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This work aims to analyze the impacts of the magnetic field, activation of energy,
thermal radiation, thermophoresis, and Brownian effects on the hybrid nanofluid
(HNF) (Ag++silicon oil) flow past a porous spinning disk. The pressure loss due to
porosity is constituted by the Darcy–Forchheimer relation. The modified
Buongiorno model is considered for simulating the flow field into a
mathematical form. The modeled problem is further simplified with the new
group of dimensionless variables and further transformed into a first-order
system of equations. The reduced system is further analyzed with the
Levenberg–Marquardt algorithm using a trained artificial neural network (ANN)
with a tolerance, step size of 0.001, and 1,000 epochs. The state variables under
the impacts of the pertinent parameters are assessed with graphs and tables. It
has been observed that when the magnetic parameter increases, the velocity
gradient of mono and hybrid nanofluids (NFs) decreases. As the input of the
Darcy–Forchheimer parameter increases, the velocity profiles decrease. The
result shows that as the thermophoresis parameter increases, temperature
and concentration increase as well. When the activation energy parameter
increases, the concentration profile becomes higher. For a deep insight into
the analysis of the problem, a statistical approach for data fitting in the form of
regression lines and error histograms for NF andHNF is presented. The regression
lines show that 100% of the data is used in curve fitting, while the error histograms
depict the minimal zero error −7.1e6 for the increasing values ofNt. Furthermore,
themean square error and performance validation for each varying parameter are
presented. For validation, the present results are compared with the available
literature in the form of a table, where the current results show great agreement
with the existing one.
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1 Introduction

A new generation of hybrid nanofluids (HNFs) has been created
as a result of emerging technologies [1]. Unlike nanofluids (NFs),
which only contain one metal nanoparticle, HNFs contain many
metallic nanoparticles. A simple NF is created when water is added
to Al2O3 nanoparticles [2]. However, combining water, aluminum
oxide, silicon oil, and copper metallic nanoparticles results in the
formation of a HNF. The thermal conductivity of HNFs is much
higher than that of the common fluids, which is one of the reasons
behind the interest of numerous scientists and academicians in this
area. Nadeem et al. [3] analyzed the important properties like
transfer of heat for the 3D HNF flow. Suresh et al. [4] studied
the hybrid NF’s mobility and heat transport features. Gorla et al. [5]
employed the source or sink impact on the Cu-Al2O3/H2O to
explore natural convection in conjunction with heat transmission.
Once they moved the heat sources to achieve hybrid prohibition, the
Nusselt number decreased dramatically. Tayebi et al. [6] presented a
comparative study of the HNFs Cu-Al2O3/water and NFs
Al2O3/water through monocular elliptic cylinders by taking the
convective effects. Acharya [7] studied the radiative natural
convective HNF flow patterns and thermal transport through a
square object with variable heated walls. The heat transmission of a
HNF through the pores of a cylindrical shape is covered by Tayebi
et al. [8]. Using a rotating apparatus, Chamkha et al. [9] analyzed the
magnetohydrodynamic HNF flow for heat transfer. Asghar et al.
[10] studied the ooze slime for examining the gliding motility of
bacteria. The kinetic control of the rod-like swimmers past a
sinusoidal object is explained by Asghar et al. [11]. A more
recent survey on micro-swimmers and bacteria can be found in
[12–16]. Acharya [17] considered the particle size and the
solid–liquid interface by investigating the magnetic field effects
for ferrofluid flow through a rotating disk. Yarmand et al. [18]
studied the accelerated heat transport for the HNF flow. Abbasi et al.
[19] investigated the thermal expansion coefficient for HNF of
alumina and carbon nanotubes. Both theoretical and
experimental studies for the thermophysical characteristics of the

HNF flow through nanotubes are presented by Sajid et al. [20]. Kada
et al. [21] studied the Carreau–Yasuda model for the waves of cilia in
a micro-channel. Asghar et al. [22] used the numerical approach for
simulating the flow in a micro-channel using the
Carreau–Yasuda layer.

Rotating machinery is a vital component of numerous
industries. The rotating disk has many industrial applications,
and therefore, its analysis is very important. An increasing
variety of industries, including the aviation, automotive, and
marine sectors, are using these rotating objects in various parts
[23, 24]. The use of irregularly thickened disks is growing, mostly
due to financial limitations and the requirement to improve
mechanical properties. Rotating disks are necessary for the
operation of many pieces of industrial equipment. As a result,
researchers working on this subject have recently launched a
number of initiatives. Shah et al. [25] investigated the Hall
current for the 3D NF flow extending surface by considering the
Cattaneo–Christov (C.C.) heat flux model. For example, the analysis
of NF flow resulting from rotating disks with different thicknesses
and relatively uniform responses was done by Hayat et al. [26]. In a
different work, Hayat et al. [27] investigated the flow between two
stretchable rotating disks in a porous medium using the C.C. heat
flux simulation. The analysis of heat and mass for the 3D NF flow
past an elastic sheet is investigated by Khan et al. [28]. Qayyum et al.
[29] studied the entropy and dissipation of the MHD Williamson
fluid between two rotating disks. Jyothi et al.’s investigation deals
with the effect that magnetic fields and heat radiation have on CNT
convection in NF within rotating elastic disks [30]. Pourmehran
et al. [31] used the Patel model and Brownian motion to study heat
exchange and NF flow between two rotating disks. A more recent
work on rotating surfaces can be found in [32–35].

The applications of artificial intelligence (AI) cannot be
denied. AI covered all areas of research, including medical,
engineering, and technology [36–40]. The engineering
applications of AI are briefly reviewed by Nti et al. [41]. Jang
et al. studied the AI applications for the recognition of pathways
and enzymes in metabolic engineering. Sofos et al. [42] reviewed

FIGURE 1
Graphical abstract.
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the applications of AI in the field of fluid mechanics. Kartik et al.
[43] analyzed the inviscid flow field by using AI. Amini and
Mohaghegh [44] used AI by analyzing the fluid flow in a porous
medium. The squeezing model with the help of AI is analyzed by
Almalki et al. [45]. The irreversibility impact of considering the
carbon nanotubes during the viscous fluid flow is analyzed by
Zubair et al. [46]. They used a supervised learning-based AI
approach to analyze the fluid flow. The MHD HNF flow during
the rotating frame for heat and mass transfer is investigated by
Shoaib et al. [47]. They used the numerical result as a reference
solution for the neural network and analyzed the problem for
various impacts of the pertinent parameters and related statistical
analysis. The thermal slip and absorption impacts on the HNF
flow during the rotating disk are investigated by Shoaib et al. [48].
They used AI for computational purposes. Ali et al. [49] used the
Levenberg–Marquardt backpropagation search path for training
the neural network for the analysis of the water-based CNT HNF
fluid past an unstable spinning disk.

The magnetization of conducting fluids is the subject of
research in the field known as magnetohydrodynamics
(MHD). MHD engagement detects the interaction of
ferromagnetic or fluid metal particles in the presence of an
electromagnetic field and current. The MHD model connects
the electrohydrodynamic Maxwell equations and fluid
computations with the Lorentz force as a result of magnetism.
The processes that generate Lorentz force and capacitive electric
charge generally seem to be completely opposite to one another.
Due to a decrease in concentration, there is an increase in
temperature, growing velocity, and Joule heating as the joule
number increases. Babu and Sandeep [50] studied the 3D slip
effects for the MHD NF flow past an unstable sheet. Ghadikolaei

et al. [51] studied the MHD stagnant-point flow of a
TiO2–Cu–water hybrid NF across such a stretched sheet. The
TiO2 nanoparticles in a porous medium were studied in the
boundary layer of a micropolar hazy fluid medium by
Ghadikolaei et al. [52] in order to take into consideration the
effects of magnetization and heat radiation. The flow of thin fluid
films with different thermophysical properties in a two-
dimensional boundary layer in a three-dimensional
environment was studied by Palwasha et al. [53].In light of
the above, we assume the following.

• The HNF (Ag+TiO2/silicon oil) flow past a spinning disk is
considered.

• The impacts of porosity, the Darcy–Forchheimer (DF)
parameter, thermal radiation, and energy activation are
considered in the flow field.

• The modification in the Buongiorno model (MBM) is
considered to analyze the flow behavior in depth.

• Silicon oil is used as a base fluid for Ag and TiO2 nanoparticles.
• The thermal transport for the hybrid and mono NFs is
investigated using the Levenberg–Marquardt
algorithm (LMA).

A comparative analysis of the HNF and NF is carried out by
implementing the neural network. A graphical abstract is presented
in Figure 1.

2 Problem formulation

Assume a steady HNF flow past a spinning disk that is axially
symmetric along the φ direction in the (r,φ, z) coordinates. The disk is
half-filled with HNF and rotates with angular velocityΩ. The surface and
the surrounding temperatures are Tw and T∞, respectively. A magnetic
field B is acting normal to the z-direction. Since the flow is axially
symmetric, the implications along φ are not considered, as shown
in Figure 2.

Considering the Buongiorno model with modifications, we have
the following basic equations for the fluid flow [54, 55]:

ur + u

r
+ wz � 0, (1)

FIGURE 2
Problem geometry.

TABLE 1 HNF models [55, 57].

Property Hybrid nanofluid

Viscosity μhnf � μf
(1−ϕ1)2.5(1−ϕ2)2.5

Thermal conductivity knf
kf

� ks+(m−1)kf−(m−1)ϕ(kf−ks )
ks+(m−1)kf+ϕ(kf−ks )

Density ρhnf � (1 − ϕ2)[(1 − ϕ1)ρf + ϕ1ρs1] + ϕ2ρs2

Heat capacity (ρcp)hnf�(1−ϕ2)[(1−ϕ1)(ρcp)f+ϕ1(ρcp)s1]+ϕ2(ρcp)s2
khnf
kbf

� k2+(m−1)kbf−(m−1)ϕ2(kbf−k2 )
k2+(m−1)kbf+ϕ2(kbf−k2)

Electric conductivity σnf
σf

� 1 + 3(σ−1)ϕ
(σ+2)−(σ−1)ϕ

where, σhnfσbf
� σ2+2σbf−2ϕ2(σbf−σ2 )

σ2+2σbf+ϕ1+σf−σ2)
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ρhnf uur − υ2

r
+ wuz( ) � −Pr + μhnf urr + 1

r
ur − u

r2
+ uzz( )

−σhnfB2
0u − μhnf

k*
u − Fu2,

(2)

ρhnf uur − uυ

r
+ wυz( ) � μhnf υrr + 1

r
υr − υ

r2
+ υzz( )

−σhnfB2
0v −

μhnf
k*

υ − Fυ2,
(3)

ρhnf uwr + wwr( ) � −Pz + μhnf wrr + 1
r
wr + wzz( ), (4)

uTr + wTz � αhnf Trr + 1
r
Tr + Tzz( ) + τ[DB TrCr + TzCz( )

+DT

T∞
Tr( )2 + Tz( )2( )] + 16σ†T3

∞
3 ρcp( )

hnf
k
Tzz,

(5)

uCr + wCz � DB Crr + 1
r
Cr + Czz( ) + DT

T∞
Trr + 1

r
Tr + Tzz( )

−K2
r

T

T∞
( )n

exp −Ea
kT

( ) C − C∞( ),
(6)

with the B.Cs [56].

at z � 0: w � 0, u � L1uz, υ � rΩ, C � Cw, T � Tw,
as z → ∞ : T → T∞, u → 0, C → C∞, P → P∞.

(7)

Here, u, v, and w are the velocity components along r,φ, and z
directions, respectively. In addition, υf, T,DT,DB, C, P, αhnf,
τ, ρf, k*, F, L1 are the kinematic viscosity of the fluid, fluid
temperature, thermophoretic and Brownian diffusion coefficients,
nanoparticle concentration, pressure, thermal diffusivity of the
hybrid NF, the ratio of specific heat to the nanoparticle element,
density, porous medium permeability, porous medium inertial
coefficient, and the wall slip parameter, respectively.Introducing
the following dimensionless transformations [31, 55]:

P,C, T( ) � P∞ −ΩμfP η( ), C∞ + Cw − C∞( )ϕ η( ), T∞ + Tw − T∞( )θ η( )( ),
u, w, υ( ) � Ωrf′ η( ),− �����

2Ωυf
√

f η( ),Ωrg η( )( ), η �
���
2Ω
vf

√
z.

(8)

Applying Eq. 8 to Eqs 1–6, we obtain [55]:

f′′′ +
ρhnf
ρf
μhnf
μf

⎛⎜⎝ ⎞⎟⎠ f′′f − 1
2
f′2 + 1

2
g2( ) −

ρhnf
ρf
μhnf
μf

⎛⎜⎝ ⎞⎟⎠f′2Fr − δf′

−M

σhnf
σf
μhnf
μf

⎛⎜⎝ ⎞⎟⎠f′� 0, (9)

g′′′ −
ρhnf
ρf
μhnf
μf

⎛⎜⎝ ⎞⎟⎠ 1
2
f′2f − 1

2
f′g − fg′( ) −M

σhnf
σf
μhnf
μf

⎛⎜⎝ ⎞⎟⎠g −
ρhnf
ρf
μhnf
μf

⎛⎜⎝ ⎞⎟⎠g2Fr − δg � 0,

(10)

1
Pr

khnf
kf

ρCp( )hnf
ρCp( )f

+ 4
3
Rd

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠θ′′ + θ′f +Ntθ′2 + θ′Nbϕ′ � 0, (11)

ϕ′′ + Scfϕ′ + Nt

Nb
θ′′ − σ1Sc 1 + ~δθ( )n exp − E

1 + ~δθ
( )ϕ � 0, (12)

as η � 0: f′ � αf′′, g � 1, f � 0, θ � 1, ϕ � 1,
as η → ∞ : f′ → 0, g → 0, f � 0, θ → 0, ϕ → 0.

(13)
Here, Rd � 4σT3

∞
kkf

is the radiation parameter, M � σfB2
0

2ρfΩ
is the

magnetic parameter, Sc � vf
DB

is the Schmidt number, Nb � τDBC∞
vf

is the Brownian motion parameter, E � Ea
kT∞ is the energy activation

parameter, Fr � Cb��
k*

√ represents the DF number, ~δ � Tw−T∞
T∞ is the

temperature difference parameter, α � L1
��
2Ω
vf

√
is the velocity slip

parameter, Pr � vf
αf

is the Prandtl number, σ1 � K2
r

Ω is the
chemical reaction parameter, δ � vf

k*Ω is the porosity
parameter, and Nt � τDT(Tw−T∞)

T∞vf
is the thermophoresis

parameter.It is clear from Eq. 4 that we can obtain the
pressure by integrating it. The torque resistance on the disk
having radius R is given as follows [55]:

T � −∫R

0
μhnfvz

∣∣∣∣∣∣∣∣z�02πr2dr � −πρhnfΩ
2

�����
2υfΩ

√
R4g′ 0( ). (14)

In addition, the tangential τ0 and radial τr stresses are given as
follows [55]:

TABLE 2 Some important properties of silicon oil, TiO2, and Ag [58, 59].

Physical property cp( J/(kg · K)) ρ(kgm3) k( W/(m · K)) σ(S/m)
Silicon oil 1966 818 0.1 1.5 × 10−4

Titanium dioxide (TiO2) 686.2 4250 8.9538 2.6 × 106

Gold 129 19,282 310 4.1 × 107

FIGURE 3
ANN structure.
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FIGURE 4
Impact of (A) α on f′, (B) α on g, (C) δ on f′, (D) δ on g, (E) Fr on f′, (F) Fr on g, (G) M on f′, and (H) M on g.
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τr � μhnf uz + wr( )z�0 � rΩμhnf

���
2Ω
υf

√
f′′ 0( ),

τθ � μhnf υz + wr( )z�0 � rΩμhnf

���
2Ω
υf

√
g′ 0( ),

(15)

or

Cf �
������
τ2r + τ2θ

√
ρhnf rΩ( )2 �

2Ωr2
υf

( )−1
2

f′′ 0( )2 + g′ 0( )2( )1
2

1 − ϕ1( )2.5 1 − ϕ2( )2.5 . (16)

FIGURE 5
Absolute error for the impact of (A) α on f′, (B) α on g, (C) δ on f′, (D) δ on g, (E) Fr on f′, (F) Fr on g, (G) M on f′, and (H) M on g.
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The local Nusselt number Nur is computed as follows [55]:

Nur � rq′′

kf Tw − T∞( ), (17)

where q′′ � −khnf Tz + 16σ†T3
∞

3k Tz|z�0 is the heat flux. The wall heat
flux can be eliminated by choosing the zero wall mass flux; thus, with
Eq. 8, we have from (17)

Nur � −r
���
2Ω
υf

√
khnf
kf

+ 4
3
Rd( )θ′ 0( ). (18)

The HNF models and physical properties of the NFs used in this
study are displayed in Tables 1,2.

3 Proposed methodology

Artificial neural networks (ANNs) are computer models that
simulate the human brain structure. The human system, from a
neurological point of view, is very complex. ANNs are made up of
nodes, which are interconnected to form layers with varying degrees of
processing depth. Nodes are connected processing components. These
combine to create intricate processing circuits that identify input patterns
and generate responses. By training layers that correlate responses with
incoming data with specific pattern knowledge, the patterns can be
learned. The network gains knowledge through practice, and when
linked to other networks, it gains knowledge through information
sharing. The only layers in an ANN’s structure are the input layer, a
hidden layer that is introduced first, and the output layer. Applications of
neural networks are being used across numerous industries to address
issueswith security, the economy, and other factors. In the data-intensive
era, neural networks have created new opportunities for study and
application [60, 61]. The more recent trends in other disciplines of AI
can be found in [61–63]. For a solution of Eqs 9–13, we first transform
the given system into a first-order system. For this, we have [55]

y1 � f, y2 � f′, y6 � θ, y7 � θ′, y3 � f′′, y4 � g, y5 � g′, y8 � ϕ, y9 � ϕ′
y1′ � y2,
y2′ � y3,
y3′ � − A0/A1( ) y1y3 − 0.5y2

2 + 0.5y2
4 − Fry2

2( ) + δy2 + A2/A1( )My2,
y4′ � y5,
y5′ � A0/A1( ) 0.5y2

2y1 − 0.5y2y4 − y1y5 + Fry2
4( ) + A2/A1( )My4 + δy4,

y6′ � y 7( ),
y7′ � − Pr y1y7 +Nby7y9 +Nty2

7( )( )/ A3/A4 + 4/3( )Rd( ),
y8′ � y 9( ),
y9′ � − Scy1y9 + Nt/Nb( )y 7( )′ − σ1Sc 1 + δ1ym

6( )y8exp −E/ 1 + δ1y6( )( )((
(19)

The B.Cs are as follows [55]:

y1 0( ) � 0, y2 0( ) − αy3 0( ) � 0, y4 0( ) − 1 � 0, y6 0( ) − 1

� 0, y8 0( ) − 1 � 0, y2 ∞( ) � 0, y6 ∞( ) � 0, y4 ∞( )
� 0, y8 ∞( ) � 0. (20)

The two important steps of ANN are shown in Figure 3. During the
process, after providing the input, the weights are trained for tk
inputs, and the required result is obtained as an output.
Mathematically, we have [64, 65]

uj � ∑k
j�1

wjtj − βj. (21)

The results for the state variables can be obtained by introducing the
sigmoid function χ(η) � 1

1+e−η. The obtained output is given by [66]

χ uj( ) � 1

1 + e− wjtj−βj( ). (22)

3.1 Training of the weights

This section explains how the neural network is trained to find
the output. The system given in Eq. 19, 20 is solved with the bvp4c,
which is a well-known MATLAB built-in code for solving boundary
value problems. The infinity is set at η � 8 with a tolerance of e−6 and
a step size of 0.001. The neural network takes this solution as an
input and produces an optimized solution by minimizing the fitness
function. The result is discussed with ms, absolute error, error
histogram, and regression line [67, 68].

MSE � 1
j
∑j
i�1

zi t( ) − ẑi t( )( )2, (23)

1 − R2 � ∑j
i�1 ẑi t( ) − �xi t( )( )2∑j
i�1 zi t( ) − ẑi t( )( )2 , (24)

and

AE � |zi t( ) − ẑi t( )|, j � 1, 2, . . . , k. (25)

4 Results and discussions

The impact of the silicon oil-based HNF (TiO2+Ag) flow past a
rotating disk using the Buongiorno modified model has been analyzed
with the trained AI method. In this section, the results are given under
the influence of various pertinent parameters. For simplicity, we choose
0≤M≤ 3, Pr � 6.2, 0≤ δ ≤ 1, 0≤Rd≤ 3, 0≤Nt≤ 1, 0≤Nb≤ 2, 0≤
E≤ 2, ~δ � 1, 0≤Fr≤ 5, Sc � 1, 0≤ α≤ 1, and n � 3.

The effect of various parameters on the radial and axial velocities
is described in Figure 4A–H. The larger values of the velocity slip
parameter α increase both the axial and the radial velocities, as
depicted in Figures 4A,B. The variations are very prominent for the
HNFs, as compared to the NFs. The HNFs and the NFs behave the
same after η � 3. Physically, the greater values of α shift the fluid
toward the rotating wall of the disk, which further enhances the fluid
flow in both the axial and radial directions. In addition, α is directly
related to the spinning factor, which plays a key role in the increasing
trends of the fluid flow. The porosity parameter δ impact is displayed
in Figures 4C,D. The larger values of δ decrease both the axial and
radial velocities. The larger values of δ increase the kinematic
viscosity and further decline the rotational effects, which, as a
result, causes a decline in both profiles. In addition, the larger
values of δ decrease the rotational velocity of the surface that
plays a key role in the decline of the velocity profiles. These
variations are much faster for HNFs than those for NFs. The
impact of M and the DF parameter Fr is displayed in
Figure 4E–H. Both profiles decline with the increasing values of
these parameters. These variations are due to the permeability
parameter that acts oppositely to the larger trends of Fr. On the
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other hand, M produces the Lorentz force that acts in the opposite
direction to the fluid flow and, as a result, decreases the velocity
profile, as shown in Figures 4G,H. WhenM increases, the rotational
velocity of the disk declines, which further declines the axial and
radial velocities.

The absolute errors (AEs) to minimize the L2−norm are
displayed for all the variations in the above-mentioned
parameters in Figure 5A–H. The axial velocity AEs lie in the
range 10−4 to 10−8, while the radial velocity lies in the range 10−3

to 10−9. The best and minimum occur in both variations for α � 0.9

FIGURE 6
Error histogram for the impact of (A) α on f′, (B) α on g, (C) δ on f′, (D) δ on g, (E) Fr on f′, (F) Fr on g, (G) M on f′, and (H) M on g.
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at η � 2.4 and η � 2.2, respectively, as depicted in Figure 5A,B. The
AEs for δ and Fr are displayed in Figure 5C–F. The range for both
variations is 10−4 to 10−9. The minimum threshold for both
parameters is obtained at δ � 0.5 and Fr � 3.0. The axial velocity
AE varies in the range of 10−4 to 10−10 for M, while the radial
velocity ranges from 10−4 to 10−9. The minimum value achieved for
the radial and axial velocities was at M � 0.5 and M � 1,
respectively.The error histograms for each parameter with its
varying values are presented in 6(a)–(h). The bar graphs are
presented with the errors vs the instances with the minimum
bins at which the required threshold is achieved. The zero error
occurs at the midpoint of the range −3.8e − 6-2.52e − 6 for the radial
velocity, while the same result occurs at 2.3e − 6 for the axial velocity
with the varying values of α. The zero error for 4,000 and
8,000 instances is depicted in Figures 6C,D at errors −3.3e − 6
and −6.9e − 6 for the radial and axial velocities with varying
values of δ, respectively. The Darcy’s parameter impact on the
radial velocity shows zero error at the midpoint of

−7.6e − 6-5.09e − 6 for 3,500 instances. This result is achieved at
20 bins, as shown in Figure 6E. This result for the axial velocity with
the varying values of Fr is obtained at −3.19e − 6 with
6,000 instances, as depicted in Figure 6F. The effect of M on
both the velocities is displayed through error histograms in
Figure 6G,H. For the radial velocity, the zero error occurs at the
midpoint of −1.2e −5-6.19e −6, while for the axial velocity, the same
result is obtained at −4.7e −6 with greater M.

The effect of α for both radial and axial velocities is displayed
through the regression lines in Figure 7A–D. The regression lines are
used for the fitted data that are displayed with a linear line. Here, the
target is taken at the x-axis, while the output is considered at the axis
perpendicular to it. The first three horizontal boxes in row one from left
to right show the fitted data for theNFs with α � 0.1, 0.5, 0.9. The value
of R in each case is 1, which shows that 100% of the data is fitted. The
same results are observed for the HNFs in row two, where R � 1, as
shown in Figure 7A, which is the collective data fitting for the radial and
axial velocities with varying values of α. The regression lines for the

FIGURE 7
Regression lines for (A) α on f′ and g, (B) δ on f′ and g, (C) Fr on f′ and g, and (D) M on f′ and g.
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porosity parameter δ, Darcy’s parameter Fr, and magnetic parameter
M are displayed in Figure 7B–D. The results show that 100% data are
fitted for the total data considered, as shown with hollow circles. The
output range for the HNFs is smaller than the NF range. The fitted data
are displayed with various colors (blue, red, green, and black) displayed
with circles on the linear line. The minimum output is obtained for the
magnetic parameter M for the HNFs.

The validations for the total performance of each parameter are
presented in Figure 8A–D. These figures demonstrate the mean
square error (ms) vs the total iterations performed. Four different
curves are used for the trained, validated, tested, and best data. The
performance for α and δ is displayed in Figure 8A,B. Themean square
error at the best point occurs near 10−10 displayed with the green
circle. This point is achieved at 3.024e − 10 and 3.2758e − 10 for both
α and δ, respectively. In addition, the performance for Fr and M is
displayed in Figure 8C,D. The best performance is achieved at
9.2472e − 11 and 1.4931e − 09 for these two parameters, respectively.

The impact of Nb, Nt, Rd, and E is analyzed on the thermal
and concentration profiles in Figure 9A–F. The varying values of
Nb on the thermal and concentration profiles are described in
Figure 9A,B. The increasing values ofNb increase both profiles and
vary in the range of 0–1. Physically, when Nb increases, the
kinematic viscosity decreases and the ambient concentration
jumps, which, as a result, increases the number of suspended
particles. When these particles increase, the interaction between
them also becomes faster and more random, which, as a result,
enhances energy transfer from one point to another. These
interactions play a key role in energy transfer, either by
convection or conduction. The thermophoresis parameter effect
shows an opposite trend for both profiles, as shown in Figure 9C,D.
The larger values of Nt also increase the temperature difference
and reduce the kinematic viscosity. The larger the Nt, the higher
the difference in temperatures, and the greater the thermal
profile, as depicted in Figure 9C. The concentration profile

FIGURE 8
Validation performance for (A) α on f′ and g, (B) δ on f′ and g, (C) Fr on f′ and g, and (D) M on f′ and g.
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falls due to increase in the density of the fluid with larger values of
Nt. Furthermore, the diffusion coefficient increases with larger
values of Nt, but this phenomenon occurs at a very small scale
that cannot interrupt the profile mechanism, as displayed in
Figure 9D. Both the radiation parameter and the energy

activation parameter enhance the thermal and concentration
profiles, respectively, as shown in Figure 9E,F. The larger
values of Rd increase the inner temperature due to an increase
in the ambient temperature. The activation energy also enhances
the concentration profile, as shown in Figure 9D.

FIGURE 9
Effect of (A) Nb on θ, (B) Nb on ϕ, (C) Nt on θ, (D) Nt on ϕ, (E) Rd on θ, and (F) E on ϕ.
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The corresponding mean square error for the varying values
ofNb,Nt, Rd, and E is depicted in Figure 10A–F. It is clear from
Figure 10A,B that when Nb varies from 0.5 to 1.5, the
corresponding L−norm achieves its minimum values of 10−8

and 10−9 for θ and ϕ, respectively. A very similar trend for the

errors for their minimal values occurs in Figure 10C–F for the
remaining parameters. The ms for the activation of the energy
parameter E is approaching 10−10. This shows the total
performance of the impact of E on the concentration profile
with its increasing values, as depicted in Figure 10F.

FIGURE 10
Absolute error for (A) Nb on θ, (B) Nb on ϕ, (C) Nt on θ, (D) Nt on ϕ, (E) Rd on θ, and (F) E on ϕ.
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The error histograms for all these parameters (Nb,Nt, Rd, E)
are displayed in Figure 11A–F. The zero error for Nb of θ occurs at
−7.6e −6, while for the concentration profile, it occurs in the range
−1.5e −5 –6.85e −6. All these results are obtained at 20 bins by using
6,000 and 2000 instances, respectively. The zero error for Nt by
computing the thermal and concentration profiles falls in the range
−7.1e − 6 –9.7e −6 and −2.4e −5 –2.82e −5, respectively, as

presented in Figure 11C,D. In addition, for the impact of the
radiation and the activation parameters, the zero errors are
obtained at 5.08e − 6 and in the range of −2.1e −5 –2.97e −5,
respectively.

The regression lines for the impact of the parameters
(Nb,Nt, Rd, E) are dispayed in Figure 12A–D. The results for
the increasing trends are presented for the NFs and HNFs

FIGURE 11
Error histogram for the effect of (A) Nb on θ, (B) Nb on ϕ, (C) Nt on θ, (D) Nt on ϕ, (E) Rd on θ, and (F) E on ϕ.
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separately in two rows. The output is presented on the y-axis, while
the target points are chosen along the x-axis. In each case, the
regression shows R � 1, which proves that 100% of the data is used
in the fitting line. The minimum output for all the cases ranges up to
10−18, which proves the accuracy of the performed analysis. The
fitted data are displayed in various colors (red, blue, green,
and black).

The validation performance for the impacts ofNb,Nt,Rd, and E is
displayed in Figure 13A–D. In Figure 13A,B, the performance forNb on
θ andNt on ϕ is presented. The best and minimal mean square errors
are achieved at 2.1447e − 10 and 3.2913e − 9 for the parameters,
respectively, using 1,000 epochs. Similarly, for Rd and E, the same
results for the mean square error are achieved at 4.638e − 10 and
4.1829e − 9, respectively.

4.1 Validation of results

The current approach is validated by considering the numerical
values of Nusselt number and skin friction for Pr � 6.2. These values
show a good agreementwith the available literature, as depicted inTable 3.

5 Conclusions

This article covers the neural network applications of the silicon-oil
based HNF flow past a spinning disk using the Buongiorno model
modifications. The impacts of various pertinent parameters for the
thermal, concentration, and the velocity profiles are briefly described.
We conclude the following:

FIGURE 12
Regression line for the effect of (A) Nb on θ, (B) Nt on ϕ, (C) Rd on θ, and (D) E on ϕ.

TABLE 3 Numerical values of f9(0) and −θ9(0) when Pr � 6.2.

Yin et al[69] Acharya et al[70] Malik et al[55] Present

f′(0) 0.51022941 0.5102295 0.510229563 0.51022956325

−θ′(0) 0.93387285 0.9338728 0.933872847 0.93387284732
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• The thermal profiles of nano and HNF increase with
increasing values of Rd, Nt, M, and Nb.

• For both mono and hybrid situations, both velocity profiles
increased as the input of porosity δ and velocity slip α

parameters increased, while diminishing as M and DF, and
Fr parameters increased.

• With higherNt and E inputs, the concentration curves get better.
Conversely, concentration profiles show declining tendencies when
the magnetic and Brownianmotion parameters (M,Nb) increase.

• The pace at which heat is transferred by HNF is faster than
that of NF.

• The regression graphs depict that 100% of the data is used
by the ANN.

• The mean square error, error histogram, and performance
validation depict its minimal values: e − 9, −7.1e − 6, and
e − 11, respectively, for 1,000 epochs.

• For validity and stability of this work, the results achieved are
compared with the available literature, where the proposed
methodology shows good agreement. These results are tabulated
for Nusselt number and skin friction, as shown in Table 3.
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