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Along with the continuous breakthrough and popularization of information
network technology, multi-modal data, including texts, images, videos, and
audio, is growing rapidly. We can retrieve different modal data to meet our
needs, so cross-modal retrieval has important theoretical significance and
application value. In addition, because the data of different modalities can be
mutually retrieved by mapping them to a unified Hamming space, hash codes
have been extensively used in the cross-modal retrieval field. However, existing
cross-modal hashing models generate hash codes based on single-dimension
data features, ignoring the semantic correlation between data features in
different dimensions. Therefore, an innovative cross-modal retrieval method
using Multi-Dimensional Feature Fusion Hashing (MDFFH) is proposed. To
better get the image’s multi-dimensional semantic features, a convolutional
neural network, and Vision Transformer are combined to construct an image
multi-dimensional fusion module. Similarly, we apply the multi-dimensional text
fusion module to the text modality to obtain the text’s multi-dimensional
semantic features. These two modules can effectively integrate the semantic
features of data in different dimensions through feature fusion, making the
generated hash code more representative and semantic. Extensive
experiments and corresponding analysis results on two datasets indicate that
MDFFH’s performance outdoes other baseline models.
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1 Introduction

The swift growth of multimedia data has brought a lot of demand for cross-modal
retrieval. With the growing scale of data on the Internet, data types are becoming more and
more diversified, including text, images, videos, audio, etc. The data modality that users are
interested in is no longer single, and the user retrieval shows a development trend from
single modality to cross modalities. Data has different modalities and these expression
forms are different, while the semantics behind themmay be related to each other and good
use of different modal data can facilitate our lives to a certain extent. For instance, when you
visit the Great Wall of China, you can retrieve the corresponding text and video
introduction through the photos of the Great Wall. The information supplement helps
you to quickly familiarize yourself with scenic spots for the first time. Besides the field of
daily life, cross-modal retrieval has important applications in many domains such as
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medicine [1], finance [2], and information security [3]. Therefore, it
is an interesting and challenging problem to construct an effective
cross-modal retrieval system.

Since the data distributions and feature representations of
different modal data are different, they cannot be compared
directly. Representation learning can effectively deal with this
problem. In such methods, the aim is to learn a function that
can transform different modalities into a common feature space
[4, 5], where we can compare them directly. Due to the quick
expansion of the data scale and the decline of data retrieval
efficiency, the hashing codes are applied to cross-modal retrieval
tasks [6–8]. This type of method maps high-dimensional features to
the Hamming space by transforming data into hash binary codes
and uses XOR of hash binary codes to calculate the Hamming
distance. Hash binary codes with small Hamming distance have
similar original data, and vice versa.

Through many scholars’ research and efforts, cross-modal
hashing retrieval has achieved many successes. Specifically, based
on artificial features representing the original data, many models
[9–14] are proposed, known as traditional cross-modal hashing
models. Due to the limitations of handmade features, the retrieval
efficiency of such models is hard to further breakthrough. Because of
the good performance in feature learning, deep learning has been
applied in cross-modal hashing retrieval. For example, deep neural
networks can automatically capture the data features and hash
functions in Refs. [15–20].

However, existing deep cross-modal hash models usually only
pay attention to the single-dimensional semantic features of data
and do not fully consider the information complementation between
specific features presented by data in different dimensions. Besides,
the multi-dimensional fusion of semantic information is more
conducive to capturing the semantic correlation of different
modal data, thus helping to narrow the semantic gap. So,
effective fusing of multi-dimensional semantic features of
different modal data is very important in improving cross-modal
retrieval. Because of Transformer’s excellent performance in the
computer vision field in recent years, we try to use it to better learn
the images’ semantic features in different dimensions. Similarly, we
construct a text multi-dimensional fusion module in the text
network, which learns the text multi-dimensional semantic
features. Based on these, we propose a novel method for cross-
modal retrieval, which is called Multi-Dimensional Feature Fusion
Hashing (MDFFH). Our method has these three characteristics.

• MDFFH constructs multi-dimensional fusion modules in
image networks and text networks to learn multi-
dimensional semantic features of data, which can effectively
complement the semantic features of data in specific
dimensions. It is better in semantic relevance, obtained
hash codes are more semantic as well.

• Vision Transformer is integrated with a convolutional neural
network to form an image multi-dimensional fusion module
in MDFFH so the image’s local and global information can be
well fused.

• Feature extraction and hash function generation are well
integrated into a deep learning framework in MDFFH.
Comparative experiments and corresponding analyses on two
datasets show that MDFFH is superior to other baseline models.

This paper mainly includes five sections. The related work is
introduced in Section 2, MDFFH is given in Section 3, and the
experiments and comparative analysis are demonstrated in Section
4. Finally, the conclusion is in Section 5.

2 Related work

Representative cross-modal hashing models: There are two
categories in Cross-modal hashing models. If supervised information
(such as data tags) needs to be used during model training, this type of
model is called an unsupervised model; the other type needs to use
supervision information during model training, which is called a
supervision model. According to the way they learn features, cross-
modal hashing retrieval models are divided into two categories, namely,
hand-craftedmodels and deep networkmodels. Data labels are not used
to guide hash codes’ learning in Unsupervised models during model
training. For instance, the subspace shared by different modal data is
learned and then the correlation between similar different modal data is
maximized in Canonical Correlation Analysis (CCA) [21]. Implicit
factors of different modal data are learned and unified hash codes are
generated based on matrix decomposition in Collective Matrix
Factorization Hashing (CMFH) [22]. In latent semantic sparse
hashing (LSSH), sparse coding and matrix decomposition are used
to capture important structures in images and potential semantics in
texts, respectively [23]. Semantic topics and semantic concepts for
images and texts are learned and discrete characteristics of different
modal data are maintained in Semantic topic multi-modal hashing
(STMH) [25]. Cross-Modal Self-Taught Hashing (CMSTH) [24]
applies semantic information to detect multimodal topics, and then
uses robust matrix decomposition to convert these different modal data
into hash codes that are suitable for quantization. Spectral Multimodal
Hashing (SMH) [26] uses spectrum analysis of correlation matrices of
multi-modal data, learning parameters from the distribution of multi-
modal data to get hash codes. On the contrary, supervised models use
available data labels to learnmore accurate hash features, which is better
than unsupervised models in performance. Semantic correlation
maximization (SCM) [27] applies nonnegative matrix decomposition
and the nearest neighbor preservation algorithm to preserve semantic
consistency within modalities and between modalities. Semantic
Preserving Hashing (SePH) [28] transforms the semantic matrix
into a probability distribution, makes it as close as possible by
minimizing the Kullback-Leibler (KL) divergence, and then applies
logical regression to learn the hash function of each modal data [29].
Hash functions and binary codes can be learned simultaneously by the
data’s similarity matrix with discrete constraints in Enhanced Discrete
Multi-modal Hashing (EDMH) [30].

However, the above unsupervised and supervised models all
belong to hand-crafted models, which are unable to get the feature
relevance between different modal data very well. With the
continuous improvement of feature learning, deep neural
networks are extensively applied in the cross-modal retrieval
field. A deep neural network is introduced into feature learning
in Deep Cross-Modal Hashing (DCMH) [31], so the unified model
includes feature learning and the generation of hash codes. In
Pairwise Relationship Deep Hashing (PRDH) [32], the similarity
degree between different modal data is preserved in hash codes while
taking into account the similarity between the same modal data. A
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high-level semantic similarity matrix of continuous values is
constructed to guide the learning of hash codes in Deep Multi-
level Semantic Hashing (DMSH) [33], which captures the degree of
similarity between different modal data. To generate more
representative image features, Mask Cross-Modal Hashing
(MCMH) [34] effectively combines convolution features with
mask features extracted by the Mask R-CNN. Self-supervised
adversarial Hashing (SSAH) [35] introduces adversarial loss
through the construction of a label network to shorten the
distance between image and text distribution, which brings a
better retrieval effect. Using cosine distance and Euclidean
distance, the same measurement index can accurately reflect the
similarity between different modal data in Deep Semantic Cross-
Modal Hashing Based on Graph Similarity of Modal-Specific
(DCMHGMS) [36]. The distance between similar data can be
reduced by constructing ranking alignment loss to unearth the
semantic structure between different modal data in Deep Rank
Cross-modal Hashing (DRCH) [37, 38]. Semantic weight factors
are constructed to guide the optimization of the loss function and
obtain better retrieval performance in Multiple Deep neural
networks with Multiple labels for Cross-modal Hashing
(MDMCH) [39]. A label network is constructed to jointly guide
the feature learning of different modal data and innovates discrete
optimization strategies to learn hash codes in Deep Discrete Cross-
modal Hashing (DDCH) [40]. To increase the correlation between
hash codes, Deep Cross-Modal Hashing with Hashing Functions
and Unified Hash Codes Jointly Learning (DCHUC) [41] has
constructed a new unified joint hash code framework. To
improve the accuracy of hash codes in comparative learning,
Unsupervised Contrastive Cross-Modal Hashing (UCCH) [42]
proposes a momentum optimizer to make the generated hash
codes more accurate.

Transformer: The excellent performance of the Transformer
is attributed to the exertion of the attention mechanism, and it is
widely used in the field of Natural Language Processing (NLP)
[43]. It can assign attention weight according to the input data, to
determine which part of the data needs attention. On this basis,
limited information processing resources are allocated to
important parts and so the performance of the model is
improved. Google Deep Mind [44] applied it to the computer
vision field for the first time and achieved good performance by
combining it with Recurrent Neural Network (RNN). Bahdanau
et al. [45] prove the effectiveness of attention mechanisms in the
NLP. In [46], Google has successfully constructed the
Transformer network structure based on the attention
mechanism. Due to the limited feature subspace, it is hard to
enhance the performance of this ordinary attention mechanism.
The multi-head attention mechanism is more likely to capture
features from multiple dimensions by dividing attention
operations. Inspired by this important achievement, many
researchers tried to introduce Transformer structure into
computer vision tasks and achieved good results. In 2020, the
Vision Transformer (ViT) proposed by Dosovitskiy et al. [47]
performed well in many image classification tasks, because it can
capture contextual dependencies at different positions in an
image. It is simple and effective, with strong scalability. The
larger the amount of data, the better the performance of the ViT.
When there is enough data for pre-training, the performance of

the ViT is even better than that of the convolutional neural
network model, which fully proves that ViT can extract excellent
features from images.

3 Proposed method

The innovative networks of this paper will be introduced in this
section, and the structural framework of MDFFH is shown in
Figure 1. To facilitate comparison with other models, images and
texts are selected in our model. Our model can be extended to other
modalities easily.

3.1 Notations and problem definitions

Throughout this paper, vectors are denoted by lowercase bold
letters (e.g., z), matrices are represented by uppercase bold letters
(e.g., Z), and the transposition of the matrix Z is expressed as ZT. For
the matrix Z, the ith row, the jth column, the element located in ith
row and jth column and the Frobenius norm are denoted by Zi*, Z*j,
Zij and ‖Z‖F, respetively. The sign function represented by sign(x) is
that the value is −1 when x is less than 0, otherwise, the value is 1.

Assume thatO � On{ }Nn�1 denotes the image-text pair dataset, each
sample on � (xn, yn, ln) includes three parts: one part xn ∈ RDx

represents an image feature vector, another part y ∈ RDy denotes a
text feature vector, and the last part ln ∈ RC denotes the corresponding
category labels, where Dx, Dy and C are the dimensions of these two
modal data’s feature and the number of the category labels respectively.
S ∈ 0, 1{ }N×N is the matrix to measure the similarity degree between
different modalities, called the similarity matrix. Sij = 0 means that xi
and yj are not similar to each other and Sij = 1 denotes that these two
data have at least one same category label. The input data is transformed
into the corresponding hash codes and the similarity degree between
different hash codes is obtained by calculating their Hamming distance
in our model. The more similar the hash codes, the smaller the
Hamming distance; the greater the difference between hash codes,
the greater the Hamming distance. The formula for calculating
Hamming distance is

d ci, cj( ) � 1
2

k − 〈ci, cj〉( ), (1)

In Eq. 1, ci and cj are the hash codes for the vector xi and yj, 〈ci, cj〉
represents their inner product and k is the length of hash codes.

MDFFH aims to obtain two hash functions through training,
one is f(xi; θx) for images, and the other is g(yj; θy) for texts while
maintaining the similarity degree of the original data. Here, θx and θy
denote parameters in the different networks. These hash functions
can convert the data into hash codes with unified dimensions for
comparison.

3.2 Network architecture

The specific details of the networks in our model are as follows.
Image network: Image network is mainly composed of an image

multi-dimensional fusion module and a fully connected neural
network. Specifically, the multi-dimensional image fusion module

Frontiers in Physics frontiersin.org03

Ren and Xu 10.3389/fphy.2024.1379873

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1379873


FIGURE 1
The structural framework of MDFFH.

FIGURE 2
Detailed introduction of Vision Transformer.
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includes a Vision Transformer network and a convolutional neural
network. In the Vision Transformer network, the ViT-B/16 model is
chosen as the basic framework and fine-tuned on this basis. We
replace the last MLP Head used for the image classification in the
ViT-B/16 model with a single-layer completely connected network
with 4,096 neurons where the size of each image patch is 16 × 16.
The transformer Encoder has 12 Encoder Blocks, which are shown
in Figure 2. At the same time, the first six layers of CNN-F [48] are
selected as the model of a convolution neural network. In addition,
these two networks are pre-rained on ImageNet [49] to obtain
initialization parameters. Finally, the output results of these two
networks are fused into the multi-dimensional semantic features
learned by the image fusion module by vector concatenation. The
fully connected neural network has three layers, in which the
number of neurons is 8,192, 4,096, and the hash code length in turn.

Text network: Bag-of-Words (BoW) is usually used to convert
text into vectors, but the sparsity of vectors makes it impossible to
fully capture the text’s semantic information. Inspired by [28], we
adopt a text multi-dimensional fusion module to solve this problem.
The text multi-dimensional fusion module extracts the text semantic
features in different dimensions through five average pool layers (the
scales are 1a, 2a, 3a, 6a, and 10a, where “a” represents the
parameter), and uses 1 × 1 convolution layer to integrate
multiple features. At the end of this network, there is a three-
layer completely connected network to extract the text’s hash codes
and the numbers of neurons in every layer are 4,096, 4,096, and the
hash code length.

3.3 Hash code learning

The performance of the cross-modal hashing model depends on
whether generated hash codes can effectively reflect the similarity
degree between different modalities. Generally speaking, the
Hamming distance of hash codes generated by similar original
data should be small, and vice versa. To ensure that MDFFH can
achieve excellent retrieval performance, we have established an
objective function composed of two terms: semantic similarity
loss and hashing code quantization loss. We apply P*i � f(xi; θx)
to denote the learned feature from the image network, where θx
presents the network parameters. Let Q*i � g(yi; θy) denote the
learned feature from the text network, where θy refers to the network
parameters.

To minimize the semantic gap, we transform different modal
data to the same common semantic space to measure similarity.
Here, the formula of the likelihood function can be written
as follows:

p Sij|P*i,Q*j( ) � σ Φij( ), Sij � 1

1 − σ Φij( ), Sij � 0

⎧⎨
⎩ (2)

In Eq. 2, Φij � 1
2P

T
*iQ*j and σ(Φij) � 1

1+e−Φij
. When Sij = 1, the inner

product of P*i and Q*j will be bigger, which is equivalent to that the
two data are more similar. On the contrary, the more dissimilar the
two data are when Sij = 0.

The maximization of the likelihood function is equal to the
maximization of the negative log-likelihood function. To facilitate
the training of MDFFH, the above formula can be converted into the
following formula:

Jsimilarity � − ∑
N

i,j�1
SijΦij − log 1 + eΦij( )( ), (3)

where Φij � 1
2P

T
*iQ*j.

Since the output of the continuous variables from the network is
converted into hash binary codes through symbolic functions, there
is a certain quantization loss. Therefore, we set the quantization loss
term of hash binary codes to reduce this error:

Jquantization � Hx − P‖ ‖2F + Hy − Q‖ ‖2F, (4)

where Hx � sign(P) and Hy � sign(Q).
From Equations 3, 4, we can get the objective function for

optimizing MDFFH as follows:

min
H,θx,θy

J � Jsimilarity + ηJquantization

� − ∑
N

i,j�1
SijΦij − log 1 + eΦij( )( )

+η Hx − P‖ ‖2F + Hy − V‖ ‖2F( ),
(5)

In Eq. 5, η denotes the hyper-parameter of the hash code
quantization loss. Inspired by Jiang et al. [31], we set H � Hx � Hy

during model training.

3.4 Optimization

Given the discreteness of hash codes, we apply an alternating learning
strategy to optimizeMDFFH: at one time, only one parameter is optimized
while the rest of the parameters are unchanged. In the optimization
process, the model parameters are updated by the back-propagation with
stochastic gradient descent (SGD). The optimization steps are shown in
Algorithm 1. Generally, it includes three steps:

1. Optimize θx with θy and H fixed.
Select any image data xi, and obtain the partial derivative of our

objective function as following in Eq. 6:

∂J

∂P*i
� 1
2
∑
N

j�1
σ Φij( )Q*j − SijQ*j( ) + 2η P*i −H*i( ). (6)

Then through the chain derivation rule, we can get ∂J
∂θx

from ∂J
∂P*i

and optimize θx according to BP.
2. Optimize θy with θx and H fixed.
Select any data yi, and obtain the derivative of the objective

function as following in Eq. 7:

∂J

∂Q*j
� 1
2
∑
N

i�1
σ Φij( )P*i − SijP*i( ) + 2η Q*j −H*j( ). (7)

Then through the chain derivation rule, we can get ∂J
∂θy

from ∂J
∂Q*j

and
optimize θy according to BP.

3. Optimize hash codes H.
The objective function can be converted into the formula as follows:

max
H

tr HT η P + Q( )( )( ) � tr HTR( ) � ∑
i,j

HijRij,

s.t.H ∈ −1,+1{ }k×N
(8)

In Eq. 8 R � η(P + Q). At last, the hash code matrix H is updated
according to the feature matrixes of images and text as following in
Eq. 9:
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H � sign η P + Q( )( ). (9)

3.5 Out-of-sample extension

The hash codes of the data not used for training are
generated by the hash functions learned by MDFFH. For
example, given the query image xq, we can get its hash codes
by the hash function as following in Eq. 10:

hxq � sign f xq; θx( )( ) (10)

Similarly for text data yq, we can get its hash codes by the hash
function as following in Eq. 11:

hyq � sign g yq; θy( )( ) (11)

4 Experiments

Based on two commonly used data sets, namely, MIRFLICKR-
25K [50] and NUS-WIDE [51], we conduct a large number of
experiments comparing the results with some representative

baselines to verify the validity of our model. It is noted that our
model can be easily applied to other similar datasets.

4.1 Datasets

MIRFLICKR-25K [50]: There are 25,000 images from the Flickr
website in this dataset, and every image has text descriptions and
labels, thus forming data pairs. During the experiment, we only retain
20,015 data pairs, because there are too few text descriptions for some
data pairs. For each text description, the Bag-of-Word model is
applied to convert it into 1386-dimensional vector form, and the
corresponding label is transformed into 24-dimensional vector form.
2000 data pairs are randomly selected for querying and the rest for
retrieval. Formodel training, we select 10,000 data pairs from retrieval.

NUS-WIDE [51]: There are 269,648 data pairs in this dataset, and
each includes images, text descriptions, and data labels. There is a total of
81 categories of original data labels in this dataset. We selected 21 of the
most common data labels as the experimental dataset and finally retained
195,834 data pairs after processing. Text descriptions and data labels in
each data pair are converted into 1,000 and 21-dimensional vector forms
through the Bag-of-Word model. The partition of different sets for model
training in this dataset is consistent with the MIRFLICKR-25 dataset.

TABLE 1 MAP scores of different models.

Task Model MIRFLICKR-25K NUS-WIDE

16 bits 32 bits 64 bits Avg 16 bits 32 bits 64 bits Avg

I → T CCA 0.5442 0.5693 0.5787 0.5640 0.3743 0.3781 0.3805 0.3776

CMFH 0.5526 0.5865 0.5907 0.5766 0.4427 0.4527 0.4623 0.4525

SCM 0.6225 0.6379 0.6508 0.6370 0.4807 0.4845 0.4882 0.4844

STMH 0.5984 0.6012 0.6074 0.6023 0.4501 0.4623 0.4779 0.4634

SePH 0.6571 0.6652 0.6717 0.6646 0.5752 0.5838 0.5902 0.5830

DCMH 0.7413 0.7462 0.7549 0.7474 0.5903 0.6031 0.6093 0.6009

DDCH 0.7394 0.7450 0.7575 0.7473 0.5971 0.6083 0.6259 0.6104

DCHUC 0.7118 0.7235 0.7377 0.7243 0.5879 0.5924 0.6068 0.5957

UCCH 0.7392 0.7441 0.7548 0.7460 0.5942 0.6136 0.6366 0.6148

OURS 0.7552 0.7675 0.7879 0.7702 0.6077 0.6365 0.6583 0.6341

T → I CCA 0.5501 0.5713 0.5791 0.5668 0.378 0.3869 0.3874 0.3841

CMFH 0.5638 0.5949 0.5972 0.5853 0.4515 0.4548 0.4614 0.4559

SCM 0.6801 0.6889 0.6941 0.6877 0.4895 0.4917 0.5073 0.4961

STMH 0.6103 0.6126 0.6215 0.6148 0.4476 0.4587 0.4592 0.4551

SePH 0.7183 0.7247 0.7278 0.7236 0.5883 0.5943 0.6124 0.5983

DCMH 0.7632 0.7643 0.7705 0.7660 0.6389 0.6511 0.6571 0.6490

DDCH 0.7596 0.7662 0.7781 0.7679 0.6332 0.6407 0.6460 0.6399

DCHUC 0.7107 0.7254 0.7318 0.7226 0.6185 0.6218 0.6253 0.6218

UCCH 0.7253 0.7268 0.7435 0.7318 0.6442 0.6484 0.6509 0.6478

OURS 0.7657 0.7705 0.7860 0.7740 0.6478 0.6528 0.6650 0.6552

The bold values highlight that our algorithm performs better compared to other algorithms and its variant.
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4.2 Evaluation and baselines

Evaluation: For cross-modal retrieval, researchers usually study
two typical tasks: retrieving text with images and retrieving
images with text.

To evaluate MDFFH’s performance, we select the two most
commonly used evaluation criteria, namely, the Precision-Recall
(PR) Curve and Mean Average Precision (MAP) [52]. The average
accuracy (AP) of any query data is calculated as follows:

AP � 1
K

∑
M

s�1
U s( )V s( ), (12)

where K andM are the numbers of retrieved relevant data and the
retrieval set, U(s) denotes the proportion of the first s retrieved
data related to the query data, and V(s) shows whether the
retrieved sth data is related to the query data, which can be
judged by the category label. If two data are related, V(s) = 1,
otherwise, V(s) = 0. The MAP value can be calculated by
averaging the APs of all query data and is positively correlated
with model performance.

In addition, the PR curve is another indicator for evaluating
the model performance. The performance can be directly judged
by drawing a PR curve of this model: if the area under this curve is
larger, the model performance is better. Moreover, the

FIGURE 3
The PR curves with code length 16. (A) MIRFLICKR-25K. (B) MIRFLICKR-25K. (C) NUS-WIDE. (D) NUS-WIDE.
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corresponding recall and precision can be obtained by altering
the Hamming radius and drawing the PR curve.

Baselines: We compare our MDFFH with nine representative
models, which are CCA, CMFH, SCM, STMH, SePH, DCMH,
DDCH, DCHUC, and UCCH. The first four models belong to
hand-crafted models and the rest are deep network models.

4.3 Implementation details

We use PyTorch, which is a deep-learning framework based on
dynamic tensors, to implement our MDFFH on the NVIDIA RTX
3090 server and the iteration number is set to 300. In the iteration,
the learning rate gradually decreases from 0.03 initialized to 10–6.
The hyper-parameter η is set to 1, and the detailed parameter
analysis is in the section Parameter Analysis. For each model
result, experiments have been run five times and the average
value is obtained as a representative.

4.4 Performance

The MAP scores of MDFFH and nine baseline models based
on two general datasets are shown in Table 1, where “I → T”
represents from image to retrieve text and “T → I” represents
from text to retrieve images. We can find that for hash codes with
different lengths, our model is superior to baseline models. For
example, when we select the MIRFLICKR-25K dataset, compared
with DCMH which is the most representative deep cross-modal
hashing model, MDFFH on “I → T” tasks increased by 3.05% on
average, and its MAP score on text retrieval image tasks increased
by 1.04% on average. On the NUS-WIDE dataset, compared with
DCMH, MDFFH’s MAP score on image retrieval text tasks
increased by 5.52% on average, and its MAP score on text
retrieval image tasks increased by 0.95% on average. In
particular, compared with these five hand-crafted baseline
models, MDFFH has been greatly improved. This proves that
better performance can be achieved by integrating feature
learning and the generation of hash codes into a unified end-

to-end network. At the same time, MDFFH has a better
performance compared with DCMH and DDCH. The reason
is that DCMH and DDCH generate hash codes only using single-
dimensional semantic features, ignoring the information
complementation between multi-dimensional semantic
features, which has certain limitations. On the contrary,
MDFFH applies the image multi-dimensional fusion module
and the text multi-dimensional fusion module to get the
multi-dimensional semantic features of different modal data,
which can mine richer semantic associations and establish
more accurate modal relationships, thus helping to narrow the
modal gap to greatly improve the retrieval accuracy.

When the hash code length is set to 16 bits, the PR curves
of MDFFH and baseline models under MIRFLICKR-25K and
NUS-WIDE datasets are demonstrated in Figure 3. For PR curves
of different models, which curve has a larger area represents
better performance. From this figure, it is clear that the
performance of MDFFH outperforms other baselines, which is
consistent with the application of MAP as a performance
evaluation index.

4.5 Parameter analysis

The influence of hyper-parameter values in the model based
on the MIRFLICKR-25K dataset is studied in this section. The
hash code length is uniformly 16 bits and the experimental results
are shown in Figure 4. The MAP scores of two cross-modal
retrieval tasks change with the hyper-parameter. During the
manual adjustment of the hyper-parameter, the range of
values is 0.01, 0.1, 1, and 2. The experimental results
demonstrate the MDFFH performance can reach the best
under the setting of γ = 1. The initial values of other network
parameters are randomly generated and then determined
through network learning.

4.6 Ablation study

We have designed one variant and carried out experiments to
verify whether the innovative module in MDFFH improves the
overall performance. MDFFH-1 is a variant of MOFFH without a
Vision Transformer. The variant aims to check the important
influence of the innovative image multi-dimensional fusion
module on our model’s retrieval performance. Table 2 shows

FIGURE 4
The sensitivity analysis of the hyper-parameter.

TABLE 2 The MAP scores of MDFFH and its variant.

Task Method MIRFLICKR-25K

16bits 32bits 64bits

I → T MDFFH 0.7552 0.7675 0.7879

MDFFH-1 0.7521 0.7587 0.7649

T → I MDFFH 0.7657 0.7705 0.7860

MDFFH-1 0.7567 0.7606 0.7692

The bold values highlight that our algorithm performs better compared to other algorithms

and its variant.
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the comparative results. From this table, it is clear that MDFFH’s
performance is better than MDFFH-1’s performance on the
MIRFLICKR-25K dataset because of the effective role of the
image multi-dimensional fusion module. The image multi-
dimensional fusion module effectively combines the global
image information concerned by the Vision Transformer with
the local image information concerned by the convolutional
neural network to generate more representative multi-
dimensional semantic features. This can more effectively get
the semantic similarity between different data to learn more
accurate hash mapping functions, and so improve our model
performance.

4.7 Convergence analysis

For analyzing MDFFH’s convergence, experiments are
conducted on MIRFLICKR-25K and NUS-WIDE datasets.
During the experiment, the hash code length is 16 bits and the
relative loss is used as an evaluation criterion. The relative loss of
the ith iteration is the ratio of the loss function value of the ith
iteration divided by the loss function value of the first iteration
and the experimental results are shown in Figure 5. With the
number of iterations increasing, the relative loss value decreases
rapidly and becomes stable, which means our optimization
algorithm is effective.

5 Conclusion

A new cross-modal hashing model named MDFFH is
proposed from the perspective of multi-dimensional semantic
features. The image multi-dimensional fusion module

constructed effectively combines the convolutional neural
network and Vision Transformer and can generate multi-
dimensional semantic features of images with richer semantic
information. Similarly, we apply the text multi-dimensional
fusion module to generate more representative text multi-
dimensional semantic features, which provides a basis for
mining richer semantic associations and building more accurate
modal relationships, thus making the generated hash code more
semantic. Experimental analysis of two general datasets can verify
that our MDFFHmodel improves the performance of cross-modal
retrieval. In future work, we will attempt to investigate its
applications in the field of multimodal generation, multimodal
question answering, and health and medical big data retrieval.
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