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Spin glass coherence lengths can be extracted from experiment and from
numerical simulations. They encompasses the correlated region, and their
growth in time makes them a useful tool for exploration of spin glass
dynamics. Because they play the role of a fundamental length scale, they
control the transition from the reversible to the chaotic state. This review
explores their use for spin glass properties, ranging from scaling laws to
rejuvenation and memory.
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1 Introduction

The dynamical processes found in spin glasses mimic those from a wide variety of
physical systems, not limited to glass formers, polymers, granular materials, phase
separation in the early Universe, and the social sciences. Because their dynamical
properties can be measured directly, they provide a window into the behavior of far-
from-equilibrium systems. This review will explore the spin glass coherence length, ξ(t, tw;
H), its definition, extraction from experiment and simulations, and applications. Here, tw is
the age of the spin glass system before the measurement time, t begins, andH is the magnetic
field. An inherent advantage of the use of ξ(t, tw;H) to describe dynamical properties is that
the spin glass transition temperature, Tg is implicit. A precise value of Tg is not required even
for explorations close to Tg.

The first explicit experimental procedure for extraction of the spin glass was proposed
and demonstrated by Joh et al. [1]. They noted that the relevant free energy barrier energy
change from imposition of a magnetic fieldH was given by what they termed the “Zeeman”
energy, EZ where,

EZ � NsχFCH
2 . (1)

Here, Ns is the number of spins in a volume subtended by ξ(t, tw; H), and χFC is the field-
cooled susceptibility per spin. They tookNs � (4/3)π[ξ(t, tw;H)]3 whereas, subsequently, a
value based on the structure of the four spin coherence length was introduced [2],

Ns � ξ t, tw;H( )[ ]D− θ/2( ) (2)
where θ is the replicon exponent [3].

The Sherrington-Kirpatrick (SK) infinite range exchange Hamiltonian [4] for spin
glasses exhibits states within an ultrametric geometry [5] which has a pictorial equivalent
[6] of an hierarchical organization. Free energy barriers separate states with occupancies
that increase exponentially with diminishing overlap. The Parisi solution [7, 8] of the SK
model are “pure states” separated by infinite barriers. This geometry was shown by analogy
to replicate dynamical transitions between states with finite free energy barriers [9]. Putting
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all these factors together leads to an inflection point in the time
dependence of the magnetization, and hence a maximum in the
logarithmic derivative of the time dependent magnetization, known
as S (t, tw; H), the relaxation function:

S t, tw;H( ) � dM t, tw;H( )
d ln t

. (3)

Experimentally, the magnetization is measured at constant
temperature T after an aging time tw. Empirically, the maximum
of S (t, tw; H) occurs at a time t ≈ tw [10] associated with the largest
free energy barrier generated by the growth of the spin glass
coherence length ξ(t, tw; H) where H is the magnetic field.

In a thermoremanent magnetization (TRM) experiment, H
is applied in the paramagnetic state, kept constant as the spin
glass is cooled to a temperature T below the condensation
temperature Tg, and the magnetization is measured after the
time tw when H is changed (most often, cut to zero). In a zero-
field cooled (ZFC) experiment, H = 0 initially as the spin glass is
cooled to T, and the magnetization measured upon application
of H after the time tw. It is important to understand that the free
energy barriers are not “chemical” in their origin. Rather, they
are created by larger and larger numbers of correlated spins, the
volume containing Ns subtended by ξ(t, tw; H) according
to Eq. 2.

Thus, the maximum free energy barrier height, Δmax is
associated with tw according to an Arrhenius law,

Δmax ≈ kBT ln
tw
τ0

[ ] (4)

where τ0 is an exchange time usually taken as Z/kBTg. From Eq. 1, we
can define an “effective” waiting time teffw in the presence of a
magnetic field as,

Δmax −NsχFCH
2 � kBT ln teffw − kBT ln τ0 , (5)

where teffw is taken as the time when S (t, tw;H) reaches its peak in the
absence/presence of H for TRM/ZFC experiments, respectively.

Combining Eqs 1, 5 enables the only means for extraction of the
spin glass coherence length from experiment. In order to keep this
value explicit, we shall label it ξZeeman.

Mathematical simulations from the Janus Collaboration [11],
using a special purpose computer, can address the value of ξ directly.
In temperature cycling experiments that will be addressed below,
they project (at least) two different coherence lengths [12].

The first is ξmicro (tw, T), the microscopic coherence length
computed directly from the replicon propagator [13, 14] in Eq. 6

GR r, t, T( ) � 1
V

∑
x

〈sx,tsx+r,t〉T − 〈sx,t〉T〈sx+r,t〉T( )2, (6)

where for Ising spins, sx = ±1. The replicon correlator GR decays to
zero in the long-distance limit. One therefore computes ξmicro (tw,H)
by exploiting the integral estimators [15, 16] in Eqs 7 and 8

Ik t, T( ) � ∫∞

0
d r rkG r, t;T( ), (7)

and

ξk,k+1 t, T( ) � Ik+1 t, T( )
Ik t, T( ) . (8)

The ξ1,2 (tw, T) is designated as the microscopic coherence length
ξmicro (tw, T).

Physically [12], “ξmicro (tw, T) is the size of the (glassy) domains
within the sample (it is the largest length scale at which we can
regard the system as ordered at time tw.”

Another length scale is introduced in simulations [12] when
comparing the same system at two times t1 and t2 (t1 < t2): ζ(t1, t2).
It “characterizes the long-distance decay of the pair-correlation
function corresponding to the set of spins taking opposite signs at
times t1 and t2. Physically, ζ(t1, t2) is the typical size of regions
where coherent rearrangements have occurred between times t1
and t2 . . . because of the ongoing formation of a new spin order at
time t2. For fixed t1, ζ(t1, t2) grows with t2 starting from ζ(t1, t2 =
t1) = 0.”

At a given temperature, ξZeeman (tw, T) “fairly closely follows
the behavior of the microscopic length ξmicro (tw, T)” [12, 17–19]
so that, for all practical purposes, they can be taken equal. For
varying temperature protocols, the scenario is more intricate
because of the presence of temperature chaos at large
temperature changes. The length scales are quantitatively
compared in Figure 5 of [18].

Now that we have defined the relevant length scales, we show in
the next section how they elucidate the dynamical properties of
spin glasses.

2 Physical properties

The first experimental extraction of ξZeeman (tw, T) [1]
compared results from two approaches: power law dynamics

FIGURE 1
A plot of Ns reproduced from [1] for CuMn 6 al.% vs. tw on a log
scale at fixed temperature T = 0.89 Tg = 28 K. The solid curve drawn
through the points is the prediction for power law dynamics [20], while
the dashed curve is the prediction for activated dynamics [21],
with their exchange factor set equal to Tg (i.e., independent of T and t).
As is seen from the two curves, the two fits are equally good.
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[20] vs. activated dynamics [21]. The results are reproduced in
Figure 1. Knowing χFC per spin from other measurements allows
for the extraction of ξZeeman (tw, T) from Eq. 2. For example, from
Figure 1 at tw = 1, 000 s, Ns ≈ 3 × 106 spins. They set
ξ(tw, T) ≈ [Ns(tw, T)]1/3 giving ξ(tw = 1, 000, T = 28 K) =
100 a0, where a0 is the average distance between Mn ions.
Subsequently it was shown [3] that the correct extraction of
ξ(tw, T) is given by [Ns(tw, T)]1/df , where df is the fractal
dimension equal to D − (θ/2), with θ the replicon exponent
[16]. In general, θ ~ 0.3–0.4 so that its omission in Ref. [1]
results in only a small error.

The uses of ξ(tw, T) to describe physical processes provides a
powerful quantitative tool. Pertinent examples are
described below.

2.1 Slowing down of the growth of ξ(tw, T)

The Janus Collaboration utilizes a special purpose-built
computer [16] to examine the dynamics of the Ising spin glass.
They were able to explore the (re-normalized) aging rate [22],

zc T, ξ( ) � T

Tg

d ln tw
d ln ξ

. (9)

The re-normalizing factor T/Tg makes zc (T, ξ) ≈ zc(ξ) [23].
We can rewrite Eq. 9 as Eq. 10,

ln tw � zcTg

T
ln ξ + const (10)

The aging rate, zc, was found to vary substantially from experiment
to experiments, depending upon the temperature and nature of the
spin glass sample. For example, for a bulk polycrystalline sample of
CuMn (6 at%) [1] found zc = 5.917 at a reduced temperature of T/

Tg = 0.89. For a polycrystalline bulk spinel they found zc = 7.576 at a
reduced temperature of T/Tg = 0.72.

In thin films [24] found for 11.7 at. % that zc = 9.62 at reduced
temperatures of T/Tg = 0.43, 0.59, and 0.78. Working at T/Tg = 0.95
[25], found zc = 6.80 in bulk polycrystalline CuMn (5 at%).

The Janus collaboration [22] found a hint to reconcile these
apparently conflicting values from experiment by computing ξ over
a temperature range 0.5 ≤ T/Tg ≤ 1. Figure 2 exhibits their results.

Experimentally, there is a significant confirmation for this
variation of zc. Ref. [22] found that the growth of ξ(tw, T) slows
down as ξ(tw, T) increases. That is, zc increases as ξ(tw, T) increases.

FIGURE 2
Value of theexperimental aging rate for spin glasses Zc(T) = zc (T, ξ)T/Tc, reproduced fromRef. [22]. The straight line is theexperimental valueof zc(T)≈ 9.62
from Ref. [23].

FIGURE 3
ξ(tw, T) as a function of the waiting time tw at a measuring
temperature of T = 28 K (Tg = 31.5 K) reproduced from Ref. [26]. The
staight line is a fit to ln tw = (zcTg/T) ln ξ + const. [recall Eq. 10], yielding
Zc = 12.37 ± 1.07.

Frontiers in Physics frontiersin.org03

He and Orbach 10.3389/fphy.2024.1370278

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1370278


In order to achieve large values of ξ(tw, T) to test this simulation
prediction, we were blessed with a single crystal of CuMn, 6 at%,
grown by Dr. D.L.Schagel, the description of which is contained in
Ref. [26]. By working at 28 K (Tg = 31.5 K) and at long waiting times
(up to 105 s), the value extracted for ξ(tw, T) reached 150 nm, the
largest coherence length ever reported for a glassy system [26]. The
value of ξ(tw, T) vs. tw is plotted in Figure 3, from which zc = 12.37 ±
1.07 can be extracted. This is to be compared with zc ≈ 9.62 extracted
at shorter waiting times for smaller values of ξ(tw, T).

2.2 Scaling law

The coherence length ξ(tw, T) can be measured precisely for spin
glasses both in experiment and through simulations. However, known
analysis methods lead to discrepancies either for large externalmagnetic
fields or close to the transition temperature. This problem can be solved
through introduction of a scaling law that takes into account both the
magnetic field and the time-dependent coherence length. This is
especially important because temperatures T ≈ Tg are most relevant
for the study of glass formers (ξ is restricted to a very narrow window of
variation if one moves away from Tg).

Historically, non-linear magnetization effects, and their scaling
properties in spin glasses, were first introduced by Malozemoff,
Barbara, and Imry [27–29] who introduced the relation for the
singular part of the magnetic susceptibility,

χs � H2/δf tr/H2/ϕ( ), (11)

where f(x) is a constant for x→ 0; f(x) = x−γ for x→∞; ϕ = γδ/(δ − 1)
≡ βδ; and tr is the reduced temperature T/Tg.

This form was used by Lévy and Ogielski [30], and Lévy [31]
who measured the AC non-linear susceptibilities of very dilute
AgMn alloys above and below Tg as a function of frequency,
temperature, and magnetic field. Their critical exponents from
Eq. 11 differed substantially from Monte Carlo simulations for
short-range Ising systems [32]. The discrepancy in their value of
γ was very large, and most probably arose from the lack of an exact
value for Tg in their experiments. This illustrates the value of and
need for a different approach for scaling the non-linear
magnetization of spin glasses in the vicinity of Tg.

The scaling argument goes as follows. Let M(t, tw; H) be the
magnetization per spin. The generalized susceptibilities χ1, χ3, χ5, . . .
are defined through the Taylor expansion,

M H( ) � χ1H + χ3
3!
H3 + χ5

5!
H5 +O H7( ). (12)

We have omitted t and tw for brevity. Our hypothesis is that, in the
non-equilibrium regime for a spin glass close to Tg in the presence of
a small magnetic field,

M t, tw;H( )
� ξ t + tw( )[ ]yH−D × F H ξ t + tw( )[ ]yH , ξ t + tw( )

ξ tw( )( )
(13)

According to full-aging spin-glass dynamics [30] Eq. 13 tells us that
ξ(t + tw)/ξ(tw) will be approximately constant close to the maximum
of the relaxation rate [i.e., peak of S(t)], so that we omit this
dependence. Thus, combining Eqs 12, 13, one can express the

generalized susceptibilities χ1, χ3, χ5, . . . in terms of the spin glass
coherence length ξ(t, tw; H):

χ2n−1 ∝ |ξ tw( )|2nyH−D, (14)

where we have omitted the arguments t and H for convenience, and
Eq. 15

2yH � D − θ �x( )
2

, (15)

with θ(�x) the replicon exponent [3].
The first term ofM(H) in Eq. 12 is χ1, which contains the linear

term as well as the first non-linear scaling term, so that we write,

χ1 �
Ŝ

T
+ a1 T( )
ξθ �x( )/2 (16)

where a1(T) is some unknown constant, hopefully varying smoothly
with temperature.

The free-energy variation per spin in the presence of a magnetic
field can be derived by integrating the magnetic density Eq. 12 with
respect to the magnetic field in Eq. 17,

ΔF � − χ1
2
H2 + χ3

4!
H4 + χ5

6!
H6 +O H8( )[ ]. (17)

Substituting the scaling from Eqs 14, 16, the free energy ΔF can be
written as (we drop the �x dependence of θ for brevity) in Eq. 18,

ΔF � − Ŝ

2T
H2 + a1 T( )

ξθ/2
H2 + a3 T( )ξD−θH4[

+ a5 T( )ξ2D− 3θ/2( )H6 +O H8( )], (18)

where again the an(T) are unknowns and hopefully again smoothly
varying functions of temperature. Using the effective response time,
teffH , to reflect the total free-energy change at magnetic field H with
respect to H → 0+,

ln
teffH

teffH→0+
[ ] � NsΔF

� −b ⎡⎢⎢⎢⎢⎢⎢⎣ Ŝ

2T
+ a1 T( )

ξθ/2
( )ξD− θ/2( )H2⎤⎥⎥⎥⎥⎥⎥⎦

+ a3 T( )ξ2D− 3θ/2( )H4 + a5 T( )ξ3D−2θH6 +O H8( )]
(19)

where the coefficient b is a geometrical factor, and we have absorbed
the kBT term in the an(T) coefficients. The correction term
a1(T)/ξθ(~x)/2 is small compared to Ŝ/T, so it will be neglected in
subsequent expressions. Equation 19 shows that the higher order
terms have the functional form, in Eq. 20,

χ2n−1
H2n

2n( )! � a2n−1 T( )ξ−θ ~x( )/2
ξ2yHH2[ ]n (20)

where, in Eq. 21

2yH � D − θ ~x( )
2

(21)
This leads to the new scaling relation,

ln
teffH

teffH→O+
( ) � Ŝ

T
ξD− θ/2( )H2 + ξ−θ/2G ξD− θ/2( )H2;T( )). (22)
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where the geometrical factor b has been absorbed into the
scaling function G).

Among themany uses of Eq. 22, two can be highlighted. The first
is the issue surrounding the magnetization encompassed in ξZeeman

(tw, T). The original introduction proposal, Ref. [1], envisaged the
reduction of the barrier heights Δ(tw, T) by EZ [Eq. 1] to be caused by
the magnetization induced by the magnetic field within the volume
subtended by the spin glass coherence length ξ(tw, T), viz Eq. 1. A
subsequent treatment [33] associated EZ with the magnetization
associated with the fluctuations of the entire system of N spins,
namely, ∝

��
N

√
. The magnetic field dependence is very different, the

former Ez ∝ H2 while the latter EZ ∝ H.
A comparison of the two was exhibited in Fig. 10 of Ref. [17],

reproduced here as Figure 4. The magnitude of the magnetic fields
contained in Figure 4 are quite large. The authors of Ref. [33] state
that the proportionality to H fails at low magnetic fields. The reader
can judge whether a linear fit to H is obeyed by the left-hand of
Figure 4. The right-hand of Figure 4 is the fit to the scaling law, valid
over the full range ofH, large and small. Again, the reader can judge
which fit is preferable.

The second is the value of the condensation temperature, Tg. In
principle, determination of Tg would require an infinite tw because
ξ(T)→∞when T→ Tg. One expects that any experiment at finite tw
would yield a maximum for the non-linear susceptibility at a
temperature we shall call Tg (tw) because tw is finite.

In principle then, by measuring Tg (tw) for ever larger tw, one
could extrapolate to the true tw →∞ condensation temperature Tg.
If nothing else, measurements at large values of tw on laboratory time
scales could establish an upper bound for Tg.

The non-linear susceptibility χ3 diverges as Eq. 23

χ3 tw → ∞ ;T( ) � χ0
Tg tw → ∞( )

|Tg tw → ∞( ) − T|γ, (23)

where χ0 is a constant independent of temperature, and γ = 6.13 (11)
from Ref. [32]. For finite tW, χ3 (tw, T) only has a maximum as a
function of temperature. A way of arriving at this maximum would
be to fit the data to the function, in Eq. 24

χ3 tw, T( ) � χ0
Tg tw( )

|Tg tw( ) − T|γ, (24)

and then use data points from just two or three temperatures to
extract Tg (tw). For larger and larger tw, one could in principle
extrapolate to the true Tg. This is just a suggestion for a feasible
process for taking laboratory data for finite tw and extrapolating to
find Tg (tw → ∞).

2.3 Temperature chaos

Temperature chaos is one of the outstanding mysteries posed by
spin glasses. It consists of the complete reorganization of the
equilibrium configurations by the slighted change in temperature.”
[34] These are the opening lines of a major paper titled “Temperature
chaos is a non-local effect” and set the stage for this section. Even the
existence of temperature chaos in spin glasses has been questioned
[35–38]. Recent experiments [39] and simulations [40] have shed light
on its existence and nature, but there are many questions that remain.

From this article’s perspective, the opening gambit was the
renormalization group perspective of Bray and Moore [41]. They
introduced a length scale associated with temperature chaos that, for
all practical purposes, can be simplified to,

ℓc T1, T2( ) � a0
T2

T1 − T2
[ ]1/ζ

(25)

where ζ = ds − θ, ds the fractal dimension of the correlated region, and θ
is the replicon exponent. The system is in an equilibrium state at a
temperature T1, after which the temperature is dropped to T2.
Temperature chaos obtains with a length scale ℓc. The reason that
ℓc is important is that, for a coherence length ξ(tw, T) not infinite,
temperature chaos requires a finite temperature drop. The condiction
is, shown in Eq. 26

Temperature chaos: ℓc T1, T2( )≤ ξ tw, T1( ),
Reversible: ℓc T1, T2( )≥ ξ tw, T1( ), (26)

FIGURE 4
(A) Effective waiting times (log scale) derived from field-change experiments on an Ising sample (Fe0.5Mn0.5TiO3) as a function of magnetic field H.
The plot reproduces Figure 10 of Paga et al. [17] (solid lines are linear interpolations to data with the same tw). (B) The same data plotted against H2. The
dotted lines are fits to Eq. 19.
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where by “reversible” we mean that the system “remembers where it
came from” when the temperature is dropped from T1 to T2, i.e., no
temperature chaos.

Though the relationship Eq. 25 is for a spin glass in
equilibrium, realistically, this is never the case. Fortunately,
recently an analysis was provided [40] which is titled
“Temperature chaos is present in off-equilibrium spin-glass
dynamics,” so that we can use the relationship Eq. 25
experimentally. Note that both tw and ΔT = T1 − T2 are
controllable parameters. Hence, we can probe the onset of
temperature chaos by examining spin glass dynamics under
difference conditions, and in particular, can control its onset.

Experiments have probed temperature chaos. The first definitive
paper [42] defined the length scale for chaos as LΔT given by Eq. 27,

LΔT ~ L0|ΔT/J|−1/ζ (27)

equivalent to our Eq. 25 with LΔT ≡ ℓc (T1, T2), and J an exchange
energy in units of temperature. They extract and effective chaos
length scale, Leff from the following plot (their Figure 4, our
Figure 5): Their plot generates 1/ζ = 2.6 or ζ = 0.38. This value is
a factor of nearly 3 below the rather universally accepted value of ζ =
1.1 (see Appendix B in Ref. [39], for a full listing of theoretical values
for ζ).

It is difficult to understand why their value for ζ was so far off
from what is now regarded as the fairly accepted value near unity.
An origin may be lie in their measurement protocol, namely, a zero-
field magnetizationmeasurement where the magnetic field is applied
after cycling to T1. Magnetic field chaos [43, 44] could then be
compounded with temperature chaos, and distort the extraction of a
value for 1/ζ.

In order to circumvent this possibility, Zhai et al. [39] worked
with a protocol where the magnetic field remained constant across
temperature cycling. The idea was to use the field-cooled
magnetization to investigate temperature chaos in spin glasses.
This protocol involved turning on a magnetic field H above the
condensation temperature, Tg, keeping it constant throughout the
temperature cycling protocol.

The specific steps were as follows. The decay of the field cooled
(FC) magnetization, MFC(t, T1, H) is measured at the first
temperature stop T1 after cooling in the current magnetic field
and waiting a time tw1. The decay curve is denoted as the “reference
curve.” Then, temperature cycling is engaged, where one first cools
to temperature T1, waits a time tw1, cools to T2, waits a time tw2, then
rapidly warms back to T1, and measures the decay of the
magnetization MFC(t, T1, H).

In order to observe TC, T1 was fixed and the temperature T2 was
gradually lowered in separate experimental runs to T2 = T1 − ΔT.
Following the temperature drop, if,

x � ℓc T1, T2( )
ξ T1, tw1( ) ≥ 1, (28)

the coherence length will continue to grow, and one remains in the
reversible state. However, in Eq. 29

x � ℓc T1, T2( )
ξ T1, tw1( ) ≤ 1 (29)

temperature chaos sets in and one finds a diminished coherence
length after heating back to temperature T1 (see the discussion below
of memory).

As a consequence, under reversible dynamics, Eq. 28, the decay
curve of MFC(t, T1, H) after temperature cycling can be superposed
on the reference decay curve, allowing for a positive shift in time for
MFC(t, T1,H) during the time that T < T1. However, after the onset of
temperature chaos, The decay curves cannot be superposed for any
positive shift of MFC(t, T1, H) in time.

This is seen explicitly in Figure 6 which was reproduced from
Figure 1 of Ref [39]. By changing T1, tw1, Eq. 25 can be probed to
yield a value for 1/ζ. A value for ζ ≈ 1.1 was extracted in [39], very
close to a majority of the theoretical values.

This experimental evidence for the existence of temperature
chaos in spin glasses will prove important in our subsequent
treatments of rejuvenation and memory. We shall argue that
temperature chaos is responsible for the former, and plays an
important role in a quantitative treatment of the latter. In any
case, the experiments of Ref. [34] have shown that temperature
chaos is present in spin glasses, and will be shown to have a profound
impact in other dynamical spin glass phenomena.

2.4 Rejuvenation

The singular publication that engendered the attention of both
theorists and experimentalists for over three decades was that of
Jonason et al. [45] titled “Memory and Chaos Effects in Spin
Glasses.” They displayed the remarkable figure (Figure 7
reproduced from Figure 1 in their paper). The system is “aged”
at 12 K, becoming “older.” Upon lowering the temperature, it
returns to the reference curve, thus becoming “younger”. This is
termed “rejuvenation.” It was attributed to temperature chaos,
namely, the spin glass “forgot” its previous history of aging when
the temperature was lowered beyond the threshold for
temperature chaos.

This assignment has yet to be proven unequivocally. A very
recent paper [18] by Paga et al. displayed the results of temperature
cycling to explore this claim, and indeed to relate rejuvenation to the

FIGURE 5
Reproduced from Figure 4 in [42]. Scaling plot of Leff with LΔT = L0
(cΔT/J)−2.6 with c = 5. The solid straight line represents scaling in the
absence of temperature chaos.
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spin glass coherence length. Figure 8 reproduces their Figure 2.
While Figure 8 appears definitive, there needs to be an exploration of
teffw for temperature above and below the temperature for the onset of
temperature chaos to arrive at an unequivocal relationship between
rejuvenation and temperature chaos. For the moment, Figure 8
seems entirely consistent with that interpretation.

2.5 Memory

Though rejuvenation in spin glasses is remarkable, the even
more remarkable is memory. Once the system has rejuvenated
back to the reference curve, upon reheating it traces out the same
behavior as it exhibited upon cooling, even with temperature
chaos between T1 and T2. This is explicitly demonstrated in
Figure 7. On the surface it seems quite inconsistent. How can
the system exhibit memory when it has experienced temperature

chaos? There have been a multitude of papers and models that
addressed this conundrum. Most involve heuristic models with
adjustable parameters that can fit the data represented in Figure 7.
A recent treatment [18] gives an interpretation that is free of real
space models and the concomitant adjustable parameters, and is
based upon the behavior of the spin glass coherence length. The
beauty of this formulation is that every term in its interpretation
can be tested experimentally, something that previous
models lack.

The concept is as follows. Upon cooling the spin glass from
above Tg to the first measuring temperature T1, the system is aged for
a time tw1. As a consequence, the spin glass coherence length grow
from nucleation to ξ(tw1, T). When the temperature is then lowered
to T2, the correlations created at T1 are essentially frozen. This
concept has been introduced by Bouchaud et al. [45]. What is new is
that, when the system is aged at T2 for a time tw2, the system has
created new coherent regions that have nothing to do with those

FIGURE 6
The example of T1 = 18 K, reproduced from Figure 1 in [39]. The temperature is gradually lowered to T2 after tw1 = 104 s and heated back to T1 after
tw2 = 103 s. The temperature cycling curve is then shifted by δt to overlap the reference curve. In the reversible temperature range, (A) and (B), the cycling
curve can be overlapped with the reference curve over the whole period ≈ 7 × 104 s. In the chaotic range, (C) and (D), the cycling curve can only be
partially overlapped. Hence, temperature chaos, at T1 = 18 K, tw1 = 104 s, sets in for ΔT > 450 mK.
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created at T1. Hence, when heating back to T2, the two correlated
regions interfere, thereby reducing the spin glass coherence length
from the native value created at T1, tw1.

This is exhibited explicitly in Figure 8 in the lower part of the
figure. The Cn represent three separate temperature and waiting time
cycles, and illustrate unequivocally the relationship between
memory and competing coherence lengths. Each of the cycles has
three steps: 1) the system is “prepared” at T1 = 30 K by waiting for
the same time tw1 = 1 h 2) The temperature is then dropped to T2

and the system is aged for tw2. 3) The system is than heated back to
T1 = 30 K and teffw measured as rapidly as possible. C1 sets T2 = 26 K
and tw2 = 1/6 h. C2 sets T2 = 26 K and tw2 = 3 h. Finally, C3 sets T2 =
16 K and tw2 = 3 h. Memory is quantified by comparing the
magnitude of the coherence length measured at step (3) with the
native coherence length [the coherence length of the initially
prepared state at step (1)]. If the two lengths are the same,
memory is perfect. If after step (3), the measured coherence
length is smaller than the initially prepared state at step (1),
memory is less, a direct result of the interference of the two
states. The slopes in Figure 8 are steeper, the larger the
coherence length being measured because the volume of the
correlated region is larger [Eq. 1].

Consider C1. The system has “morphed” from the prepared state
into a chaotic regime, but only aged for a short time (1/6 h). The
coherence length in the chaotic state has grown during this time, so
that its interference with the initially prepared coherence length is
significant. Hence, the memory is less, exhibited by the shallower
slope as compared to the native slope exhibited in Figure 8. Now, C2

increases tw2 to 3 h, so that the coherence length in the chaotic state
can grow beyond it is value in C1. This should lead to greater
interference, a smaller memory, and a more shallow slope than
found for C1. This is explicit in Figure 8.

FIGURE 7
Reproduced from Figure 1 of Ref. [45]. Out-of-phase
susceptibility χ′′ of the CdCr1.7In0.3S4 spin glass. The solid line is
measured upon heating the sample at a constant rate on 0.1 K/min
(reference curve). Open diamonds: the measurement is done
during cooling at this same rate, except that the cooling procedure has
been stopped at 12 K during 7 h to allow for aging. Cooling then
resumes down to 5 K: χ′′ is not influenced and goes back to the
reference curve (chaos). This is termed rejuvenation. Solid circles:
after this cooling procedure, the data is taken while reheating at the
previous constant rate, exhibiting memory of the aging stage at 12 K.

FIGURE 8
Reproduced from Figure 2 of Ref. [18]. We use the abbreviations N (native), R (rejuvenation), and C (cycle). By native, we mean the temperature is
lowered from above Tg (here, Tg = 41.6 K to the lower temperature T2 in the usual cycling protocol (here, T2 = 26 K, tw2 = 3 h), and the effective waiting
time is given by the peak in S(t) for different magnetic fields H. The points are labeled N3 in Figure 8. Next, the system is cooled from above Tg to the
temperature T1 = 30 K and aged for 1 h. The temperature is then dropped to T2 = 26 K, and aged for 3 h. The points are labelled R1 in Figure 8. As can
be seen from the figure, the two procedures yield nearly exactly the same teffw for all values of H2, independent of the aging at T1. This is a clear
demonstration of rejuvenation. In addition, the spin glass coherence lengths can be extracted from the slope of teffw vs H2. One finds ξN3

/a0 � 11.96(9) and
ξR1

/a0 � 11.787(8), showing the development of spin glass order is the samewithout andwith aging at T1. Memory ismeasured through a full temperature
cycle, from T1, tw1 → T2, tw2 → T1 when teffw is measured as rapidly as possible. The text discusses the physical meaning for the three protocols, C1, C2,
and C3.
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Finally, the C3 protocol has the same tw2 as C2, but the
temperature drop to T2 is much greater, T2 = 16 K. At such a
low temperature, the growth of the chaotic coherence length is very
slow (almost none), so there should be almost no interference, and
the memory should be nearly perfect. This again is explicitly
exhibited in Figure 8 where the slope of C3 is close to the slope
for the native slope.

These three temperature cycles, and their properties exhibited in
Figure 8, are strong evidence for the interpretation of memory
through interfering coherence volumes. This is at odds with Ref. [46]
where it is argued that the coherence length returned to the native
value upon reheating. By adjusting tw2 one can change the value of
ξ(T1, tw1, T2, tw2) at will, from no loss to complete loss of memory.
This have been born out in our Figure 8, and also in independent
experiments by Freedberg et al. [47].

3 Summary

The purpose of this paper is to display spin glass dynamics
through the lens of the spin glass coherence length. We have shown
how it use can unite the seeming independent features observed both
in the laboratory and through simulations. They provide a unifying
picture for what seem to be independent complex phenomena.
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