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This article discusses two simple, complication-free, and effective methods for
solving fractional-order linear and nonlinear partial differential equations
analytically: the Aboodh residual power series method (ARPSM) and the
Aboodh transform iteration method (ATIM). The Caputo operator is utilized to
define fractional order derivatives. In these methods, the analytical
approximations are derived in series form. We calculate the first terms of the
series and then estimate the absolute error resulting from leaving out the
remaining terms to ensure the accuracy of the derived approximations and
determine the accuracy and efficiency of the suggested methods. The derived
approximations are discussed numerically using some values for the relevant
parameters to the subject of the study. Useful examples are thought to illustrate
the practical application of current approaches. We also examine the fractional
order results that converge to the integer order solutions to ensure the accuracy
of the derived approximations. Many researchers, particularly those in plasma
physics, are anticipated to gain from modeling evolution equations describing
nonlinear events in plasma systems.
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1 Introduction

Noninteger calculus is a prominent branch of mathematics that
employs fractional order operators to mimic and clarify physical
processes. Another facet of this topic is the application of noninteger
order derivatives to both integration and differentiation difficulties. For
zero-order the ordinary derivative is recovered. A fractional derivative
has a noninteger order and meets specific conditions [1]. A few of the
benefits of fractional derivatives include the memory effect and
preserved demonstrative physical qualities. Using these operators,
more recent and accurate research has been discovered. Thus, the
theory and practice of fractional calculus are seeing a surge in
popularity. The memory effect allows fractional order models to
absorb all prior information, which improves their ability to
anticipate and evaluate dynamical models. The efficient
characteristics of fractional order calculus make it applicable to
numerous fields, including biology and physics [2–6] economics and
finance [7, 8], mechanical modeling and mathematical modeling, and
[9–11] science and engineering. The singularity of the kernel in Caputo
and Riemann derivatives presents a challenge for the authors. Given
that the kernel is employed to elucidate the memory impact of the
physical system, it is evident that this constraint prevents both
derivatives from precisely interpreting the memory’s complete effect
[12–14]. In an endeavor to develop a novel fractional operator featuring
an exponential kernel, Caputo and Fabrizio (CF) [15] proposed one in
the mid-nineties. The nonsingular kernel of this derivative yields more
rational results than the classical approach. A selection of CF operator
applications is detailed in [16–18].

There are two categories of partial differential equations: linear and
nonlinear. Solving a fractional-order partial differential equation
accurately is a difficult task. However, developing numerical and
exact solutions to these equations is crucial in applied mathematics
and theoretical physics [19–21]. Consequently, innovativemethods have
been developed for analytical solutions that closely approximate the
exact solutions [22, 23]. Differential equations were often solved using
integral transforms. Integral transformations are helpful in solving initial
value problems (IVPs) and boundary value problems (BVPs) in
differential and integral equations. A wide range of authors
investigated the effects of diverse types of integral transforms
implemented on various categories of differential equations. The
most frequently employed integral transform is the Laplace transform
[24]. Watugala [25] introduced the Sumudu transform in 1998 as a
powerful technique for solving differential equations and addressing
engineering problems. T. Elzaki and S. Elzaki [26] introduced the “Elzaki
Transform” as a new integral transform in 2011, which is extensively
used in solving partial differential equations. Aboodh introduced the
“AboodhTransform” in 2013 and applied it to address partial differential
equations (27). Numerous transformations are present in the literature.

In 2013, Omar Abu Arqub developed the RPSM [28]. The RPSM is
a semi-analytical approach that combines Taylor’s series with the
residual error function. Convergence series for nonlinear and linear
DEs are both solved using it. In 2013, RPSM was first used to resolve
fuzzy differential equations. To quickly get power series solutions for
common DEs, Arqub et al. [29] created a novel RPSM method. Arqub
et al. [30] developed a unique and appealing RPSM technique for
fractional DEs issues. El-Ajou et al. [31] proposed a special iterative
technique using RPSM to estimate fractional KdV-burger equations. Xu
et al. [32] introduced a novel approach for solving BoussinesqDEs using

fractional power series. Zhang et al. devised a robust numerical
approach [33]. For further information on RPSM, see [34–36].

Differential equations have been crucial in several aspects of
applied mathematics and theoretical physics for an extended period,
and their importance has increased with the advent of computers
[37, 38]. Examining and analyzing differential equations used in
applications reveal numerous intricate mathematical challenges,
resulting in various methods for solving them. Various integral
transforms, such as Laplace, Fourier, Mellin, Hankel, and Sumudu,
were commonly used for solving differential equations. Khalid
Aboodh introduced a new integral transform called the Aboodh
transform and applied it to solve both ordinary and partial
differential equations (39)–(41).

The Aboodh residual power series method (ARPSM) [42, 43]
and the Aboodh transform iteration method (ATIM) [39–41] are
regarded as the most straightforward methods to solve fractional
differential equations. These approaches give numeric results for
partial differential equations that do not need discretization or
linearization and make the symbol elements of analytic solutions
more visible and accessible. The fundamental goal of this research is
to contrast and evaluate the efficacy of ARPSM and ATIM in solving
linear and nonlinear PDE problems. It is worth noting that many
linear and nonlinear fractional differential equations have been
solved using these two approaches.

2 Elementary concepts

Definition 2.1. [44] The function ϕ(α, β) is assumed to be piecewise
continuous and of exponential order.

For ϕ(α, β) and τ ≥ 0 Aboodh transform (AT) is given as:

A ϕ α, β( )[ ] � Ψ α, ξ( ) � 1
ξ
∫∞

0
ϕ α, β( )e−βξdβ, r1 ≤ ξ ≤ r2.

The Aboodh inverse transform (AIT) is described as:

A−1 Ψ α, ξ( )[ ] � ϕ α, β( ) � 1
2πi
∫u+i∞

u−i∞
Ψ α, β( )ξeβξdβ

Where α � (α1, α2, . . . , αp) ∈ R and p ∈ N

Lemma 2.1. [45, 46] Define two functions ϕ1(α, ϕ2β) that are
piecewise continuous on [0, ∞[ and of exponential order. Suppose
that A[ϕ1(α, β)] = Ψ1(α, β), A[ϕ2(α, β)] = Ψ2(α, β) and λ1, λ2 are
constants. Consequently, the following characteristics hold:

1. A [λ1ϕ1 (α, β) + λ2ϕ2 (α, β)] = λ1Ψ1 (α, ξ) + λ2Ψ2 (α, β),
2. A−1 [λ1Ψ1 (α, β) + λ2Ψ2 (α, β)] = λ1ϕ1 (α, ξ) + λ2ϕ2 (α, β),
3. A[Jpβϕ(α, β)] � Ψ(α,ξ)

ξp
,

4. A[Dp
βϕ(α, β)] � ξpΨ(α, ξ) −∑r−1

K�0
ϕK(α,0)
ξK−p+2 , r − 1<p≤ r, r ∈ N.

Definition 2.2. [47] The fractional derivative of the function ϕ(α,
β) is defined in terms of order p according to the Caputo.

Dp
βϕ α, β( ) � Jm−p

β ϕ m( ) α, β( ), r≥ 0, m − 1<p≤m,

where α � (α1, α2, . . . , αp) ∈ Rp and m, p ∈ R, Jm−p
β is the R-L

integral of ϕ(α, β).
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Definition 2.3. [48] The following is the form of the power series
representation.

∑∞
r�0

Zr α( ) β − β0( )rp � Z0 β − β0( )0 + Z1 β − β0( )p + Z2 β − β0( )2p
+/ ,

where α � (α1, α2, . . . , αp) ∈ Rp and p ∈ N. This series is called
multiple fractional power series (MFPS) about β0, where the series
coefficients are Zr(α)′s and β is variable.

Lemma 2.2. Let us suppose that the exponential order function is
ϕ(α, β). In such case, the AT is defined as A[ϕ(α, β)] =Ψ(α, ξ). Hence,

A Drp
β ϕ α, β( )[ ] � ξrpΨ α, ξ( ) −∑r−1

j�0
ξp r−j( )−2Djp

β ϕ α, 0( ), 0<p≤ 1,

(1)
where α � (α1, α2, . . . , αp) ∈ Rp and p ∈ N

and Drp
β � Dp

β .D
p
β ./ .Dp

β(r − times)
Proof. Using induction, we can prove Eq. 2. Choosing r = 1 in Eq.

2 leads to the following results:

A D2p
β ϕ α, β( )[ ] � ξ2pΨ α, ξ( ) − ξ2p−2ϕ α, 0( ) − ξp−2Dp

βϕ α, 0( )

Lemma 2.1, part (4), states that Eq. 2 is true for r = 1. By substituting
r = 2 into Eq. 2, we have

A D2p
r ϕ α, β( )[ ] � ξ2pΨ α, ξ( ) − ξ2p−2ϕ α, 0( ) − ξp−2Dp

βϕ α, 0( ). (2)

Based on Eq. 2 L.H.S, we may deduce

L.H.S � A D2p
β ϕ α, β( )[ ]. (3)

One possible way to express Eq. 3 is as:

L.H.S � A Dp
βϕ α, β( )[ ]. (4)

Suppose

z α, β( ) � Dp
βϕ α, β( ). (5)

Equation 4 therefore becomes as

L.H.S � A Dp
βz α, β( )[ ]. (6)

Due to the utilization of the derivative of Caputo, Eq. 6
modified as.

L.H.S � A J1−pz′ α, β( )[ ]. (7)

Equation 7 contains the R-L integral for AT, which enables the
following to be obtained:

L.H.S � A z′ α, β( )[ ]
ξ1−p

. (8)

Using the differential property of the AT, Eq. 8 is converted to
the following form:

L.H.S � ξpZ α, ξ( ) − z α, 0( )
ξ2−p

, (9)

Eq. 5 gives us the following:

Z α, ξ( ) � ξpΨ α, ξ( ) − ϕ α, 0( )
ξ2−p

,

where A [z (α, β)] = Z (α, ξ). Therefore, Eq. 9 is converted to

L.H.S � ξ2pΨ α, ξ( ) − ϕ α, 0( )
ξ2−2p

− Dp
βϕ α, 0( )
ξ2−p

, (10)

when r = K. Eq. 10 is compatible with Eq. 2. Suppose that for r = K,
Eq. 2 holds true. As a result, we may substitute r = K into Eq. 2:

A DKp
β ϕ α, β( )[ ] � ξKpΨ α, ξ( )

− ∑K−1

j�0
ξp K−j( )−2Djp

β Djp
β ϕ α, 0( ), 0<p≤ 1. (11)

The next step is to illustrate Eq. 2 for the value of r =K + 1. Using
Eq. 2, we can write

A D K+1( )p
β ϕ α, β( )[ ] � ξ K+1( )pΨ α, ξ( ) −∑K

j�0
ξp K+1( )−j( )−2Djp

β ϕ α, 0( ).

(12)
When the LHS of Eq. 12 is taken into consideration, we get

L.H.S � A DKp
β DKp

β( )[ ]. (13)

Let

DKp
β � g α, β( ).

By Eq. 13, we get

L.H.S � A Dp
βg α, β( )[ ]. (14)

Equation 14 is transformed into the following using the R-L
integral and derivative of Caputo.

L.H.S � ξpA DKp
β ϕ α, β( )[ ] − g α, 0( )

ξ2−p
. (15)

By ulatizing Eq. 11 and Eq. 15 becomes

L.H.S � ξrpΨ α, ξ( ) −∑r−1
j�0

ξp r−j( )−2Djp
β ϕ α, 0( ), (16)

further, the following result is derived from Eq. 16.

L.H.S � A Drp
β ϕ α, 0( )[ ].

Consequently, for r = K + 1, Eq. 2 is true. In light of this, we
showed that Eq. 2 holds for every positive integer by applying the
mathematical induction method.

A novel version of multiple fractional Taylor’s series (MFTS) is
shown in the following lemma. This formula will be helpful for the
ARPSM, which will be discussed further below.

Lemma 2.3. Let’s assume ϕ(α, β) be the exponential order function.
The AT of ϕ(α, β), which is represented by the expression A[ϕ(α, β)] =
Ψ(α, ξ), is characterized by a MFTS notation as:

Ψ α, ξ( ) �∑∞
r�0

Zr α( )
ξrp+2

, ξ > 0, (17)
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where, α � (s1, α2, . . . , αp) ∈ Rp, p ∈ N.
Proof. Let us analyze Taylor’s series expressed in fractional

order as

ϕ α, β( ) � Z0 α( ) + Z1 α( ) βp

Γ p + 1[ ] + +Z2 α( ) β2p

Γ 2p + 1[ ] +/ . (18)

Applying the AT to Eq. 18 yields the subsequent equality:

A ϕ α, β( )[ ] � A Z0 α( )[ ] + A Z1 α( ) βp

Γ p + 1[ ][ ]
+ A Z1 α( ) β2p

Γ 2p + 1[ ][ ] +/

This is achieved by employing the properties of the AT.

A ϕ α, β( )[ ] � Z0 α( ) 1
ξ2

+ Z1 α( ) Γ p + 1[ ]
Γ p + 1[ ] 1

ξp+2

+ Z2 α( ) Γ 2p + 1[ ]
Γ 2p + 1[ ] 1

ξ2p+2
/

As a result, 17, which is a novel variant of Taylor’s series in the
AT, is acquired.

Lemma 2.4. Let A[ϕ(α, β)] = Ψ(α, ξ) be the MFPS stated in the new
form of Taylor’s series 17. Then we have

Z0 α( ) � lim
ξ→∞

ξ2Ψ α, ξ( ) � ϕ α, 0( ). (19)

Proof. From the Taylor’s series new form, the preceding
is derived:

Z0 α( ) � ξ2Ψ α, ξ( ) − Z1 α( )
ξp

− Z2 α( )
ξ2p

−/ (20)

After applying limξ→∞ to Eq. 19 and doing a short computation,
we get the necessary result, which is shown by 20.

Theorem 2.5. Let the MFPS notation of the function A[ϕ(α, β)] =
Ψ(α, ξ) is provided by

Ψ α, ξ( ) �∑∞
0

Zr α( )
ξrp+2

, ξ > 0,

where α � (α1, α2, . . . , αp) ∈ Rp and p ∈ N. Then we have

Zr α( ) � Drp
r ϕ α, 0( ),

where, Drp
β � Dp

β .D
p
β ./ .Dp

β(r − times).
Proof. We have the Taylor’s series in its new form

Z1 α( ) � ξp+2Ψ α, ξ( ) − ξpZ0 α( ) − Z2 α( )
ξp

− Z3 α( )
ξ2p

−/ (21)

Using Eq. 21 and limξ→∞, we get

Z1 α( ) � lim
ξ→∞

ξp+2Ψ α, ξ( ) − ξpZ0 α( )( ) − lim
ξ→∞

Z2 α( )
ξp

− lim
ξ→∞

Z3 α( )
ξ2p

−/

Taking the linit, we arrive to the following equality:

Z1 α( ) � lim
ξ→∞

ξp+2Ψ α, ξ( ) − ξpZ0 α( )( ). (22)

The application of Lemma 2.2 to Eq. 22 results in the following:

Z1 α( ) � lim
ξ→∞

ξ2A Dp
βϕ α, β( )[ ] ξ( )( ). (23)

Moreover, by using Lemma 2.3 to Eq. 23, it is transformed into

Z1 α( ) � Dp
βϕ α, 0( ).

Once more, by taking into account the new form of Taylor’s
series and taking limit ξ → ∞, we conclude that

Z2 α( ) � ξ2p+2Ψ α, ξ( ) − ξ2pZ0 α( ) − ξpZ1 α( ) − Z3 α( )
ξp

−/

As a result of Lemma 2.3, we get

Z2 α( ) � lim
ξ→∞

ξ2 ξ2pΨ α, ξ( ) − ξ2p−2Z0 α( ) − ξp−2Z1 α( )( ). (24)

Using Lemmas 2.2 and 2.4, Eq. 24 becomes

Z2 α( ) � D2p
β ϕ α, 0( ).

Applying the same process to the new Taylor’s series yields the
following results:

Z3 α( ) � lim
ξ→∞

ξ2 A D2p
β ϕ α, p( )[ ] ξ( )( ).

Following the use of Lemma 2.4, the final equation is found.

Z3 α( ) � D3p
β ϕ α, 0( ).

In general

Zr α( ) � Drp
β ϕ α, 0( ).

Thus, the proof concludes.
The subsequent theorem details and establishes the conditions

that govern the convergence of the new form of Taylor’s series.

Theorem 2.6. The expression A[ϕ(α, β)] = Ψ(α, ξ) represents the
new form of the formula for multiple fractional Taylor’s, which is
presented in Lemma 2.3. If |ξaA[D(K+1)p

β ϕ(α, β)]|≤T, on 0 < ξ ≤ s
with 0 < p ≤ 1, then the following inequality is satisfied by the residual
RK(α, ξ) of the new version of MFTS:

|RK α, ξ( )|≤ T

ξ K�1( )p+2, 0< ξ ≤ s.

Proof. Let A[Drp
β ϕ(α, β)](ξ) for r = 0, 1, 2, . . . , K + 1, is defined

on 0 < ξ ≤ s. Assume, as given, that
|ξ2A[DβK+1ϕ(α, tau)]|≤T, on 0< ξ ≤ s. Determine the following
relationship based on the revised version of Taylor’s series:

RK α, ξ( ) � Ψ α, ξ( ) −∑K
r�0

Zr α( )
ξrp+2

. (25)

Equation 25 is transformed by using Theorem 2.5.

RK α, ξ( ) � Ψ α, ξ( ) −∑K
r�0

Drp
β ϕ α, 0( )
ξrp+2

. (26)

On both sides of Eq. 26, multiply ξ(K+1)a+2.
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ξ K+1( )p+2RK α, ξ( ) � ξ2 ξ K+1( )pΨ α, ξ( ) −∑K
r�0

ξ K+1−r( )p−2Drp
β ϕ α, 0( )⎛⎝ ⎞⎠.

(27)
Lemma 2.2 applied to Eq. 27 gives

ξ K+1( )p+2RK α, ξ( ) � ξ2A D K+1( )p
β ϕ α, β( )[ ]. (28)

Taking absolute of Eq. 28, we obtain

|ξ K+1( )p+2RK α, ξ( )| � |ξ2A D K+1( )p
β ϕ α, β( )[ ]|. (29)

After applying the specified condition in Eq. 29, we arrive to the
following result.

−T
ξ K+1( )p+2 ≤RK α, ξ( )≤ T

ξ K+1( )p+2. (30)

Equation 30 provides the necessary outcome.

|RK α, ξ( )|≤ T

ξ K+1( )p+2.

In consequence, the new condition for series convergence
is developed.

3 A roadmap outlining the suggested
techniques

3.1 Time-fractional PDEs solution using the
ARPSM method

We describe the ARPSM set used to solve our general model.
Step 1: Simplify the general equation, we have

Dqp
β ϕ α, β( ) + ϑ α( )N ϕ( ) − ζ α, ϕ( ) � 0, (31)

Step 2: The AT is applied to both sides of Eq. (31) in order to get

A Dqp
β ϕ α, β( ) + ϑ α( )N ϕ( ) − ζ α, ϕ( )[ ] � 0, (32)

Equation 32 is transformed into by using Lemma 2.2.

Ψ α, s( ) �∑q−1
j�0

Dj
βϕ α, 0( )
sqp+2

− ϑ α( )Y s( )
sqp

+ F α, s( )
sqp

, (33)

where, A [ζ(α, ϕ)] = F (α, s), A [N(ϕ)] = Y(s).
Step 3: Take into account the form that the solution of Eq.

33 takes:

Ψ α, s( ) �∑∞
r�0

Zr α( )
srp+2

, s> 0,

Step 4: To proceed, follow these steps:

Z0 α( ) � lim
s→∞

s2Ψ α, s( ) � ϕ α, 0( ),
and the following is obtained by using Theorem 2.6.

Z1 α( ) � Dp
βϕ α, 0( ),

Z2 α( ) � D2p
β ϕ α, 0( ),
..
.

Zw α( ) � Dwp
β ϕ α, 0( ),

Step 5: Find the Ψ(α, s) series that has been Kth truncated
as follows:

ΨK α, s( ) �∑K
r�0

Zr α( )
srp+2

, s> 0,

ΨK α, s( ) � Z0 α( )
s2

+ Z1 α( )
sp+2

+/ + Zw α( )
swp+2

+ ∑K
r�w+1

Zr α( )
srp+2

,

Step 6: Take into account the Aboodh residual function (ARF)
from Eq. 33 and the Kth-truncated ARF independently, in order
to get

ARes α, s( ) � Ψ α, s( ) −∑q−1
j�0

Dj
βϕ α, 0( )
sjp+2

+ ϑ α( )Y s( )
sjp

− F α, s( )
sjp

,

and

AResK α, s( ) � ΨK α, s( ) −∑q−1
j�0

Dj
βϕ α, 0( )
sjp+2

+ ϑ α( )Y s( )
sjp

− F α, s( )
sjp

.

(34)
Step 7: Put ΨK (α, s) into Eq. 34 instead of its expansion form.

AResK α, s( ) � Z0 α( )
s2

+ Z1 α( )
sp+2

+/ + Zw α( )
swp+2

+ ∑K
r�w+1

Zr α( )
srp+2

⎛⎝ ⎞⎠
−∑q−1

j�0

Dj
βϕ α, 0( )
sjp+2

+ ϑ α( )Y s( )
sjp

− F α, s( )
sjp

.

(35)
Step 8: Eq. 35 requires multiplication by sKp+2 on both sides.

sKp+2AResK α, s( ) � sKp+2
Z0 α( )
s2

+ Z1 α( )
sp+2

+/ + Zw α( )
swp+2

+ ∑K
r�w+1

Zr α( )
srp+2

⎛⎝

−∑q−1
j�0

Dj
βϕ α, 0( )
sjp+2

+ ϑ α( )Y s( )
sjp

− F α, s( )
sjp

⎞⎠.
(36)

Step 9: Evaluating Eq. 36 by taking lims→∞.

lim
s→∞ sKp+2AResK α, s( ) � lim

s→∞ sKp+2 Z0 α( )
s2

+ Z1 α( )
sp+2

+/ + Zw α( )
swp+2

+ ∑K
r�w+1

Zr α( )
srp+2

⎛⎝
−∑q−1

j�0

Dj
βϕ α, 0( )
sjp+2

+ ϑ α( )Y s( )
sjp

− F α, s( )
sjp

⎞⎠.

Step 10: Find the value of ZK(α) by solving the
given equation.

lim
s→∞

sKp+2AResK α, s( )( ) � 0,

where K = w + 1, w + 2, /.
Step 11: To get the K-approximate solution of Eq. 33, substitute

the values of ZK(α) with a K-truncated series of Ψ(α, s).
Step 12: Solve ΨK (α, s) using the AIT to get the K-approximate

solution ϕK (α, β).
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3.1.1 Anatomy Problem 1 using ARPSM
Consider the following time-fractional Burger’s equation:

Dp
βϕ α, β( ) − ∂2ϕ α, β( )

∂β2
− ϕ α, β( ) � 0, where 0<p≤ 1 (37)

having the following IC’s:

ϕ α, 0( ) � cos πα( ). (38)

and exact solution

ϕ α, β( ) � e− π2−1( )β cos πα( ). (39)

Using Eq. 38 and applying AT to Eq. 37, we get

ϕ α, s( ) − cos πα( )
s2

− 1
sp

∂2ϕ α, β( )
∂β2

[ ] − 1
sp

ϕ α, β( )[ ] � 0, (40)

Consequently, the term series kth-truncated are

ϕ αs( ) � cos πα( )
s2

+∑k
r�1

fr α, s( )
srp+1

, r � 1, 2, 3, 4/ (41)

Aboodh residual functions (ARFs) are

AβRes α, s( ) � ϕ α, s( ) − cos πα( )
s2

− 1
sp

∂2ϕ α, β( )
∂β2

[ ] − 1
sp

ϕ α, β( )[ ] � 0,

(42)

and the kth-LRFs as:

FIGURE 1
The approximation (48) using ARPSM for the problem (37) is numerically analyzed against the fractional parameter p for β =0.01: (A) p =0.4, (B)
p =0.6, (C) p =0.8, and (D) p =1.
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AβResk α, s( ) � ϕk α, s( ) − cos πα( )
s2

− 1
sp

∂2ϕk α, β( )
∂β2

[ ] − 1
sp

ϕk α, β( )[ ] � 0,

(43)

To find fr (α, s) now r = 1, 2, 3, . . .. We multiply the resultant
equation by srp+1, replace the rth-truncated series Eq. 41 into the rth-
ARF Eq. 43, and solve the relation lims→∞(srp+1) iteratively. r = 1, 2,
3, /, and AβResϕ,r (α, s)) = 0. Here are the first few of terms:

f1 α, s( ) � − π2 − 1( )cos πα( )( ), (44)
f2 α, s( ) � π2 − 1( )2 cos πα( )( ), (45)
f3 α, s( ) � − π2 − 1( )3 cos πα( )( ), (46)

and so on.
Inserting the values of fr (α, s), r = 1, 2, 3, . . . , in Eq. 41, we get

ϕ α, s( ) � − π2 − 1( )3 cos πx( )
s3p+1

+ π2 − 1( )2 cos πx( )
s2p+1

− π2 − 1( )cos πx( )
sp+1

+ cos πx( )
s2

+/ .

(47)

Applying the AIT to Eq. 47 yields

ϕ α, β( ) � cos πα( ) − π2 − 1( )βp
Γ p + 1( ) + π2 − 1( )2β2p 1

Γ 2p + 1( ) − π2 − 1( )βp
Γ 3p + 1( )( ) + 1( ) +/

(48)

The approximation (48) using ARPSM for the problem (37) is
numerically analyzed as illustrated in Figure 1. This figure demonstrates
the impact of the fractional parameter of the profile of the periodic wave
solution (48). It can be seen from this figure that the fractional parameter
strongly affects the profile of these waves; the wave amplitude decreases
with increasing it.We estimated the absolute error compared to the exact
solution (39) for the integer case, as shown in Table 1. It is clear from the
comparison results that the error is minimal, and this enhances the high
accuracy and stability of the inferred approximations.

3.1.2 Anatomy Problem 2 using ARPSM
Consider the following time-fractional KdV equation:

Dp
βϕ α, β( ) + ϕ α, β( ) ∂ϕ α, β( )

∂α
− ∂3ϕ α, β( )

∂α3
� 0, where 0<p≤ 1

(49)

having the following IC’s:

ϕ α, 0( ) � 2α. (50)
and exact solution

ϕ α, β( ) � 2α
2β + 1

. (51)

Equation 50 is used in conjunction with AT applied to Eq. 49
to get:

ϕ α, s( ) − 2α

s2
+ 1
sp
Aβ A−1

β ϕ α, β( ) × ∂A−1
β ϕ α, β( )
∂α

[ ] − 1
sp

∂3ϕ α, β( )
∂α3

[ ] � 0,

(52)

Accordingly, the terms of the series that have been kth
truncated are

ϕ α, s( ) � 2α

s2
+∑k

r�1

fr α, s( )
srp+1

, r � 1, 2, 3, 4/ . (53)

Aboodh residual functions (ARFs) are

AβRes α, s( ) � ϕ α, s( ) − 2α

s2
+ 1
sp
Aβ A−1

β ϕ α, β( ) × ∂A−1
β ϕ α, β( )
∂α

[ ] − 1
sp

∂3ϕ α, β( )
∂α3[ ] � 0,

(54)

and the kth-LRFs as:

AβResk α, η, s( ) � ϕk α, s( ) − 2α

s2
+ 1
sp
Aβ A−1

β ϕk α, β( ) × ∂A−1
β ϕk α, β( )
∂α

[ ]
− 1
sp

∂3ϕk α, β( )
∂α3

[ ] � 0, (55)

To find fr (α, s) now r = 1, 2, 3, . . .. We multiply the resultant
equation by srp+1, replace the rth-truncated series Eq. 53 into the rth-
ARF Eq. 55, and solve the relation lims→∞(srp+1) iteratively. r = 1, 2,
3, /, and AβResϕ,r (α, s)) = 0. Here are the first few of terms:

f1 α, η, s( ) � −4α, (56)
f2 α, η, s( ) � 16α, (57)

TABLE 1 ARPSM solution of problem 1 for different values of fractional order p for β = 0.01.

α ARPSMP=0.6 ARPSMp=0.8 ARPSMP=1.0 Exact Error for p � 1.0

0 0.553377 0.791803 0.915121 0.915124 2.533652 × 10−6

0.2 0.447692 0.640582 0.740349 0.740351 2.049767 × 10−6

0.4 0.171003 0.244681 0.282788 0.282789 7.829416 × 10−7

0.6 −0.171003 −0.244681 −0.282788 −0.282789 7.829416 × 10−7

0.8 −0.447692 −0.640582 −0.740349 −0.740351 2.049767 × 10−6

1 −0.553377 −0.791803 −0.915121 −0.915124 2.533652 × 10−6

1.2 −0.447692 −0.640582 −0.740349 −0.740351 2.049767 × 10−6

1.4 −0.171003 −0.244681 −0.282788 −0.282789 7.829416 × 10−7

1.6 0.171003 0.244681 0.282788 0.282789 7.829416 × 10−7

1.8 0.447692 0.640582 0.740349 0.740351 2.049767 × 10−6

2 0.553377 0.791803 0.915121 0.915124 2.533652 × 10−6
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f3 α, η, s( ) � −16αΓ 2p + 1( )
Γ p + 1( )2 − 64α, (58)

and so on.
Equation 53 is used to get the values of fr (α, s) for r = 1, 2, 3, . . . ,.

ϕ α, s( ) � − 4α

sp+1
+ 16α

s2p+1
+
−16αΓ 2p + 1( )

Γ p + 1( )2 − 64α

s3p+1
+ 2α

s2
+/ .

(59)

When we use Aboodh’s inverse transform, we get

ϕ α, β( ) � 16αβ2p

Γ 2p + 1( ) − 64αβ3p

Γ 3p + 1( ) − 16αβ3pΓ 2p + 1( )
Γ p + 1( )2Γ 3p + 1( ) − 4αβp

Γ p + 1( ) + 2α +/ .

(60)

For the problem (49), the approximation (60) using ARPSM is
compared with the exact solution (51) for the integer case, i.e., for
p = 1 as illustrated in Figure 2. It can be seen from this figure how
consistent the two solutions are with each other, which confirms the
accuracy of the approximate solution (60). The approximation (60)
is numerically examined against the fractional parameter p as shown
in Figure 3. It is observed that the fractional parameter p strongly
affects the profile of these waves; the wave amplitude decays with
growing pit. Moreover, we estimated the absolute error compared to
the exact solution for the integer case, as seen in Table 2. One can see
from the comparison results that the error is minimal, and this
enhances the high accuracy and stability of the inferred
approximations.

3.2 An overview of the aboodh iterative
transform technique

Consider the general PDE of space-time fractional order.

Dp
βϕ α, β( ) � Φ ϕ α, β( ), Dβ

αϕ α, β( ), D2β
α ϕ α, β( ), D3β

α ϕ α, β( )( ), 0<p, β≤ 1,
(61)

Having the following IC’s.

ϕ k( ) α, 0( ) � hk, k � 0, 1, 2, . . . , m − 1, (62)

Determine the unknown function denoted as ϕ(α, β), while
Φ(ϕ(α, β), Dβ

αϕ(α, β), D2β
α ϕ(α, β), D3β

α ϕ(α, β)) may be a nonlinear
operator or linear of ϕ(α, β), Dβ

αϕ(α, β), D2β
α ϕ(α, β) andD3β

α ϕ(α, β).
Using the AT on both sides of Eq. (61), gives the following equation;
for convenience, we represent ϕ(α, β) with ϕ.

A ϕ α, β( )[ ] � 1
sp

∑m−1

k�0

ϕ k( ) α, 0( )
s2−p+k

+ A Φ ϕ α, β( ), Dβ
αϕ α, β( ), D2β

α ϕ α, β( ), D3β
α ϕ α, β( )( )[ ]⎛⎝ ⎞⎠,

(63)

Solving this problem using the AIT yields:

ϕ α, β( ) � A−1 1
sp

∑m−1

k�0

ϕ k( ) α, 0( )
s2−p+k

+ A Φ ϕ α, β( ), Dβ
αϕ α, β( ), D2β

α ϕ α, β( ), D3β
α ϕ α, β( )( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(64)

The solution obtained through the iterative Aboodh transform
method is denoted by an infinite series.

ϕ α, β( ) �∑∞
i�0

ϕi. (65)

Since Φ(ϕ, Dβ
αϕ, D

2β
α ϕ, D3β

α ϕ) is either a nonlinear or linear
operator which can be decomposed as follows:

Φ ϕ, Dβ
αϕ, D

2β
α ϕ, D3β

α ϕ( ) � Φ ϕ0 , D
β
αϕ0 , D

2β
α ϕ0 , D

3β
α ϕ0( )

+∑∞
i�0
⎛⎝Φ ∑i

k�0
ϕk, D

β
αϕk, D

2β
α ϕk, D

3β
α ϕk( )⎛⎝ ⎞⎠

−Φ ∑i−1
k�1

ϕk, D
β
αϕk, D

2β
α ϕk, D

3β
α ϕk( )⎛⎝ ⎞⎠⎞⎠. (66)

By substituting Eqs 65, 66 into Eq. 64, the subsequent equation
is obtained.

∑∞
i�0

ϕi α, β( ) � A−1 1
sp

∑m−1

k�0

ϕ k( ) α, 0( )
s2−p+k

+ A Φ ϕ0, D
β
αϕ0, D

2β
α ϕ0, D

3β
α ϕ0( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

ϕk, D
β
αϕk, D

2β
α ϕk, D

3β
α ϕk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

−A−1 1
sp

A Φ∑i−1
k�1

ϕk, D
β
αϕk, D

2β
α ϕk, D

3β
α ϕk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(67)

FIGURE 2
This figure shows: (A) approximate solution (60) via ARPSM at p =1 (B) the exact solution (51) of problem 2 for β =0.01.
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ϕ0 α, β( ) � A−1 1
sp

∑m−1

k�0

ϕ k( ) α, 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,
ϕ1 α, β( ) � A−1 1

sp
A Φ ϕ0, D

β
αϕ0 , D

2β
α ϕ0, D

3β
α ϕ0( )[ ]( )[ ],

..

.

ϕm+1 α, β( ) � A−1 1
sp

A ∑∞
i�0

Φ∑i
k�0

ϕk, D
β
αϕk, D

2β
α ϕk, D

3β
α ϕk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

−A−1 1
sp

A Φ∑i−1
k�1

ϕk, D
β
αϕk, D

2β
α ϕk, D

3β
α ϕk( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, m � 1, 2,/ .

(68)

Eq. 61 may be expressed as follows, which gives the m-term
analytically approximate solution:

ϕ α, β( ) � ∑m−1

i�0
ϕi. (69)

3.2.1 Anatomy problem 1 using ATIM
Consider the following time-fractional Burger’s equation:

Dp
βϕ α, β( ) � ∂2ϕ α, β( )

∂β2
+ ϕ α, β( ), where 0<p≤ 1 (70)

having the following IC’s:

ϕ α, 0( ) � cos πα( ), (71)
and exact solution

ϕ α, β( ) � e− π2−1( )β cos πα( ). (72)

By applying the AT on each side of Eq. 70, we arrive at the
following result:

FIGURE 3
The approximation (60) using ARPSM for the problem (49) is numerically analyzed against the fractional parameter p for β =0.01: (A) p =0.3, (B)
p =0.5, (C) p =0.7, and (D) p =1.
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A Dp
βϕ α, β( )[ ] � 1

sp
∑m−1

k�0

ϕ k( ) α, η, 0( )
s2−p+k

+ A
∂2ϕ α, β( )

∂β2
+ ϕ α, β( )[ ]⎛⎝ ⎞⎠,

(73)
When we apply the AIT to both sides of Eq. 73, we get:

ϕ α, β( ) � A−1 1
sp

∑m−1

k�0

ϕ k( ) α, η, 0( )
s2−p+k

+ A
∂2ϕ α, β( )

∂β2
+ ϕ α, β( )[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(74)
The equation that we get by iteratively applying the AT is

given as:

ϕ0 α, β( ) � A−1 1
sp

∑m−1

k�0

ϕ k( ) α, η, 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 ϕ α, η, 0( )

s2
[ ]

� cos πα( ),

By substituting the RL integral into Eq. 70, we obtained the
equivalent form.

ϕ α, β( ) � cos πα( ) − A
∂2ϕ α, β( )

∂β2
+ ϕ α, β( )[ ]. (75)

Here are a few terms that are obtained using the ATIM procedure:

ϕ0 α, β( ) � cos πα( ),
ϕ1 α, β( ) � − π2 − 1( )βp cos πα( )

Γ p + 1( ) ,

ϕ2 α, β( ) � π2 − 1( )2β2p cos πα( )
Γ 2p + 1( ) ,

ϕ3 α, β( ) � − π2 − 1( )3β3p cos πα( )
Γ 3p + 1( ) ,

(76)

The ultimate ATIM solution is given as:

ϕ α, β( ) � ϕ0 α, β( ) + ϕ1 α, β( ) + ϕ2 α, β( ) + ϕ3 α, β( ) +/ . (77)

ϕ α, β( ) � π2 − 1( )2β2p cos πα( )
Γ 2p + 1( ) − π2 − 1( )3β3p cos πα( )

Γ 3p + 1( )
− π2 − 1( )βp cos πα( )

Γ p + 1( ) + cos πα( ) +/ . (78)

The approximation (78) using ATIM for the problem (70) is
numerically investigated as demonstrated in Figure 4. It is shown
that the fractional parameter p has a strong affect on the profile
solution. Moreover, we estimated the absolute error compared to the
exact solution (72) for the integer case, as shown in Table 3. It is
observed from the comparison results that the error isminimal, and this
enhances the high accuracy and stability of the inferred approximations.

3.2.2 Anatomy problem 2 using ATIM
Consider the following time-fractional KdV equation:

Dp
βϕ α, β( ) � −ϕ α, β( ) ∂ϕ α, β( )

∂α
+ ∂3ϕ α, β( )

∂α3
, where 0<p≤ 1

(79)
having the following IC’s:

ϕ α, 0( ) � 2α, (80)
and the exact solution

ϕ α, β( ) � 2α
2β + 1

. (81)

After executing the AT on each side of Eq. 79, we obtain:

A Dp
βϕ α, β( )[ ] � 1

sp
∑m−1

k�0

ϕ k( ) α, η, 0( )
s2−p+k

+ A −ϕ α, β( ) ∂ϕ α, β( )
∂α

+ ∂3ϕ α, β( )
∂α3[ ]⎛⎝ ⎞⎠,

(82)

Equation that results from applying the AIT to Eq. 82 is:

ϕ α, η, β( ) � A−1 1
sp

∑m−1

k�0

ϕ k( ) α, η, 0( )
s2−p+k

+ A −ϕ α, β( ) ∂ϕ α, β( )
∂α

+ ∂3ϕ α, β( )
∂α3

[ ]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.
(83)

This equation is obtained by using the iterative process of the AT:

ϕ0 α, η, β( ) � A−1 1
sp

∑m−1

k�0

ϕ k( ) α, 0( )
s2−p+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� A−1 ϕ α, 0( )

s2
[ ]

� 2α,

TABLE 2 ARPSM solution of problem 2 for different values of fractional order p for β = 0.01.

α ARPSMP=0.5 ARPSMp=0.7 ARPSMP=1.0 Exact Error for p � 1.0

0.2 0.329036 0.368526 0.392157 0.392157 6.274509 × 10−8

0.4 0.658072 0.737053 0.784314 0.784314 1.254901 × 10−7

0.6 0.987108 1.10558 1.17647 1.17647 1.882352 × 10−7

0.8 1.31614 1.47411 1.56863 1.568632 2.509803 × 10−7

1 1.64518 1.84263 1.96078 1.96078 3.137254 × 10−7

1.2 1.97422 2.21116 2.35294 2.35294 3.764705 × 10−7

1.4 2.30325 2.57968 2.7451 2.7451 4.392156 × 10−7

1.6 2.63229 2.94821 3.13725 3.13725 5.019607 × 10−7

1.8 2.96132 3.31674 3.52941 3.52941 5.647058 × 10−7

2 3.29036 3.68526 3.92157 3.92157 6.274509 × 10−7
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Equation 49 yields the equivalent form when the RL integral
is applied.

ϕ α, β( ) � 2α − A −ϕ α, β( ) ∂ϕ α, β( )
∂α

+ ∂3ϕ α, β( )
∂α3

[ ]. (84)

We get these terms from the ATIM procedure.

ϕ0 α, β( ) � 2α, ϕ1 α, β( ) � − 4αβp

Γ p + 1( ), ϕ2 α, β( )
� 16αβ2p

1
Γ 2p + 1( ) −

4pβpΓ p + 1
2

( )��
π

√ Γ p + 1( )Γ 3p + 1( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, ϕ3 αβ( )
� 128αβ4p

��
π

√
Γ 3p + 1( )2Γ 5p + 1( )(Γ p( )Γ p + 1( )Γ 3p + 1( )((

−2βpΓ 2p( )Γ 2p + 1( ))

−8βpΓ 4p( ) 4pβ2pΓ p + 1
2

( )Γ 2p + 1( )2Γ 4p + 1( )(
−2 ��

π
√

βpΓ p + 1( )Γ 2p + 1( )Γ 3p + 1( )Γ 4p + 1( )
+16pΓ p + 1( )3Γ 2p + 1

2
( )Γ 3p + 1( )2)))/

× ��
π

√
Γ p( )Γ p + 1( )2Γ 2p + 1( )Γ 3p + 1( )2Γ 4p + 1( )Γ 5p + 1( )( ),

(85)

The ultimate result of the ATIM algorithm is given as:

ϕ α, β( ) � ϕ0 α, β( ) + ϕ1 α, β( ) + ϕ2 α, β( ) + ϕ3 α, β( ) +/ (86)

FIGURE 4
The approximation (78) using ATIM for the problem (70) is numerically analyzed against the fractional parameter p for β =0.01: (A) p =0.3, (B) p =0.5,
(C) p =0.7, and (D) p =1.

Frontiers in Physics frontiersin.org11

Noor et al. 10.3389/fphy.2024.1374049

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1374049


ϕ α, β( ) � 2α − 4αβp

Γ p + 1( ) + 16αβ2p
1

Γ 2p + 1( ) −
4pβpΓ p + 1

2
( )��

π
√ Γ p + 1( )Γ 3p + 1( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 128αβ4p
��
π

√
Γ 3p + 1( )2Γ 5p + 1( ) Γ p( )Γ p + 1( )Γ 3p + 1( )(((

−2βpΓ 2p( )Γ 2p + 1( )) − 8βpΓ 4p( )
4pβ2pΓ p + 1

2
( )Γ 2p + 1( )2Γ 4p + 1( )(

−2 ��
π

√
βpΓ p + 1( )Γ × 2p + 1( )Γ 3p + 1( )Γ 4p + 1( )

+16pΓ p + 1( )3Γ 2p + 1
2

( )Γ 3p + 1( )2)))/
× ��

π
√

Γ p( )Γ p + 1( )2Γ 2p + 1( )Γ 3p + 1( )2(
Γ 4p + 1( )Γ 5p + 1( )).

(87)

The approximation (87) using ATIM for the problem (79) is
compared with the exact solution (81) for the integer case, i.e., for
p = 1 as demonstrated in Figure 5. The obtained results demonstrate
a good matching between the two solutions, which confirms the
accuracy of the approximate solution (87). Additionally, the
approximation (87) is numerically examined against the
fractional parameter p, as shown in Figure 6. It is found that the
fractional parameter p has a substantial impact on the wave profile.
Moreover, we estimated the absolute error compared to the exact
solution for the integer case, as seen in Table 4. One can see from the
comparison results that the error is minimal, and this enhances the
high accuracy and stability of the inferred approximations.
Furthermore, we made a numerical comparison between the
approximate solutions deduced using ATIM and APRSM, for
example, 1 and 2, as shown in Tables 5 and Table 6. It is clear
from the comparison results that the approximate solutions are
more accurate. Also, it is observed that ATIM is more accurate than

TABLE 3 ATIM solution of problem 1 for different values of fractional order p for β = 0.01.

α ATIMP=0.6 ATIMp=0.8 ATIMP=1.0 Exact Error for p � 1.0

0 0.586279 0.792121 0.915124 0.915124 4.507686 × 10−8

0.2 0.47431 0.640839 0.740351 0.740351 3.646794 × 10−8

0.4 0.18117 0.244779 0.282789 0.282789 1.392951 × 10−8

0.6 −0.18117 −0.244779 −0.282789 −0.282789 1.392951 × 10−8

0.8 −0.47431 −0.640839 −0.740351 −0.740351 3.646794 × 10−8

1 −0.586279 −0.792121 −0.915124 −0.915124 4.507686 × 10−8

1.2 −0.47431 −0.640839 −0.740351 −0.740351 3.646794 × 10−8

1.4 −0.18117 −0.244779 −0.282789 −0.282789 1.392951 × 10−8

1.6 0.18117 0.244779 0.282789 0.282789 1.392951 × 10−8

1.8 0.47431 0.640839 0.740351 0.740351 3.646794 × 10−8

2 0.586279 0.792121 0.915124 0.915124 4.507686 × 10−8

FIGURE 5
Here, we considered the comparison between (A) the approximate solution (87) via ATIM and (B) exact solution (81) of problem 2 for β =0.01.

Frontiers in Physics frontiersin.org12

Noor et al. 10.3389/fphy.2024.1374049

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1374049


APRSM. However, in general, both approaches are characterized by
high accuracy and stability throughout the field of study.

4 Conclusion

This paper has thoroughly examined the dynamics of
fractional linear and nonlinear partial differential equations
using advanced mathematical methods for solving them. The
Aboodh Residual Power Series Method (ARPSM) and the
Aboodh Transform Iteration Method (ATIM) are particularly
effective in solving difficult equations accurately and insightfully.
Including the Caputo operator, a key component of fractional

calculus, has improved the accuracy and usefulness of the
suggested techniques. This research has substantially
contributed to the knowledge of fractional calculus
applications in mathematical physics by comprehensively
analyzing linear and nonlinear scenarios. These methods were
applied to solve different examples of fractional differential
equations, and some approximate solutions were derived and
analyzed numerically to verify their accuracy and
stability throughout the study domain. Moreover, the absolute
error of these approximations compared to the exact solutions
for the integer case was also estimated. The numerical results
have proven the high accuracy and stability of the deduced
approximations, which enhances the ability and efficiency of

FIGURE 6
The approximation (87) using ATIM for the problem (79) is numerically analyzed against the fractional parameter p for β =0.01.

TABLE 4 ATIM solution of problem 2 for different values of fractional order p for β = 0.01.

α ATIMP=0.5 ATIMp=0.7 ATIMP=1.0 Exact Error for p � 1.0

0.2 0.340162 0.368918 0.392157 0.392157 7.689350 × 10−9

0.4 0.680324 0.737837 0.784314 0.784314 1.537870 × 10−8

0.6 1.02049 1.10676 1.17647 1.17647 2.306805 × 10−8

0.8 1.36065 1.47567 1.56863 1.56863 3.075740 × 10−8

1 1.70081 1.84459 1.96078 1.96078 3.844675 × 10−8

1.2 2.04097 2.21351 2.35294 2.35294 4.613610 × 10−8

1.4 2.38113 2.58243 2.7451 2.7451 5.382545 × 10−8

1.6 2.7213 2.95135 3.13725 3.13725 6.151480 × 10−8

1.8 3.06146 3.32027 3.52941 3.52941 6.920415 × 10−8

2 3.40162 3.68918 3.92157 3.92157 7.689350 × 10−8
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the used methods. The proven effectiveness of the ARPSM
and ATIM indicates their ability to solve many issues across
different scientific fields. This study enhances the approaches
for solving fractional partial differential equations and paves the
way for further inquiry and application in scientific and
technical fields.

4.1 Future work

These methods are suitable for modeling many evolution
equations in their fractional form that govern many nonlinear
phenomena in different plasma systems. For example, these
methods can analyze the KdV family [49–54] and the family of
Kawahara-type equations (55)–(59), which describes solitary and
periodic waves propagating with phase speed in a plasma. Moreover,
these methods can be applied to analyze the family of nonlinear
Schrödinger-type equations in their fractional form, which governs

the propagation of nonlinear waves at group speed in a
plasma [60–65].
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