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Hydrophobic interactions are widely applied in diverse fields, yet the effect of the
degree of hydrophobicity on the interactions between hydrophobic surfaces is
still unaddressed, limiting the development of functional hydrophobic surfaces. In
this study, the interfacial interactions and configuration of hydrophobic chains on
surfaces with ranging hydrophobicity are surveyed by surface forces apparatus.
Our findings revealed that with partial hydrophobicity, a long-range electrical
double-layer repulsive force pertains between surfaces, while between fully
hydrophobized surfaces, only steric hindrance is observed, and the
hydrophobic chains maintain configuration even after long time compression.
Our findings provide useful implications for understanding hydrophobic
interactions.
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Introduction

Hydrophobic interactions widely exist in biological systems, such as in the
formation of bilayer membrane lipids [1] and the folding of proteins, [2], as well as
in engineering processes [3–5], including the bubble attachment in mineral flotation
[6], bubble directional transport [7], and oil–water separation [3, 8–10]. Therefore, it is
of vital significance to understand the interfacial interaction mechanism between
hydrophobic surfaces in aqueous media, which could provide useful implications in
understanding natural and engineering behavior and in guiding the development of
hydrophobic surfaces with designed wettability.

The range and strength of hydrophobic interactions are in the scale of nanometer and
tens of nanonewton, respectively; hence, its measurement requires a high resolution of both
force and distance. Previously, the hydrophobic interactions between bubbles have been
successfully measured by atomic force microscopy (AFM) coupled with reflection
interference contrast microscopy [11]. The force measurement with high precision was
achieved by AFM, while the distance measurement with a subnanometer resolution was
enabled by the light interference between bubble–liquid and liquid–bubble interfaces.
However, such techniques cannot be extended to the solid–solid interface measurement
because most solid substrates and cantilevers are opaque. Surface forces apparatus (SFA) is
employed to use cleaved mica as a solid substrate, of which the back is coated by a thin silver
film [12, 13]. As such, the light reference is enabled between the silver–mica andmica–silver
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interfaces, and then, the distance between mica surfaces can be
precisely measured [14]. A high-precision force measurement,
i.e., 10–8 N, can also be realized by SFA via spring deflection. By
using such a technique, the force measurement between
hydrophobic surfaces was performed [15]. The mica surface was
hydrophobized by vacuum deposition of octadecyltrichlorosilane
(OTS), which is one of the most common reactive silanes in surface
hydrophobilization. In a previous study, the interactions between
two hydrophobic surfaces during approaching were analyzed, and it
was found that only the force curves between relatively short
deposition times could be described by the
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [16]. For
surfaces with longer deposition times, the significant role of
hydrophobic surfaces and steric interactions deviates the
force–distance curve from the DLVO model. Such findings
provide important insights in understanding the approaching
process between hydrophobic solid surfaces. However, the
distance range of the electrical double-layer and steric hindrance
and the configuration rearrangement of the hydrophobic chains
under external force are still unclear, which is also vital for affecting
the repulsion, attachment, and separation of hydrophobic surfaces.

In this study, the detailed interactions between surfaces with
wettability ranging between hydrophilic, partially hydrophobic,
and hydrophobic surfaces are investigated by the SFA
technique. OTS was chosen as the hydrophobizing agent due
to the wide application of alkane in solid surface
hydrophobilization [17], emulsion stabilization [18, 19], and
its existence in membrane lipids [20]. By using the solution
deposition method in ethanol, the deposition density of OTS on
mica was modulated by controlling the deposition time. The
distance range of electrical double-layer and steric hindrance
was carefully analyzed, the adhesion force and film thickness
after compression were measured, and then, the configuration
of the alkyl chain of OTS on mica surfaces was proposed. Our
findings unravel detailed information on the interaction
between alkyl chain-grafted surfaces with varied wettability,
which can provide fundamental insights into various
engineering and biological processes with hydrophobic
interactions involved.

Materials and methods

Materials

Octadecyltrichlorosilane (OTS, 95%), absolute ethanol, and
sodium chloride (anhydrous, 99.999%) were purchased from
Shanghai Aladdin Bio-Chem Technology Co., Ltd. Deionized
(DI) water was used for all sample preparation and rinsing. An
atomically smooth mica sheet was cleaved from muscovite ruby
mica and used freshly [21, 22].

OTS deposition on the mica surface
The cleaved mica surfaces for determining the AFM measurement

were treated by plasma for 10 min for hydroxylation. Then, the treated
mica sheets were soaked in the ethanol solution with 3 vol% of OTS
(Figure 1A) for 4, 8, and 12 h, respectively. Subsequently, the surface
was washed with ethanol and dried by nitrogen flush.

The preparation of the mica surface used for determining SFA
measurements was carried out herein. Mica sheets of a thickness of
1–5 μmwere freshly cleaved and attached on a thick mica substrate, and
then, a silver layer with a thickness of ~45–55 nm was coated on their
back side by magnetron sputtering. Subsequently, the back-silvered mica
sheetwas attached to a silica diskwith a radius R of ~2 cm.Then, themica
surface was coated by OTS by following the procedure described above.

Characterizations

The grafting density of OTS on mica surfaces was surveyed by
Fourier-transform infrared (FTIR) spectrometry (Thermo Scientific,
Nicolet iS10). Bare mica was chosen as the background reference.
The surface morphology was characterized by the AFM technique
(Bruker, Dimension ICON). The force measurement was performed
using the SFA 2000 system (SurForce, LLC). In the force
measurement, two bare mica surfaces in a dry state were first
brought together and then separated vertically using an electric
motor. The zero-separation distance was then determined by the
visualization of the light interference fringes of the opposed mica
surfaces by multiple-beam interferometry by using the interference

FIGURE 1
(A) Illustrative grafting procedure of OTS on the mica surface. (B) Schematic setup of surface forces apparatus (SFA). The targeted OTS coated mica
was glued on the silica disk. The aqueous solutionwas injected into the chamber. During the forcemeasurement, the opposedOTS-coated surfaceswere
brought together until contact and then separated to measure the adhesion force (Fad).
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fringes of equal chromatic order (FECO) [16, 23, 24]. Then, the force
measurement between the OTS-coated surfaces was determined by pre-
filling the SFA chamber with 1 mM of the NaCl solution (Figure 1B).
The opposed coated surfaces were driven toward each other, brought
into contact for 30 min, and then separated. Then, the force–distance
profile between the surfaces was recorded. Surface interactions between
bare mica in 1 mM of NaCl solution were also measured for
comparison. The water contact angle measurement was performed
using a contact angle goniometer (LAUDA Scientific) with the model
number OSA 100. The water droplet size was ~15 μm.

Results and discussion

The illustrative preparation procedure of OTS coating on the mica
surface is shown in Figure 1A. In the anhydrous ethanol solution, the Si-
Cl group of OTS undergoes hydrolysis in the presence of trace moisture
in the air and then grafts on the hydroxyl group on mica [25]. To
increase the hydroxyl group density, the mica surfaces were treated with
plasma before the OTS coating [26]. The grafting density of OTS was
controlled by the soaking time (4h, 8h, and 12 h).

The coverage of OTS on the mica surface is characterized by
AFM. As shown in Figure 2A, the bare mica surface is atomically
smooth, and the surface shows superhydrophilicity with a water
contact angle of less than 5°. After 4 h of deposition, the
nanoaggregate appears on the mica surface (Figure 2B),
suggesting the successful deposition of OTS on the mica surface.
The water contact angle of ~63.0° confirms the existence of OTS and
demonstrates that the surface, namely, OTS-4h, is partially
hydrophobic. After 8 h of deposition, the AFM image shows

almost full coverage (Figure 2C), and the contact angle reaches
~92.0° [27]. With 12 h of deposition, the grafting density of OTS on
mica further increases and shows a negligible ungrafted area
(Figure 2D), with the contact angle gradually increasing to ~97.9°.

To further validate the deduction on the surface grafting density
of OTS on mica surfaces, the Fourier-transform infrared (FTIR)
spectra of the specimen were acquired. The bare mica surface was
chosen as the background reference, which was deducted during the
FTIR measurement of specimens. The peaks at the wavenumber
ranging from ~500 to ~1,100 cm−1 should be ascribed to the mica
substrate [28], which were normalized to observe the transmittance
intensity of the peaks attributed to OTS. As shown in Figure 3B, the
characteristic peaks at 2,849.8 and 2,917.8 cm−1 belong to OTS [29],
suggesting its successful grafting on all the specimens. However, the
intensity of the peaks at these regions of OTS-4h is evidently lower,
while the intensities of those of OTS-8h and OTS-12 h are quite
similar to each other, suggesting the almost graft saturation of OTS
after 8 h of coating. As such, comprehensively combining the results
of AFM imaging, the water contact angle measurement, and FTIR
spectra, the deposition behavior of the OTS on mica with increasing
deposition time was proposed, as shown in Figure 3C. At a
deposition time of ~4 h, the grafting of OTS on the mica
substrate is sparse, with plenty of space for the subsequent
deposition, which was consistent with the AFM image
(Figure 2B) showing sparse aggregates were observed on the mica
surface. Because ethanol is a benign solvent for OTS, the illustrative
configuration of the alkyl chain in OTS is unfolded. When the
deposition increases to ~8 h, the grafting density of OTS
dramatically increases, and there is barely any space for further
grafting on the mica surface, which is supported by the much higher

FIGURE 2
Atomic force microscopy (AFM) images of (A) bare mica and OTS-coated mica surfaces with a deposition time of (B) 4 h, (C) 8 h, and (D) 12 h.
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and almost full coverage of aggregates on the mica shown in
Figure 2C. As such, by increasing the deposition time to ~12 h,
the coverage of OTS on the mica surface increases only slightly and
the superfluous OTS on the surface can only weakly associate on the
mica surface via hydrophobic interactions between the alkyl chains,
most of which should be washed away after rinsing with ethanol.
Therefore, it can be proposed that OTS-4h is partially hydrophobic,
OTS-8h is almost fully hydrophobic, and OTS-12 h is fully
hydrophobic.

The interfacial interactions between the surfaces with
different hydrophobicity levels are then carefully surveyed by
the SFA technique. The two opposed surfaces are first driven
toward each other. When the surfaces are close, a repulsive force
is detected. At this point, the distance is denoted as 2DA, which is
double the thickness of the absorbed film or the grafted coating
on the surface. Upon further approaching, such films could be
evicted or compressed. When the distance between the opposed
surfaces does not change with increasing compressive force, the
thickness of the “hardwall,” 2DT, is measured. Such thickness
should correspond to the rigid, strongly absorbed/chemically
grafted layer. The surfaces are further kept in contact for
30 min and then driven apart from each other. During the
separation, the adhesive force is measured and then
normalized as |Fad/R|. The specific salt concentration utilized
in this study was selected as 1 mM NaCl, the concentration of
which could fix the Debye length to ~10 nm to stabilize the
electric double-layer (EDL) repulsion in an aqueous system for
hydrophobic force measurement [30, 31]. The reason is explained
as follows: 1) in a background solution with a low NaCl
concentration, the amount of ions dissociated from the surface

and dissolved in the water, although low, is uncontrollable and
will significantly impact the Debye length, resulting in the Debye
length to be uncertain for the tested system [16]; 2) in a
background solution with a high NaCl concentration, although
the Debye length can be determined, the high NaCl concentration
can dramatically weaken the hydrophobic interaction, thus
negatively affecting the investigation on the impact of surface
hydrophobicity on the hydrophobic interaction-induced
nanomechanics [32].

For bare mica, the repulsive force was detected during the
approach and DA is measured as ~10 nm. The repulsion at this
range should be ascribed to the weakly absorbed electrical double-
layer and hydration repulsion at the surface based on previous
studies (Figure 4A) [30, 33]. Upon the compression, the weakly
absorbed electric double-layer is evicted, and only the strongly
absorbed hydrated counterions stay on the surface, of which the
thickness, DT, is measured as ~2.3 nm. During the separation,
because of the absorbed hydration layer on both mica surfaces, a
negligible adhesive force is detected. Such an observation is
consistent with previous studies [33]. For OTS-4h, as shown in
Figure 4B, DA is also measured as ~10 nm, and DT is measured as
~2.5 nm. Based on the topological AFM image in combination
with the FTIR spectra, a low density of OTS was grafted on the
mica surface, leading to a relatively increased WCA to ~63°. The
low OTS graft density suggests a large average distance between
grafted sites of OTS chains; in light of this, the large space around
each chain allows the chains to adopt a mushroom-like
configuration to collapse on the surface, as illustrated in the
inset of Figure 4B. Therefore, in this situation, the collapsed OTS
chain grafted on the mica surface could only slightly increase the

FIGURE 3
(A) Fourier-transform infrared (FTIR) spectra of OTS-coated mica surfaces with a deposition time of 4, 8, and 12 h. (B) Selectively enlarged region in
panel a showing the spectra with the wavenumber ranging from 2,500 to 4,000 cm−1. (C) Illustrative deposition process of OTS on themica surface in the
ethanol solution.
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hardwall thickness DT, and then, the measured DA should be still
attributed to the weakly absorbed electrical double-layer, which is
squeezed away during approaching and leaves the lean OTS on
the mica surface to be measured as DT. During the separation,
weak adhesion is measured as ~2.8 mN/m. This adhesive force
should originate from the attractive hydrophobic force between
the opposed OTS-modified surfaces, and the relatively low value
should be due to the low surface coverage of OTS. As to OTS-8h,
DA is similarly measured as ~10 nm, yet DT shows a distinct
difference compared with the previous specimens, which
significantly increases to ~7.2 nm. Combining with the AFM
images that show closely packed moieties and a significantly
increased WCA of ~92.0°, in this case, the surface should be
almost fully covered by OTS, and thus, the measured DA,
although coinciding with the previous specimens, should be
ascribed to the steric hindrance of the OTS chains. In
addition, the slightly decreased thickness under compression,
i.e., DT, should be due to the segment rearrangement of the
alkyl chain under eternal force. Moreover, because of such a
chain rearrangement, the opposed OTS surfaces could contact
each other better. Therefore, due to the dramatically higher OTS
coverage, although relatively high roughness is observed in the
AFM image (Figure 2C), strong adhesion is still measured
(~7.5 mN/m). With further increasing the deposition time to
12 h, the value of DA is still close to the previous measurement
(Figure 4D), suggesting that the thickness of the OTS grafting is
similar to OTS-8h, which is in accordance with the previous
assumption. Contrastingly, DT evidently increases to ~8.6 nm.

Such an observation indicates that the OTS film on OTS-12 h is
more rigid than OTS-8h, which can be ascribed to the absorption
of the OTS chain on the top of the grafted OTS molecules. Slightly
increased WCA and enhanced FTIR characteristic peaks
corroborated more OTS chains deposited on the surface.
Synergistically, due to the more compact OTS on the opposed
surfaces, the adhesive force further increases to ~8.5 mN/m. From
the discussion above, it can be suggested that the adhesion force is
highly correlated with the OTS coverage, while DT could be used
to evaluate the coverage of OTS. Thus, the adhesion force as a

FIGURE 4
SFA force–distance curves between surfaces of (A) bare mica, (B) OTS-4h, (C) OTS-8h, and (D) OTS-12 h. The solid circle lines indicate the
approaching force–distance curve, and the open circle lines represent the curve during separation.DA is the thickness of the absorbed or grafted film on
themica surface observed during the approach.DT is denoted as the thickness of the hardwall, which is the thickness of the film on themica surface upon
compression. |Fad/R| is the normalized adhesion force between surfaces. The insets show the absorption of hydrated ions and the configuration of
OTS chains on the mica surface with the range of DA denoted.

FIGURE 5
Normalized adhesion force as a function of the hardwall
thickness of OTS.
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function of DT is shown in Figure 5 to better demonstrate the
dependence of the adhesion force on DT.

As such, with the high-precision measurement of thickness
and adhesive force, the interaction mechanism and
configuration rearrangement of the alkyl chain on surfaces
with varying wettability are comprehensively analyzed and
unraveled, providing fundamental insights into the
understanding of the interfacial interactions between
hydrophobic surfaces.

Conclusion

The high-precision measurement of the interfacial
interaction force and distance between surfaces with high
hydrophilicity, partial hydrophobicity, and high
hydrophobicity has been performed by the SFA technique. It
is unraveled that 4 h of OTS coating only induces a low grafting
density of OTS on mica. In this case, there is still strong electric
double-layer repulsion upon approach, the thickness of OTS
coating on the surface in water is quite low, and the OTS
molecule should be lean on the mica surface. With 8 h of OTS
deposition, the repulsion measured during the approach should
mainly arise from steric hindrance. The OTS molecule should be
densely grafted on the surface and show strong adhesive
hydrophobic interactions. With 12 h of OTS deposition,
although the hydrophobicity of the surface increases only
slightly, the more compact OTS molecules induce evidently
increased hydrophobic interaction. In biological systems,
hydrophobic domains widely exist in biological molecules, e.g.,
the alkyl chain of the lipid molecule in the membrane and the
nonpolar (hydrophobic) side chains in protein; thus, there are
hydrophobic interactions between them. The hydrophobic
interactions dominantly drive the assembly of the lipid
membrane, the protein folding, and the anchor of functional
protein on the lipid membrane. Understanding the fundamentals
of hydrophobic interactions can provide insights into the
assembly behavior of those biological molecules containing
hydrophobic domains. Therefore, this study not only provides
useful insights into the understanding of the biological behavior
of tissues, such as the lipid membrane interaction and protein
folding, but also in designing advanced functional materials with
tunable hydrophobicity.
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