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Parity or quadratic spin (e.g., J2z ) readouts of aMach–Zehnder (MZ) interferometer
probed with a twin Fock (TF) input state allow saturating the optimal sensitivity
attainable among all mode-separable states with a fixed total number of particles
but only when the interferometer phase θ is near zero. When more general Dicke
state probes are used, the parity readout saturates the quantum Fisher
information (QFI) at θ = 0, whereas better-than-standard quantum limit
performance of the J2z readout is restricted to an o( ��

N
√ ) occupation

imbalance. We show that a method of moments readout of two quadratic
spin observables J2z and J2+ + J2− is globally optimal for Dicke state probes;
i.e., the error saturates the QFI for all θ. In the lossy setting, we derive the
time-inhomogeneous Markov process describing the effect of particle loss on
TF states, showing that the method of moments readout of four at-most-
quadratic spin observables is sufficient for globally optimal estimation of θ

when two or more particles are lost. The analysis culminates in a numerical
calculation of the QFI matrix for distributed MZ interferometry on the four-mode
state |N4, N4, N4, N4〉 and its lossy counterparts, showing that an advantage for the
estimation of any linear function of the local MZ phases θ1 and θ2 (compared to
independent probing of the MZ phases by two copies of |N4, N4〉) appears when
more than one particle is lost.
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1 Introduction

In the context of optical interferometry with non-classical states of light, the optical twin
Fock (TF) state was introduced as a candidate probe state that minimizes phase fluctuations
between the arms of an interferometer [1]. The operating principle of the interferometer is
that although the input TF state has maximal phase uncertainty prior to entering a
Mach–Zehnder (MZ) interferometer, its phase variance after the first beamsplitter is
lower by a factor of O(I−1) compared to a probe state consisting of single-mode lasers
of the same total intensity I per measurement interval (lowering the optical standard
quantum limit sensitivity of O(I−1) to optical Heisenberg limit sensitivity O(I−2)). For
present-day laser-based gravitational wave detectors, suppression of phase and amplitude
fluctuations across the operating spectrum motivates the use of novel non-classical
electromagnetic field probe states. In the LIGO interferometer, for example, phase
fluctuations in the quantum electromagnetic field give rise to the photonic shot noise
that constitutes the primary limitation to sensitivity in the high-frequency domain.
Fluctuations in the amplitude quadrature give rise to the radiation pressure noise that
constitutes the primary limitation to sensitivity in the low-frequency domain [2, 3].
Therefore, preparation of a probe field with frequency-dependent quadrature squeezing
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enables globally improved noise spectral densities [4, 3]. However,
even at fixed wavelength, state-of-the-art optical TF states with O(1)
photons are produced only probabilistically [5] and not with
intensities large enough to be relevant for application in LIGO.

On the other hand, matter–wave interferometry with ensembles
of phase-coherent atoms provides an alternative framework for
gravitational wave detection [6, 7]. Analogous to the optical TF
state, a TF state of massive bosons produced by strong repulsion
of atoms in a double-well optical trap could potentially improve the
sensitivity of such matter–wave interferometers beyond the atomic
standard quantum limit (1/N scaling of the optimal estimator
variance, where N is the number of atoms). While traditional atom
interferometers apply optimal Bragg-splitting schemes to non-
entangled states such as a Bose–Einstein condensate to produce an
optimal non-entangled probe state [8, 9], the input TF state exhibits
particle entanglement [10] and remains entangled throughout theMZ
interferometer sequence. As far as experimental atom interferometry
is concerned, the sensitivity boost provided by TF states can allow
smaller MZ loops to be used in the interferometry sequence. TF states
of neutral atoms in an optical dipole trap have been prepared with
O(104) atoms [11].

This work focuses on the parameter estimation setting defined
using an MZ interferometer [12], which applies the operation
ei

π
2 Jx e−iθJz e−iπ2 Jx � e−iθJy to the probe state ρ, which is generally a

mixed state. From the parametrized state ρθ ≔ e−iθJyρeiθJy , the
estimate ~θ of the parameter θ is calculated, and it satisfies the
one-shot quantum Cramér–Rao inequality.

Δ~θ( )2∣∣∣∣∣∣θ ≥ 1
F θ

, (1)

where F θ is the quantum Fisher information (QFI) based on the
symmetric logarithmic derivative [13]. The relevant expressions for
the QFI depend on whether the probe state ρ is pure or mixed, and
we refer to [14] and the references therein for explicit formulas. A
globally optimal quantum sensing protocol produces an estimator ~θ
that saturates (Eq. 1) at all parameter values θ.

In the remainder of this section, we review relevant background
on quantum sensing aspects of twin Fock states. In Section 2, we
move on to considering the possibility of saturating the inequality
(Eq. 1) when applying practical readout schemes to pure, but
imperfectly prepared, twin Fock states. We generalize the method
of moments error of a single readout observable to a generalized
signal-to-noise ratio that quantifies correlated errors of a list of non-
commuting observables. Observables are identified for which the
generalized signal-to-noise ratio globally saturates the QFI
(i.e., saturates the QFI for all θ). Sections 3 and 4, respectively,
identify lists of observables associated with a generalized signal-to-
noise ratio which globally saturates the QFI for the case of lossy twin
Fock probe states and for instances of lossy, spatially extended twin
Fock probe states. The spatially extended twin Fock states probe
multiple spatially separated interferometric phase shifts, which
define a multiparameter sensing setting relevant to, for example,
spatially resolved gravimetry and magnetometry. Section 5
summarizes the results and discusses directions for future research.

We now define the TF state and provide background on their
known properties related to quantum metrology. The TF state of N
bosonic atoms distributed between two orthogonal single-particle
modes |0〉 and |1〉 is the zero Jz weight vector in a spin-N/2

representation of SU(2). It is the n � N
2 case of the more general

N-particle Dicke state often written as follows:

|N − n, n〉≔ 1���
N
m( )√ ∑

Ham x( )�n
|x1〉1 ⊗/⊗ |xN〉N, (2)

where x = x1. . .xN ∈ {0,1}N is a binary string identified with a
computational basis element of N qubits and Ham(x) is its
Hamming weight. The notation in the left-hand side owes to the
Schwinger boson form of the Jz operator: 2Jz = a†a − b†b so that
Jz|N − n, n〉 � (N2 − n)|N − n, n〉. The state (Eq. 2) is mode-
separable because the first-quantized state is actually entangled: if
the particles themselves are bipartitioned in any way (i.e., if the N
qubits are bipartitioned in any way in Eq. 2) and one of the partitions
is traced over, the resulting state is impure.

Our model of the MZ interferometer is the standard one: a two-
mode, mode-separable bosonic state |ψ〉 is parametrized by a phase
according to the following equation:

|ψ〉↦|ψ θ( )〉 � ei
π
2 Jx e−iθJz e−i

π
2 Jx � e−iθJy |ψ〉. (3)

Eq. 3 is an example of the shift model of parameter estimation
[13]. The TF state possesses the following optimality property for
sensing the phase difference in the arms of the MZ interferometer: it
has the largest QFI on the unitary path generated by Jy over all
mode-separable probe states with a fixed total number of particles
N = a†a + b†b, where N is even [15]. The operator Jy generates the
phase difference dynamics of the MZ interferometer.

As pointed out by Lang and Caves, mode-separable states (or
product states in the setting of optical MZ interferometry) are the
only sensible input states to consider in single-parameter MZ
interferometry. The whole purpose of the first beamsplitter is to
generate the quantum coherence required for the phase difference
sensing task. If one has access to mode-entangled states at the input
of the MZ interferometer, an optimal input state is a
Greenberger–Horne–Zeilinger (GHZ) state (recall that for N
atoms, the GHZ states are a class of states defined as an equal
amplitude superposition of the highest and lowest eigenvectors of a
total spin operator �n · �J in the spin-N/2 representation of su(2),
where �n ∈ R3). On the other hand, in the setting of multiparameter
estimation of an SU(2) element, the TF state has a similar basic
optimality property as the GHZ state in single-parameter MZ
interferometry. The parametrized unitary dynamics U(θ) �
e−iθ1Jx−iθ2Jy and task of minimizing the sum of the mean squared
errors of estimates of θ1 and θ2 are considered. This total error is
bounded below by tr(F−1), where F is the QFI matrix [16]. This
quantity, in turn, is lower bounded by 1

VarJx+VarJy, with equality achieved
on pure states with a reflection symmetry about Jx or Jy. The minimal
value is obtained when 1) the variances are equal, 2) the state is centered
in the spherical phase space (i.e., 〈Jx〉 = 〈Jy〉 = 〈Jz〉 = 0), and 3)
〈J2z〉 � 0, all three of which are satisfied by the TF state, with the last
condition being unique to the TF state [17]. Fujiwara’s condition for
achievability of the QFI bound is also satisfied [18], so there is an
estimator that obtains this noise value. Indeed, the method of moments
estimation of �θ by readout of the non-linear observables
Oj|N2 , N2〉〈N2 , N2 |Oj, with O1 = Jx and O2 = Jy, allows saturating the
QFImatrix for �θ → (0, 0) [19]. Saturation of theQFImatrix can also be
obtained using four operators which are at most quadratic in the spin
operators [20].
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Recent work has shown that Dicke states |N − m, m〉 can be
prepared with O(m logN

m)-depth quantum circuits that allow two-
qubit operations between any qubit registers [21]. Analog schemes
for generating approximate TF states of a system of double-well
bosons include the implementation of the two-axis countertwisting
Hamiltonian [22] and quantum alternating operator ansatz circuits
that approximately convert a tensor product state to the TF state for
large N [23]. Experimentally, small twin Fock states have also been
generated in internal states of spinor Bose–Einstein condensates
[24] and in photons in orthogonal polarization modes [25]. Optimal
method of moments readouts for specific single-parameter
estimation problems, including MZ interferometry, with probe
states consisting of coherent states and spin-squeezed states of
spin-1 Bose–Einstein condensates have been analyzed in [26,
27, 28, 29].

2 Pure imperfect TF probes

Unlike other entangled probe states of two-mode bosons such as
one-axis-twisted states [30], the physical origin of the sensitivity of
TF states for interferometry is not spin-squeezing [31]. Rather, it is
the property of low uncertainty in the difference of phase (near a
phase difference of zero or π) appearing between the paths of theMZ
interferometer after the TF state undergoes the first beamsplitting
[32]. In fact, the Dicke state amplitudes of the π/2-rotated TF state
are greatest on the |N, 0〉 and |0,N〉 states, similar to an approximate
GHZ state. Although a GHZ state in the arms of the MZ
interferometer allows obtaining the minimal uncertainty of an
estimator of the MZ phase, the input state required to generate
such a configuration is simply a rotated GHZ state, which is clearly
not any easier to generate. By contrast, in the case of ultracold atoms,
the TF state can be prepared as the ground state of N atoms in a
double-well optical trap [33, 34], which makes it practically
advantageous compared to a GHZ probe. Furthermore, loss of a
single particle from a GHZ state renders it useless for interferometry
beyond O(N) scaling of the QFI [i.e., standard quantum limit (SQL)
scaling]. Photon-loss-robust optical states for MZ interferometry
were explored as GHZ alternatives in [35].

In this section, we consider the case of pure, but imperfectly
prepared, twin Fock states. Such states coincide with sequences of
Dicke states of the form |N2 ± m, N2 ∓ m〉 for m scaling as o(N). The
QFI F for MZ interferometry using an arbitrary Dicke state (for
even N) |N2 +m, N2 −m〉 is given by [36]

F m( ) � 4VarJy � N2

2
− 2m2 +N, (4)

which is independent of θ. The particle number dependence in Eq. 4
indicates the possibility of Heisenberg scaling, i.e.,O(N2), but not the
Heisenberg limit N2, which is only achievable by a GHZ probe state.
In fact, this value of the QFI is attained for any spin generator �n · �J
with �n a unit vector in the xy-plane [37]. It should be noted that
whenm � ± N

2 , this expression for the QFI also covers the SQL value
N. It can be concluded that Dicke states exhibit asymptotic
Heisenberg scaling for interferometry if the magnitude of the Jz
component scales as λN with λ < 1/2.

To locally saturate the QFI, we first review two practical
measurement schemes that have appeared in the literature. A

Bayesian estimation scheme locally achieving the same scaling as
the QFI was discussed in [1, 38]. However, a single-mode parity
measurement (we will use (−1)b†b as the single-mode parity
operator) exhibits the same scaling while having practical
advantages [39, 40, 41, 32]. A simple calculation using the small-
angle asymptotics of Wigner’s little-d function allows showing that
with the parity signal

g θ( ) ≔ 〈 −1( )b†b〉e−iθJy |N2+m,N2−m〉, (5)

the method of moments error (Δ~θ)2 for extracting an estimate ~θ of θ
is given as follows:

Δ~θ( )2|θ�0 � 1 − g θ( )2
g′ θ( )2

∣∣∣∣∣∣∣∣
θ�0

� N2

2
− 2m2 +N( )−1

, (6)

where we recall the formula for the method of moments error

Δ~θ( )2 � Var|ψ θ( )〉A
d〈A〉|ψ θ( )〉

dθ( )2 (7)

of a phase estimator ~θ obtained from the measurement of
observable A. The reciprocal QFI 1/F is a lower bound to Eq. 7
for all θ. Equation 6 implies that at θ = 0, the method of moments
error of ~θ obtained from the parity signal Eq. 5 saturates the
reciprocal QFI for the MZ interferometer, regardless of which
Dicke state is taken as input. The error of the method of moments
estimator ~θ at arbitrary angles is shown in Figure 1 for N = 64, m =
0, 4, 8, 16, in which it is observed that the ideal TF state has a revival
of saturating the QFI near θ = π/2. The method of moments error
for a parity observable also saturates the QFI for the GHZ state [42]
but globally over all possible phases [32]. From the plots, we
conclude that for small θ, the effect of the interferometer is to
change the expected parity of the computational basis support of
the rotated Dicke state.

It should be noted that a parity measurement requires
single-particle resolution at a detector. For high-intensity
optical systems or a high-occupation two-mode bosonic
system, such an idealistic measurement is not always feasible.
By contrast, it would be desirable to use low moments of a
measurement of a total spin operator to extract a high-precision
estimator. It has been shown that for a TF state input, the
method of moments error for an estimator obtained from the
measurement of J2z saturates the QFI at θ = 0 [43]. However,
unlike the parity measurement, the J2z measurement does not
saturate the Dicke state QFI for arbitrary m, and it remains to
consider the question of how robust the Heisenberg scaling of
this estimation strategy is when a Dicke state is prepared.
Theorem 1 is given as follows.

Theorem 1. Let F(m) be the QFI for an MZ interferometer with
input Dicke state |N2 +m, N2 −m〉, and let Δ~θ be the method of
moments error (Eq. 7) for a J2z measurement. Then,

lim
N→∞

Δ~θ( )−2|θ�0
F m( ) � 1

4m2 + 1
. (8)

If m scales with N asm � o( ��
N

√ ), then limN→∞N(Δ~θ)2|θ�0 � 0.
Proof: We use the moments of Jz in Supplemental Section 1 to

find that at θ = 0, the method of moments error (Δ~θ)2|θ�0 is given by
the following expression:
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Δ~θ( )−2|θ�0 � ∑1
u�0

1 + −1( )u2m( )2 N
2 + −1( )um + 1( ) N

2 − −1( )um( )
4 N2

4 − 3m2 + N
2( )2 .

(9)
The ratio of the reciprocal of Eq. 9 to the QFI is given by the

following equation:

Δ~θ( )−2|θ�0
F m( ) �

1 − 2m2

N2
4 −m2+N

2

( )2

4m2 + 1
, (10)

which satisfies Eq. 8. The last statement in the theorem follows from
taking m to satisfy the scaling assumption in the statement and noting
that Eq. 10 implies that 1

N(Δ~θ)−2 ~ 1
N(4m2+1) (N

2

2 − 2m2 +N)2 QED.

It should be noted that limN→∞N(Δ~θ)2|θ�0 � 0 if and only if the
reciprocal of the method of moments error is asymptotically greater
than the SQL valueN for the QFI by more than a constant factor.We
conclude that the J2z measurement is useful for better-than-SQL
interferometry with Dicke states of the form
|N2 + o( ��

N
√ ), N2 − o( ��

N
√ )〉. Although a J2z readout does not give a

method of moments estimator that saturates the QFI, the correlation
of this signal with the parity signal can be used to broaden the
domain of θ where QFI saturation occurs, as shown in Figure 1A
(although global saturation still does not occur). Specifically, taking
�O � (O1, . . . , OK) to be a row vector of K observables, the
inequality [19]

d〈 �O〉ρθ
dθ

Covρθ
�O( )−1d〈 �O〉uρθ

dθ
≤F ρθ( )

Covρθ
�O( ) ≔ 〈 �O − 〈 �O〉ρθ( )◦ �O

u − 〈 �O
u〉ρθ( )〉ρθ

(11)

holds for general parameterized states ρθ, and K = 2 with O1 � (−1)b†b
and O2 � J2z can be considered. In Eq. 11, the symbol ◦ is the Jordan
product of matrices X◦Y ≔ 1

2XY + 1
2YX. The inequality (Eq. 11)

generalizes the relationship between the signal-to-noise ratio in Eq. 7
and the QFI; therefore, the left-hand side of Eq. 11 can be considered a
generalized signal-to-noise ratio. By considering more quadratic spin
observables in Eq. 11, it is possible to dispense with the parity readout
and globally saturate (Eq. 11) for all θ. Taking O1 � J2z and O2 �
1
2 (J2+ + J2−) ifm = 0, and takingO1 � J2z,O2 � 1

2 (J2+ + J2−), and O3 = Jx

if m ≥ 1, minimal operator lists can be obtained, for which Eq. 11 is
globally satisfied. A similar conclusion is also obtained in the lossy TF
setting in Section 3. Instead of providing individual proofs of these
statements, we provide the full details for the QFI saturation in the case
of gradiometry with doubled TF probes (Section 4; Supplemental
Section 3). The method of proof for the simpler statements of global
saturation in this section and in Section 3 follows straightforwardly.

It is worth noting that the N-particle one-axis-twisted probe
state [30]

|ψOAT t( )〉≔ e−itJ
2
z |+〉⊗N (12)

at oversqueezed interaction times t = O(N−α), with 0 < α < 1/2, has
asymptotic QFI equal to N(N+1)

2 for MZ interferometry, which is
asymptotically equal to that of the TF probe state of the same particle
number [44]. However, a twist-untwist protocol [45, 46] (which is
obtained from Eq. 12 by applying the inverse one-axis twisting e+itJ2z
after the MZ interferometer) combined with a total spin readout
only saturates the QFI near θ = 0, and the same is true for a parity
and J2z readout without the untwist operation. However, we are not
aware of a quadratic spin readout that globally saturates the QFI for
a one-axis-twisted probe state in this interaction time domain.

Last, we note that a measurement in the Jy phase basis

|~k〉≔ 1�����
N + 1

√ ∑N
n�0

e
2πink
N+1 ei

π
2 Jx |N − n, n〉, k � 0, . . . , N (13)

(eigenvectors of ei
π
2 JxCe−iπ2 Jx , where C is the cyclic shift C|N − n, n〉 =

|N − n − 1, n + 1〉 with addition modulo N + 1) contains sufficient
information to form a globally optimal estimator of θ. This can be
shown by the numerical computation of the classical Fisher
information with respect to the measurement of the complete
orthonormal basis (Eq. 13) and verifying that it saturates the
black horizontal lines in Figure 1A for all θ.

3 Phase-diffused and lossy TF probes

Interatomic interactions during the interferometric sequence
lead to the phenomenon of bosonic phase diffusion [47, 48, 49].
Unlike optical phase diffusion, which is modeled by applying

FIGURE 1
(A) Error of themethod ofmoments estimator ~θ ofMZ angle θwith parity readout andwith a pure Dicke state probe (N=64; bluem=0; orangem=4;
greenm=8; and redm=16). Black horizontal lines are the QFI. (B)One-shot posterior probability density for the interferometric phase θwith the bosonic
phase-diffused probe state (Eq. 14) (N=40; χ=0(black),0.20,0.39,0.59, π/4(dark blue)). Phase diffusion reduces the central peak visibility. (C)QFI for Eq. 14
exhibits greater than O(N) scaling, except for a small domain of χ around π/4.
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random unitary optical rotations to a continuous-variable probe
state [50, 51], bosonic phase diffusion is a unitary error which
reduces the phase coherence in the arms of the interferometer. In a
modern context, the fact that one-axis twisting can reduce the
performance of atom interferometry may seem surprising given
that the one-axis-twisted split Bose–Einstein condensate
e−iχJ2z e−iπ2 Jy |N, 0〉 exhibits Heisenberg scaling as a probe for the
MZ interferometric phase (i.e., Jy rotation) for O(N−1/2) ≲ χ ≲
o(1), transitioning to Heisenberg limit scaling at χ ~ O(1) [44].
To demonstrate the effect of bosonic phase diffusion on
interferometric sensitivity, we use a well-known Bayesian
parameter estimation method [1, 52, 53] and the phase-diffused
probe state

|ψN χ( )〉≔ e−iχJ
2
z e−i

π
2 Jy |N

2
,
N

2
〉. (14)

Applying the MZ interferometer to Eq. 14 and using the fidelity
with e−iπ2 Jy |N2 , N2〉 to define a signal, one obtains the posterior
probability densities in Figure 1 for various χ (a uniform prior
for the phase θ is taken on [−π/2, π/2]). At χ = π/4, sensitivity to the
MZ phase disappears because the probe state is equal to ei

π
2 Jx |N2 , N2〉,

which is the 0 eigenvector of Jy. Because of the robustness of the
Heisenberg scaling of the TF state to strong bosonic phase
diffusion, consistent with a more detailed analysis of the effect
of phase diffusion on the sensitivity of the local density readout
for MZ interferometry with number-squeezed bosons in a
double-well trap [34], we do not further consider its effect on
the probe states.

We now analyze the QFI after loss of K atoms from the TF state,
with the aim of identifying an asymptotic scaling of K with N that
allows better-than-SQL scaling to persist. Analyses of mixtures of
Dicke states with an uncertain total number of particles appear in
[38] and with uncertain spin projection in [54]. The performance of
the J2z measurement when the TF state is well formed but the total
number of particles of the TF state has a non-sharp distribution was
analyzed in [11]. We represent the quantum channel describing
partial trace over K particles as EK. Starting with a Dicke state |N −
m,m〉, the quantum state subsequent to loss of K <N −m atoms can
be computed from the following time-inhomogeneous Markov
process (for proof, see Supplemental Section 2).

pk+1 � Qkpk, k � 0, . . . , K − 1, (15)
where p0 = (0,. . .,0,1)u is a vector of lengthm + 1,Qk is a sequence of
(m + 1) × (m + 1) bidiagonal, bistochastic matrix defined by non-
zero elements

Qk( )i,i+1 � i

nk

Qk( )i,i � 1 − i − 1( )
nk

(16)

for i = 1, . . .,m, and nk =N − k is the particle number after the loss of
k particles, k = 0, . . ., K. The dynamics occurs on the space of
probability distributions on the discrete set {0, . . .,m} due to the fact
that loss of an atom cannot increase the Hamming weight that
defines a Dicke state. To apply Eq. 15 to the TF state, we takem = N/
2 and numerically compute pK and note that the final state of N − K
particles ρN,K ≔ EK(|N2 , N2〉〈N2 , N2 |) is a statistical mixture of Dicke
states given by the following expression:

ρN,K ≔ ∑N/2+1

i�1
pK( )iPN−K

2
i−1 , (17)

where PJ
ℓ
is the projection to the Dicke state |2J − ℓ, ℓ〉. The probe

state for MZ interferometry is then obtained from Eq. 17 by taking
ρN,K(θ) ≔ e−iθJyρN,Ke

iθJy . It should be noted that the spin projection
is invariant under the particle loss, i.e., 〈Jz〉ρN,K

� 0. The QFI
F(ρN,K) for this probe state can be computed from the spectral
formula [55], using the state (1 − ϵ)ρN,K(θ) + ϵ

N−K+1IN−K+1 for an
infinitesimal ϵ, due to the fact that ρN,K(θ) is not generally full rank.
The decrease in the QFI with respect to the increase in K is shown in
Figure 2. The loss of one particle decreases the QFI by a factor of
2 asymptotically, with the exact value given by (N2 )2 − 1, which is
proven in Supplemental Section 2. This behavior can be contrasted
with the optimal pure state probe (viz., the GHZ state), which
exhibits SQL scaling if even one particle is lost. In this work, we
assume that the lossK is known. To describe an experiment, it would
be appropriate to consider a convex mixture of EK channels to
describe the probabilistic loss of particles.

Unlike the case for the noiseless TF probe in Section 2, it is not
possible to saturate the QFI F(ρN,K) for general loss values K using
state-agnostic readouts such as parity or J2z. For a fixed loss value K,
the optimal readout depends on the spectrum of the noisy state,
i.e., on the (pK)m, through the symmetric logarithmic derivative
[13]. It can be expected that the method of moments error for the
parity readout saturates F(ρN,K) near θ = 0 since this state is a
statistical mixture of Dicke states which, if any of these is used as a
probe state, allows saturating F(m), as shown in Figure 1A.
However, applying the particle loss channel EK results in a state
with a low-parity signal in the interferometer. For instance, applying
E1 to the TF state gives an equally weighted statistical mixture of
Dicke states with different parities, and after applying the MZ
interferometer for small θ, the state still has equal weights in the
even and odd parity sectors. Taking into account the J2z readout and
its correlation with the parity readout via Eq. 11 to get a smaller
error, saturation of the QFI does not occur for any θ domain for loss
values K > 1. In fact, by comparing the QFI F(ρN,K) to the classical
Fisher information FK(θ) � ∑N/2

ℓ�0 qθ(ℓ)−1(dqθ(ℓ)dθ )2, where
qθ ℓ( ) � 〈N −K − ℓ, ℓ|ρN,K θ( )|N −K − ℓ, ℓ〉 (18)

is the probability of observing ℓ particles in the second mode, it can
be found that a particle number-resolving measurement does not
provide enough information to construct an estimator of θ with
error saturating the inverse QFI for K > 1. Similar to [54], we find
that the greatest sensitivity is obtained away from θ = 0, even for a
combined J2z and parity readout. Instead of a measurement in the
basis of Jz eigenvectors as in Eq. 18, the classical Fisher information
of a measurement in the Jy phase basis (Eq. 13) can also be
considered. However, the classical Fisher information of this
measurement is found not to saturate F(ρN,K) for K > 0 but
rather has a periodic structure, which causes the greatest
sensitivity to occur at a set of equally spaced points in (−π, π].

These results indicate that neither a measurement in the
occupation number basis nor a measurement in the Jy phase state
basis produces enough information to saturate the QFI for a lossy
twin Fock probe. However, we verified numerically that there indeed
exists a minimal list �O of observables such that the method of
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moment error (left-hand side of Eq. 11) saturates the QFI F(ρN,K)
for all K and globally for all θ. Specifically, for loss values K = 0, 1,
the list

�O � {J2z,
1
2
J2+ + h.c.} (19)

is sufficient, and for K � 2, . . . , N2 , appending the linear
spin observable Jx and the quadratic spin observable
1
2JzJ+ + h.c  to the list  �O, forming

�O � {Jx, J2z,
1
2
J2+ + h.c.,

1
2
JzJ+ + h.c.}, (20)

is sufficient. Remarkably, a phase observable with eigenvectors in Eq.
13 or the non-linear parity observable (−1)b†b are not necessary for
globally optimal interferometry with lossy TF states.

From the discussion in Section 2, we recall that a sequence of
corrupted (but pure) TF states |N2 + λN, N2 − λN〉 with λ < 1/2
maintain Heisenberg scaling of the QFI. To understand the
tolerance of the lossy probe state ρN,K, we found for each total
particle number value N, the greatest loss K = KSQL(N) such that the
F(ρN,KSQL(N))>N. Such a loss value is interpreted as the maximal
number of particles that may be lost while maintaining better-than-
SQL value for the QFI. Figure 2B indicates that KSQL(N) scales
linearly with N, and curve fitting to an affine function suggests that

1/3 of the particles can be lost while maintaining better-than-SQL
scaling. It is also of interest to identify exponents 0 < α < 1 and β > 1
for which F(ρN,Nα ) � O(Nβ). These exponents characterize the
amount of loss (as a function of the total particle number) that can
be tolerated while maintaining a QFI scaling as Nβ. For β = 2,
i.e., Heisenberg scaling, we were not able to identify the existence of
an α. However, the loss exponent α = 1/2 allows QFI scaling of Nβ

with β ≈ 3/2, as shown in Figure 2C.

4 Gradiometry with doubled TF
and states

Advantages of using pure, spatially split spin-squeezed atomic
ensembles for magnetic gradiometry (estimation of the difference
θ1 − θ2) beyond SQL were outlined in [20]. Generally, when using
atom interferometers for distributed sensing (i.e., sensing a field at
many different spatial points), there are two classes of quantum
sensing strategies that can be used, which are straightforward
generalizations of their single-parameter sensing counterparts
[42]. The parallel strategies use identical copies of a probe state
or a single global entangled state as a probe which addresses the
various points of interest. The probe state is locally parametrized by
phases corresponding to the local field values, with the

FIGURE 2
(A) QFI after the application of EK for K � 0, . . . , �N4� with N =40 (bottom curve), 90, 120, and 160 (top curve). K =0 analytical value N2

2 + N and K =1
analytical value (N/2)2−1 are shown as red dots. (B)Maximal loss tolerance of SQL scaling of the QFI forN =16,. . .,1216 in steps of 100. (C)F(ρN, ��N√ ) scaling
asO(N1.52) for largeN. (D) Black dots: (1,1) element of the QFI matrix after loss of K =0,1,. . .,14 particles from the probe state (Eq. 24) withN =64; gray dots:
method of moments error for local Jx, J

2
z ,

1
2 (J2+ + h.c.), and 1

2 (J+Jz + h.c.) readouts; and red dots: QFI after the application of EK to the TF state with
N =32. The K =0 values coincide at 10 log1017.
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parametrization usually modeled by a tensor product of
parametrized quantum channels. By contrast, the sequential
strategies expose an initial probe state (which may be entangled
with an ancilla register) to the points of interest in temporal
succession. The preference of strategy depends on the cost of
probe state preparation and the dwell time of the transient that
must be sensed. It has been shown that in the parallel generalization
of the MZ interferometry protocol which uses general linear optical
unitaries in lieu of the e±i

π
2 Jx two-mode beamsplitters, twin Fock

states asymptotically allow saturating the optimal performance (over
all mode-separable input states of a fixed total particle number) for
estimation of a linear function of phases [56]. Often in distributed
sensing, only a single linear function �w · �θ of the parameters is of
interest [57], with the normalization ‖ �w‖2 � 1 sometimes chosen so
that the largest possible QFI for estimating a linear function
coincides with the largest eigenvalue of the QFI matrix.

One possible sequential strategy to estimate (θ1 − θ2)/
�
2

√
using

a TF or Dicke state probe is to π shift the phase of the second MZ
interferometer addressing the θ2 parameter. This results in a full
protocol described by the operation

e−i
π
2 Jx e−iθ2Jz ei

π
2 Jx ei

π
2 Jx e−iθ1Jz e−i

π
2 Jx � e−i θ1−θ2( )Jy . (21)

However, it should be noted that for any global rotation e−iφ �n· �J,
with �n ∈ R3 being a unit vector and �J � (Jx, Jy, Jz) the vector of spin
operators, the following channel commutativity relation holds on
the quantum states of N two-mode bosons:

EK◦e−iφ
�n· �J � e−iφ �n· �J◦EK, (22)

where the spin operators act in a spin-N/2 representation on the left-
hand side and a spin-N−K

2 representation on the right-hand side.
Therefore, an analysis of this sequential protocol Eq. 21 can be
carried out (even with imperfect probes or particle loss) using the
methods of Sections 2, 3.

Instead, we consider two parallel strategies in which globally
entangled states are used to estimate linear functions of the
phases θj, j = 1, 2. The first parallel strategy is especially
relevant when the initial TF state is a single atomic cloud with
N/2 occupation in each of two internal modes, for example,
atomic nuclear spin states. The initial TF cloud is then
spatially split (we assume perfect splitting) to give the TF
probe state in the superposition of spatial modes.

|ψsplit〉≔
a†1 + a†2�

2
√( )N/2

b†1 + b†2�
2

√( )N/2

|0, 0, 0, 0〉. (23)

It should be noted that the original internal modes a and b of the
TF state have been spatially split to spatial modes a1 and a2 and b1
and b2, respectively. The local phase shifts are imprinted on |ψsplit〉
by the operation UMZ(θ) � e−

θ1
2 (a†1b1−h.c.)−θ2

2 (a†2b2−h.c.). This strategy
appears especially relevant for magnetic gradiometry with atomic
ensembles. However, we find that every entry of the inverse of the
QFI matrix scales as N−1. The multiparameter quantum
Cramér–Rao bound then implies that an estimator of any linear
function of θ1 and θ2 has an error scaling at least as N−1, i.e., scaling
as SQL. No improvement can be obtained by losing particles, so we
cease further exploration of probe state |ψsplit〉.

The second parallel strategy uses the same local phase shift
operation UMZ(θ) but uses as probe the doubled TF state

|ψdoubled〉≔ a
†N4
1 b

†N4
1 a

†N4
2 b

†N4
2 |0, 0, 0, 0〉 (24)

in which two spin modes and two spatial modes are occupied
symmetrically. The state (Eq. 24) can also be considered as two
copies of bosonic-independent and identically distributed (b.i.i.d.) TF
states [58] which, mathematically, correspond to taking the Young
product of two copies of the symmetric subspace of (C2)⊗N. It
should be noted that both (Eqs. 23, 24) are in the symmetric
subspace of (C4)⊗N and are, therefore, valid bosonic states of N
atoms. For independent MZ interferometers acting on the aj, bj
mode pairs, the 2 × 2 QFI matrix for Eq. 24 is diagonal with equal
(1,1) and (2,2) matrix elements given by N2+4N

8 , independent of �θ [the
probe state (Eq. 23) does not have a diagonal QFImatrix]. Therefore,
an optimal estimator of any linear function �w · �θ, ‖ �w‖2 � 1 exhibits
Heisenberg scaling, and we will, therefore, quantify the performance
of a probe state for gradiometry by the (1,1) entry of the QFI matrix.
Using Eq. 11, we show analytically that, for example, the (j, j)
element of the QFI matrix is globally saturated using the method of
moments estimation of the local quadratic spin observables O1 �
J
(aj,bj)2
z and O2 � 1

2 (J(aj,bj)2+ + h.c.). The covariance matrix and
derivatives are shown in Supplemental Section S3, along with
verification that the final expression indeed simplifies to
N
8 (N + 4) regardless of θ1.

The property of the QFI matrix being a scalar multiple of the
identity holds also for the probe state obtained by losing K particles
from Eq. 24. This fact follows because taking the trace over K particles
produces a statistical mixture of four-mode Dicke states, and the 1↔
2 label symmetry of the state is preserved. It should be noted that atom
loss from Eq. 24 is not a strictly local process to the MZ
interferometers and cannot be described by, for example, applying
the loss channels EK to the mode pairs a1, b1 and a2, b2 independently.
Furthermore, although the dimension of the symmetric subspace of
(C4)⊗N scales as N3, if one considers losing at least K atoms from the
doubled TF state with K≥ N

4 , one must keep track of at least eO(
��
N

√ )

weights for an exact description of the state, according to the
Hardy–Ramanujan asymptotic for the number of partitions of a
large natural number. We briefly describe the channel describing
particle loss from a Dicke state with more than two modes in
Supplemental Section S2.

The black dots of Figure 2D show the gain over the SQL N
2 for the

estimation of the firstMZ phase θ1 (withN= 64). The SQL is taken asN2
because at most N/2 particles address each of the MZ interferometers
when loss is applied to the probe state (Eq. 24). The red dots show the
gain over SQL for the probe state EK(|N4 , N4〉〈N4 , N4 |) using the same
analysis as in Section 3. It is clear that for small loss values, the four-
mode state exhibits roughly 1.4 dB gain in the attainable precision of
local interferometry compared to a single lossy TF state with the same
local energy and loss. The result indicates a different phenomenon
from the known distributed sensing results in the multimode optical
setting with pure probe states [56] or massive boson setting with pure
probe states [59]. In the absence of loss, the optimal strategy for the
estimation of a linear function of the MZ phases θ1 and θ2 using the
probe state (Eq. 24) does not outperform the use of two independent
TF states |N4 , N4〉 to separately probe the MZ interferometers, which
indeed indicates that the probe state (Eq. 24) is a suboptimal four
mode,N particle probe state (one could apply a linear optical operation
to, e.g., |N2 , N2 , 0, 0〉, to obtain a better probe state) [56]. However, when
at least one particle is lost, the distributed entanglement of the lossy
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version of Eq. 24 allows greater attainable precision than independent
copies of the lossy TF probe state.

5 Discussion

We analyzed the method of moments readouts for the TF state
and its images under a particle loss channel or unitary phase-diffusion
channel. The traditional parity measurement, which saturates the QFI
forMZ interferometry near θ = 0 for all Dicke states, can be dispensed
with if one can measure both quadratic spin observables J2z and
1
2 (J2+ + h.c.). Although one-shot measurement of both these
observables is impossible because they do not commute, allocation
of shots to one or the other observable allows extracting an estimator
with error asymptotically given by the left-hand side (Eq. 11),
according to the central limit theorem. When particle loss is taken
into account, we identified minimal lists of observables that give the
method of moments error that globally saturates the QFI for any loss
value. The observables are again at most quadratic in the spin
operators. The fact that better-than-SQL scaling is obtained even
when O( ��

N
√ ) particles are lost from the TF state indicates the loss

robustness of the TF probe state for practical MZ interferometry. To
analyze a formal gradiometry protocol, we considered the application
of particle loss to the doubled twin Fock state |ψdoubled〉 � |N4 , N4 , N4 , N4〉,
which can probe two MZ interferometers describing, for example,
distributed sensing of spatially separated external field values.
Although the noiseless doubled TF state does not allow estimating
θ1 (chosen without loss of generality) with lower error than is
achievable by probing the MZ interferometer with TF states of N/2
particles, the lossy doubled TF state exhibits an advantage over the
lossy TF state. This result suggests that an extended bosonic insulating
state is, in a practical lossy setting, a more useful resource for
distributed quantum sensing than a tensor product of states of a
fixed particle number. The advantage can be attributed to the
indistinguishability of the particles in the bosonic insulator, giving
a fully symmetrized state which causes the loss to be distributed over
all occupied modes. Extending this distributed sensing result to
include other noise sources, for example, thermal [60], would
establish this noisy advantage in experimentally realistic settings
such as those realized in recent demonstrations of entanglement
between spatially separated atom ensembles [24].
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