ratio (SMSR) more than 30 dB along the whole tuning range. Using a
similar hybrid silicon platform, in 2013, Hulme et al. designed and
fabricated dual intra-cavity ring resonators ECTL [43]. The laser has a
thermal tuning range of more than 40 nm, the SMSR greater than

35 dB, and the minimum on-chip output power of 0.45 mW.
Meanwhile, they measured the linewidth based on the delayed self-
heterodyne method [44], and the linewidth value was calculated to be
338 kHz. In 2018, Guan et al. conducted a study on the III-V/silicon
hybrid ECTL based on a SOI platform [26]. The corresponding
experimental results showed that the ECDL can be tuned from
1,515 nm to 1,575 nm with a SMSR in excess of 46 dB, the
linewidth was as narrow as 37 kHz, and the maximal relative
intensity noise (RIN) was better than −135 dB/Hz. However, due to
the large linear-propagation loss and large thermo-optic coefficient of
the Si material, it is difficult to further improve linewidth characteristics.
Compared with Si-based material, the Si3N4-based materials are
advantageous in terms of low linear-propagation loss and small
thermo-optic coefficient, which are conductive to narrowing the
linewidth. Later that same year, Yi et al. reported a hybrid photonic
integrated ECTL based on Si3N4 MRRs [27]. Experiments have proved
that the fine-tuning of the lasingwavelength can be realized by changing
the temperature of the phase section. In this study, the tuning range of
the ECTLwas approximately 50 nm, with a SMSR exceeding 50 dB, and
the narrowest linewidth measured was 35 kHz. In 2021, a novel InP-
Si3N4 dual laser module was demonstrated by Dass et al. [45], each of
which was fabricated using hybrid coupling of an InP-based SOA and a
low loss Si3N4 feedback circuit. This work presented an ECTL which
can be tuned over 100 nm while maintaining the SMSR greater than
50 dB with a RIN of about −160 dB/Hz. In 2023, Chen et al. reported a
hybrid integrated Si3N4 ECTL with full C-band wavelength tenability
and narrow-linwidth output [46]. In this study, the InP gain chip was
coupled with the Si3N4 dual micro-ring, then integrated with the
AlGaInAs quantum well rib waveguide SOA through the dual-
collimating lens coupling. A wavelength tuning range of 55 nm was
obtained, the SMSR over 50 dB was measured, and the linewidth was
narrower than 8 kHz.

Research progress of filter-type ECTL

Comparedwith the abovementioned ECTLs that use dualMRRs as
mode-selection component, the filter-type-ECTL provides the
advantage of higher flexibility in optical filters. In 1993, Choi et al.
verified that piezoelectric ceramics (PZT) can fine-tune the effective
length of the external-cavity to obtain the tuning of the lasing
wavelength [47]. Similarly, the filter-type-ECTLs are tuned by
changing the effective length of the external-cavity or rotating the
filter. In 2011, Zhang et al. reported their work on ECTL, which utilized
two etalons in the external-cavity to realize narrow-linewidth and wide
tuning output [48]. A tuning range of about 40 nm with the linewidth
less than 100 kHz wasmeasured. In 2012, Thompson et al. carried out a
study on wide-bandwidth filter-type-ECTL [49]. The linewidth of the
ECTL was around 26 kHz, and the tuning range exceeded 14 nm. In
2017, Kasai et al. demonstrated a long external-cavity structure with a
tunable optical filter [33]. The coarse and fine wavelength-tuning can be
obtained by simultaneously changing the peak transmittance
wavelength of the multi-layered dielectric interference filter and the
length of the AR-coated SiO2 plate. The lasing wavelength was
successfully tuned over 40 nm without mode hopping in the full C
or L-bands, and the linewidth of less than 8 kHz and 7.7 kHz were
measured, respectively. In 2020, Zhang et al. used a bandwidth of
0.48 nm IF with a peak transmittance of up to 96% to adjust the lasing
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wavelength [17]. It had a coarse wavelength tuning range over 40 GHz
by current-controlled method, a fine tuning range over 3 GHz by PZT-
controlled method, and the output linewidth was about 180 kHz. In the
same year, Magdich et al. reported an ECTL with a linear external
resonator and two AOTFs [32]. This study indicated that this optical
scheme can significantly compress the output spectral linewidth in both
sweep and stationarymodes. Aminimum linewidth of 0.022 nm can be
achieved when the tuning rate of the AOTF reaches 104 nm/s, with a
maximum tuning range of 64 nm.

Research progress of Littman-Metcalf-
type ECTL

The Littman-Metcalf-type ECTL provides the advantageous of a
wider tuning range, and a narrower linewidth in the order of hundreds
of kilohertz. Unfortunately, the introduction of additional optical
components reduces the flexibility of the external-cavity structure. In
1978, Littman et al. designed the Littman external-cavity structure for
the first time and used it in dye lasers [50]. After decades of
development, this configuration has been widely used in ECTL, and
has become a mainstream structure. In 2003, Jin et al. reported a
narrow-band ECTL using a classical Littman-Metcalf structure [51].
The continuously tuning in wavelength region of 797.38 nm ~
807.26 nm was obtained, and the linewidth is smaller than 0.06 nm.
In 2012, Zhang et al. presented a compact ECTL based on a simple
single-axis-MEMS mirror to boost tuning speed and compress
linewidth [52]. A wide tuning range about 40 nm with a narrow
linewidth of less than 50 kHz was obtained, and its tuning speed
can reach the order of kilohertz. In 2013, Wei et al. adopted a star-
flexure hinge as the tuning mechanism to construct the ECDL [53]. Its
external-cavity structure parameters were calculated and optimized

according to Eq. 2, showing tuning range over 80 GHz without
mode-hopping, and the linewidth of 200 kHz. In 2017, Jiménez
et al. proposed a micro-packing ECTL which overcome the
drawbacks of traditional ECTL [54]. The experimental results
showed that the laser provided a below 100 kHz output linewidth,
and the SMSR can reach 60 dB. However, the lasing wavelength can
only be slightly changed by current-controlled, which limited the tuning
range of GHz-level. In 2018, Shirazi et al. adopted a transmissive mode
selection element to develop an ECTL [35]. The output laser beam
derived from the transmitted light of the diffraction grating. A tuning
range of 52 nm was realized. In 2021, the ECTL was modeled to study
the longitudinal allowance error for mode-hopping free tuning by our
group [55]. The influence of the distance from pivot point to motion
axis of PZT motor and the diffracting point of the diffraction grating,
the installation angle of the diffraction grating, and the grating groove
density were analyzed, respectively. The results showed that mode-
hopping can be effectively avoided with careful choosing the parameters
above. Based on the above theoretical analysis results, in 2023, our
group reported a narrow linewidth ECTL without mode-hopping and
experimentally studied its tuning characteristics [38]. The ECDL
achieved a continuous wavelength tuning range of 100 nm from
1,480 nm to 1,580 nm with no mode-hopping, with a SMSR of
more than 65.54 dB, and with a linewidth of less than 98.27 kHz.
Besides, mode compensation [56] and/or roof prisms [57] have been
used to improve the performance of the ECTL.

Research progress of Littrow-
type ECTL

Compared with the Littman-Metcalf-type ECTL, the difference is
that the Littrow cavity selects the resonant frequency only once using

TABLE 1 Comparison of external-cavity wavelength-swept lasers.

Type Advantages Disadvantages Linewidth Tuning
range

Ref Years

MRRs-ECTL (1) Easy to integrate The coupling loss is high 338 kHz ≥40 nm [43] 2013

37 kHz 60 nm [26] 2018

(2) The linewidth and tuning range characteristics
are relatively balanced

35 kHz ~50 nm [27] 2019

8 kHz 55 nm [46] 2023

Filter-ECTL It has high flexibility in components and
configurations

Its performance is closely related to the
filter

100 kHz ~40 nm [48] 2011

≤8 kHz 40 nm [33] 2017

180 kHz 40 GHz [17] 2020

0.022 nm 64 nm [32] 2020

Littman-Metcalf-
ECTL

(1) Narrow linewidth (1) Large system size ≤0.06 nm 9.88 nm [51] 2003

(2) Large tuning range (2) It is susceptible to external light noise 200 kHz 80 GHz [52] 2012

(3) High SMSR (3) It is difficult to install and adjust the
optical path

50 kHz 40 nm [53] 2013

98.27 kHz 100 nm [38] 2023

Littrow-ECTL (1) Wide wavelength-tuning range (1) The linewidth is relatively wide 2.5 MHz 10 nm [59] 2007

(2) Large output power (2) It is difficult to install and adjust the
optical path

2.9 kHz 135 nm [60] 2016
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the mode selection component. Therefore, the linewidth of this type is
relatively wide, the output power is relatively high, and the ability to
resist the influence of external noise is relatively strong. In 1969, Hard
designed the first Littrow configuration for lasing frequency selection
[58]. After nearly 55 years of development, impressive results have been
achieved. In 2007, Guan et al. reported an ECTL based on Littrow
configuration [59]. By changing the angle of the mode selection
component, wavelength of the ECTL can be tuned from 775 nm to
785 nm with the output linewidth of less than 2.5 MHz. In 2016, A
single-mode frequency-stabilized by frequency locking method ECTL
was proposed by Bayrakli, which was locked to a FPI with a FSR of
1.5 GHz [60]. By rotating the diffraction grating, the ECTL can obtain a
coarse wavelength-tuning of 135 nm, linewidth of less than 2.9 kHz.
However, the main disadvantage of the Littrow-type ECTL is that the
output beam steers as themode selection component is rotated. In 2018,
Guo et al. designed a new and enhanced configuration for mirror-
grating Littrow-type ECTL, which had the characteristics of the large
mode-hop-free tuning range and the direction of the output beam was
basically unchanged [61]. The experiment showed that the continuous
tuning range of the ECTL reached 4.34 nm operating at 805 nm, with a
0.033 mm lateral displacement. In 2019, Wang et al. constructed the
improved ECTLs to investigate the relationship between the grating
features and the SMSR, which outputted from the rear face of the
commercial gain chip keeping the direction unchanged [62]. The ECTL
can achieve a tunable range of 209.9 nm, SMSR ofmore than 65 dB, and
output power of 48.9 mW. In 2021, Giraud et al. adopted the AR-coated
interband cascade laser as the gain chip to develop the improved
Littrow-type ECTL [63]. A continuous tuning range of 360 nm from
3,220 nm to 3,580 nm with a maximum output power of 13 mW was
obtained at 293 K. In addition, in order to reduce the influence of the
internal-cavity mode, some scholars began to use ridge waveguide gain
chip instead of straight waveguide [64–66]. Meanwhile, by translating
the collimating lens, the tuning of the Littrow-type ECTL can also be
realized [67].

Conclusion and outlook

In conclusion, owing to their exceptional output characteristics,
such as narrow linewidth and wide tuning range, ECTLs can cater to
the needs of numerous applications. However, to adapt to diverse
application scenarios, it is crucial to analyze and summarize the
typical configurations of ECTLs, as shown in Table 1. Currently, the
MRR-ECTL, with its balanced output characteristics and high
integration, is witnessing rapid development and finds the most
extensive application among ECTLs. The Littman-Metcalf-type
ECTL is also frequently employed as a primary structural design
due to its superior spectral resolution. Concurrently, it is essential to
explore strategies to mitigate the challenges associated with coupling

difficulty, alignment, and overall system size. A noteworthy point is
the long-term stability, which will inevitably influence the
development trajectory of ECTLs. Furthermore, the task of
calibrating parameters for narrow linewidth wavelength tunable
lasers presents a substantial challenge in the current progression
of laser technology [68–71]. This has been one of the key catalysts in
the swift advancement of laser linewidth, noise, and stability
measurement technologies over recent decades.
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