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Deep learning has revolutionized many sectors of industry and daily life, but as
application scale increases, performing training and inference with large models
on massive datasets is increasingly unsustainable on existing hardware. Highly
parallelized hardware like Graphics Processing Units (GPUs) are now widely used
to improve speed over conventional Central Processing Units (CPUs). However,
Complementary Metal-oxide Semiconductor (CMOS) devices suffer from
fundamental limitations relying on metallic interconnects which impose
inherent constraints on bandwidth, latency, and energy efficiency. Indeed, by
2026, the projected global electricity consumption of data centers fueled by
CMOS chips is expected to increase by an amount equivalent to the annual usage
of an additional European country. Silicon Photonics (SiPh) devices are emerging
as a promising energy-efficient CMOS-compatible alternative to electronic deep
learning accelerators, using light to compute as well as communicate. In this
review, we examine the prospects of photonic computing as an emerging
solution for acceleration in deep learning applications. We present an
overview of the photonic computing landscape, then focus in detail on SiPh
integrated circuit (PIC) accelerators designed for different neural networkmodels
and applications deep learning. We categorize different devices based on their
use cases and operating principles to assess relative strengths, present open
challenges, and identify new directions for further research.
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1 Introduction

Since the advent of computers, researchers have been captivated by the prospect of
endowing machines with human-like abilities such as abstract thinking, decision-making,
creative expression, and social behavior, leading to a field now popularized as Artificial
Intelligence (AI). However, the practical use of AI was not realized until theoretical
advances in the 1980s and 90s brought a particular form of AI to the forefront: deep
neural networks [1]. In the past two decades, deep learning has seamlessly integrated into
daily life, from consumer applications like personalized product recommendations, to
enhanced medical diagnosis and drug design. This rapid advancement in adoption can be
substantially attributed to advances in hardware, both in processing speed and
memory capacity [2].

At the same time, the rapid progress in deep learning algorithms and their applications
has accelerated the demand for high-performance computing platforms. In 1975, Moore
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projected a doubling of chip complexity every two years [3], but
this trend has since approached a saturation in the possible
density for conventional CMOS circuits. Recently, Graphics
Processing Units (GPUs) have become the industry standard
in scaling computing to meet demands, relying primarily on
maximizing the use of parallel processing. AlexNet [4],
introduced in 2012, was the first popular convolutional
neural network architecture specifically developed for use on
general-purpose graphics processing unit (GPGPU) platforms,
following earlier proposed implementations such as [5, 6]. Field-
programmable gate array (FPGA) accelerators have also been
introduced, including the Caffeine platform [7] in 2016, and the
Microsoft Project Catapult [8] in 2017. NVIDIA has come to
dominate the industry with their A100 accelerator introduced in
2020 [9]. Current benchmarks have shown that a single
A100 can train a simple convolutional network to classify
images from the CIFAR-10 dataset with 94% accuracy in
just 3.29 s [10].

But while these devices have shown great performance in
terms of speed and scale, their energy demands are extreme:
in 2023 alone, NVIDIA shipped 100,000 units, which will
consume an average of 7.3 TWh of electricity annually [11].
Currently, the majority of computational power demands
come from data centers and are exacerbated by the increase in
popularity of applications like artificial intelligence. Energy
demands stem from the electricity supplying power (40%) and
cooling requirements (40%), with the remainder attributed to
associated compute infrastructure equipment. As a consequence,
global electricity consumption by high-performance computing
is expected to rise to a total range between 620 and 1,050 TWh by
2026 [11]. This corresponds to an increase between 160-

590 TWh: roughly the annual demand of Sweden on the low
end, or Germany on the high estimate.

Such trends reflect the fundamental limitations of
acceleration through increased chip density and parallelism.
As a result, in the search for ways of increasing scale to meet
such application demands, research has begun to explore
photonic accelerators as novel compute engines [12]. Photonic
accelerators, also known as optical accelerators, are built on
prior photonic technologies such as modulators, photo-
detectors, and optical filters [13] which have been adapted to
implement computing operations. This growth in interest is
illustrated in Figure 1, with a line plotting publications per
year on photonic deep learning accelerators. Unlike
traditional electronic components such as transistors and
electronic switches, photonic accelerators utilize photons to
process information. Photonic devices can make use of the
properties of light to enable parallel processing and fast
information transfer, with reduced energy consumption and
greater efficiency per area.

1.1 Computing with light

The development of photonic accelerators has been driven by
decades of innovations at the device and chip level of optical
systems. These accelerators build upon foundational photonic
technologies such as lasers, modulators, photodetectors, and
optical filters. Many key developments in optical devices and
integrated SiPh circuits have been introduced since the early
1980 s, such as wavelength division multiplexing (WDM) filters
[14–16], Mach-Zehnder interferometer (MZI) modulators [17, 18]

FIGURE 1
A timeline of milestones in accelerator development. The plot indicates the year in which each technology was introduced, showing the
advancements in the 21st century which are foundational for practical photonic accelerators. The trajectory line indicates the number of publications per
year on photonic deep learning accelerators in particular. Finally, the two horizontal lines indicate the projected throughput of conventional vs photonic
accelerators, measured in tera-ops (TOPs) per area (mm2).
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and in-phase/quadrature (I/Q) modulators [19]. This evolution
continued with the advent of smaller-sized Microring Resonators
(MRRs), crucial in many optical filter designs, and high-speed or
large bandwidth non-return-to-zero (NRZ) modulators [20].
Additionally, Pulse Amplitude Modulation with Four Levels
(PAM4) modulation schemes have been explored, using ring
resonators to increase the throughput per area of the device
[21]. These ring resonators, possessing high-Q factors, have
been engineered to function as switches, integrators,
differentiators, and memory elements at both optical and
terahertz (THz) frequencies.

The earliest optical accelerators could be traced in the
assemblage of typical lab bench-top discrete optical
components interconnected with long fiber spools intended to
perform canonical mathematical functions [22, 23]. One such
important task is computing unitary operations, first
demonstrated optically by Reck et al. [24] in 1994 using
optical beam splitters, Fourier lenses, and light-emitting diode
(LED) sources. This development laid the groundwork for
subsequent advancements in integrated photonic computations
using MZIs. Miller et al. [25–27] showed that such MZI meshes
could be self-configured to define a desired function, paving the
way for building adaptive systems. Clements et al. [28] improved
on the design with an alternative rectangular topology that
achieves an equivalent computation using only half the optical
depth. These landmark developments are plotted in the timeline
of Figure 1.

Optical computing has previously been viewed skeptically in
applications that require large data storage and efficient flow
control. However, current research demonstrates the capabilities
of photonic accelerators on applications that are well-suited to the
inherent advantages of optics. These applications include tasks
with high parallelism, which can be efficiently computed by non-
coherent optics through WDM, polarization diversity, and mode
multiplexing [29]. Coherent approaches such as MZI circuits are
more challenging to scale, raising concerns about high latency and
insertion loss due to the longer physical length of the circuit [30],
but MRRs present an alternative with better scalability and
compactness. When light goes through ring resonators such as
in 2 × 2 switches, the drop port of the switch induces a time delay
determined by the Q factor of the ring [31–34]. This induced
differential can be used in various ways to transmit information for
computations. The latency can be tuned by inserting phase change
materials (PCMs) as cladding, or cascading additional switches in
tandem. The phase transition of the PCMs leads to appreciable
alterations in their optical properties, controllable either
electrically or optically [35, 36]. This characteristic offers a
notable advantage in power efficiency for programmable
photonic devices, compared to electro-optic or thermo-optic
methods [37, 38].

Moreover, incorporating non-volatile PCMs as photonic
devices enables optical memory storage and in-memory
computing, achieved by transmitting optical input through the
programmed device. For instance, optical memory in ring
resonators has been studied using the Volterra series in
microwave photonics [39]. The memory effect is modeled as a
multidimensional impulse response in the time domain or
Volterra kernels in the frequency domain. By using the ring

resonator as a differentiator, it is possible to induce nonlinear
mixing of multiple wavelengths to realize a frequency-dependent
memory function.

More recently, these devices have been integrated to create
energy-efficient, compact, and high-throughput computational
accelerators. A comparative analysis of the theoretical maximum
tera-operations per second per square millimeter (TOPs/mm2) for
both electronic and photonic accelerators shows a clear advantage in
the photonic domain.

To calculate the theoretical maximum TOPs/mm2 for
electronic accelerators, we consider the operational frequency
(F), transistor density (D), and operations per cycle per
transistor (O). The formula used is:

TOPs/mm2 � F × D × O × 10−12.

For NVIDIA A100 [43], based on the TSMC 7 nm node [44], the
parameters are approximately: F = 2 GHz = 2 × 109 Hz, D = 108

transistors/mm2, and O = 2, which gives an estimate of 400 TOPs/
mm2. However, due to constraints in practice, in the literature many
electronic devices report a maximum efficiency of approximately
100 TOPs/mm2 [46, 47].

In contrast, for photonic accelerators, key parameters include
the parallelism factor (P), component integration density (C), and
efficiency factor (E). Their relationship is:

TOPs/mm2 � P × C × E × 10−12.

Taking the accelerator of Liu et al. as a conservative
benchmark [45], representative current parameters are p =
16384, C = 104 components/mm2, and E = 1, giving an
estimate of 32 TOPs/mm2.

But while physical limitations increasingly constrain further
enhancements in transistor density and operations per cycle for
electronic accelerators advances in photonic technology may enable
p = 50,000, C = 105 components/mm2, and E = 1, potentially leading
to 5000 TOPs/mm2, or 50 POPs/mm2—performance measurable in
peta operations per second.

Developments in photonic accelerators, alongside those in
conventional hardware accelerators, are depicted in Figure 1, which
contrasts these comparative projected throughput capabilities of
photonic computing versus electronic computing in terms of TOPs
(tera-operations) per second normalized by processor area.

The significantly higher level of projected TOPS/mm2 for
photonic systems is attributed to the efficient parallelism
achieved through utilizing multiple wavelengths, coupled with a
smaller footprint per wavelength.

In silicon nitride (SiN) photonics-based devices, the area of one
MAC unit cell is 285 × 354 μm2 [48, 49]. This, when operating at
12 GHz with 4 input vectors via WDM, corresponds to a compute
density of 1.2 TOPS/mm2. If silicon-on-insulator (SOI) MRR
devices are used instead with a nominal bend radius of 5μm, the
area of the MAC unit cell could be reduced to less than 30 × 30 μm2,
increasing the compute density to 420 TOPS/mm2 per input channel
[50, 51]. In-memory-computing photonic tensor cores show
predicted compute density and compute efficiencies of
880 TOPS/mm2 and 5.1 TOPS/W for a 64 × 64 crossbar core at
25 GHz clock speed [52]. Compared with digital electronic
accelerators (ASIC and GPU), the photonic core has 1 to
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3 orders of magnitude improvement in both compute density
and efficiency. Overall, this comparison underscores the
advancements and potential of photonic technologies in
achieving higher throughput and efficiency in computing.
This makes it a competitive candidate for application in the
context of neural network processing and deep learning
acceleration.

1.2 Photonics for deep learning

Researchers have been interested in optical implementations of
neural networks since the 1980s [40], for instance, exploring image
recognition by the use of nonlinear joint transform correlators
[22], and implementing Hopfield neural networks [41, 42]. Since
then, many innovations have stemmed from advancements in
photonic tensor cores, in-memory computing, and hybrid co-
processors [35, 53–57]. For instance, in deep learning inference,
trained weights may not require frequent updates or any at all,
making non-volatile analog memory advantageous. This can be
achieved using PCMs, either optically [58, 59] or electronically [60,
61]. On the other hand, a real-time neural network can be
established by using digital electronic drivers with photonic-
compatible firmware. Neuron behavior can be replicated through
a hybrid of well-modeled electronic nonlinearities and optical
systems that have negligibly low losses. In those systems, the
active components consist of photodetectors (PDs) and
modulators that inject or deplete carriers in response to an
induced electric field [62, 63].

Photonic computing and its use in artificial intelligence
applications can be viewed from a multitude of perspectives, many
of which have been previously explored in reviews. Various reviews
have been devoted to photonic analog computing broadly, such as
Stroev and Berloff [64]. Huang et al. [65] provide a survey of design
factors in neuromorphic computing, and discuss the role of photonic
processing for implementing aspects such as interconnects, linear vs
nonlinear operations, and memory, as well as presenting use cases in
communications, nonlinear programming, and cryptography. Wu
et al. [66] review analog optical computing based on integrated
photonics, diffractive networks, and hybrid optoelectronic designs
applied specifically to three classes of machine learning models: feed-
forward networks, spiking neural networks, and reservoir computing.

In this review, we present a concise overview of the photonic
accelerator landscape to provide context for photonic deep learning
accelerators (PDLAs), and provide some background on elements of
the compute operations in deep neural network architectures that
are mapped onto photonic implementations. We focus on Silicon
Photonics Integrated Circuit (Si PIC) accelerators, as this modality
can be considered more practical for near-term use given its level of
technical advancement, cost-effectiveness, and compatibility with
conventional CMOS hardware. Our analysis seeks to unify low-
level design considerations in implementing PDLAs with a
broader perspective on application. The paper is organized as
follows: in Section 2, we give context on the broader area of
photonic accelerator design: physicalmodalities, as well as analog
and digital compute paradigms. Section 3 provides an overview of
the computational building blocks in deep learning, and indicates
the roles that photonic accelerators can play in neural network
models. In Section 4, we highlight specific approaches to PDLA
design with representative examples from the literature. Finally,
Section 5 indicates ongoing challenges in implementing PIC-
based systems and promising further directions for research, with
key takeaways for both photonics and deep learning
practitioners.

2 Photonic accelerators

Photonic principles can be used for accelerated computing in
many ways, so we first provide context on the primary physical
modalities used in a photonics processor. Those devices can also
operate in both analog and digital computing paradigms, and we
provide examples of each approach. Figure 2 shows this schema of
physical and computational properties of photonic accelerators.

2.1 Physical modalities

Optical Processing Units (OPUs) are photonic devices used for
computing tasks, efficiently performing a broad range of mathematical
and logical tasks crucial for applications such as deep learning. These
devices leverage optics instead of electronics, in contrast with traditional
CMOS processors such as CPUs, GPUs, and TPUs. OPUs have
demonstrated scalability in facilitating acceleration within standard

FIGURE 2
Schema of structural and computational factors in photonic accelerator design.
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computing frameworks [67]. High-bandwidth optical interconnects are
central to optical data transmission accelerators, and recent advances
here have focused on increasing data rates, decreasing power
consumption, and achieving higher reliability [52, 68]. OPUs can be
based on three main modalities: integrated optics, quantum optics, and
free space optics.

2.1.1 Integrated circuit OPUs
Photonics Integrated Circuits (PICs), the predominant form of

OPUs, are engineered for efficiency in operations such as matrix
multiplication and convolution [69]. Integrated optical processors
have been demonstrated for implementing matrix-vector
multiplications at Gb/s processing rates [70–72]. Companies like
Lightmatter1, Lightelligence2, Luminous3 are developing photonics ICs
for low-power multiply-and-accumulate (MAC) computations which
significantly outperform conventional digital and analog electronics.

Adaptive and reconfigurable OPUs also represent an emerging
subgroup with the ability to dynamically alter processing
parameters, an essential requirement for many machine learning
use cases [75]. Programmable OPUs eliminate the need for physical
hardware modifications, ensuring cost-effectiveness and resource
efficiency. Harris et al. [76] reviewed progress made in
Programmable Nanophotonic Processors (PNPs), which employ
both classical and quantum information processing. Bogaerts
et al. [77] present a survey of the photonic building blocks, as
well as discussing the necessary control structures and application-
level considerations, for instance highlighting the need for
developing descriptive languages similarly to FPGA programming.

An important approach in reprogrammable device design is the use of
phase-change materials (PCMs). For example, Wu et al. [35] propose a
compact, programmable waveguide mode converter based on a
Ge2Sb2Te5 (GST-enhanced) phase-gradient metasurface. The converter
uses changes in the refractive index of GST to control the waveguide
spatialmodes up to 64 levels. This contrast represents thematrix elements,
with a 6-bit resolution to perform matrix-vector multiplication in
convolutional neural networks. The design featured high programming
resolution and was used to construct a photonic kernel using an array of
such phase-change metasurface mode converter (PMMC) devices,
enabling an optical convolutional neural network to be designed for
image processing and recognition tasks. The authors use nanogap-
enhanced potential for a wide range of optical functions, making them
suitable for large-scale optical computing and neuromorphic photonics.

Innovations in this category also address the issue of noise
through advanced noise reduction and error correction techniques,
which are important properties in supporting the accuracy and
reliability of machine learning computations [78]. The researchers in
[79–82] offer a comprehensive review of PCMs in non-volatile
photonic applications. They highlight the retention of the optical
state of a material without the need for continuous power supply,
and the potential for low-energy operation due to the efficient

transformation between amorphous and crystalline states,
providing a pathway to highly reconfigurable photonic devices.

2.1.2 Quantum OPUs
QuantumOPUs represent another approach to OPU design. These

devices have been previously developed and applied in the context of
communications [83, 84]. Quantum OPUs can implement compute
tasks on very small scales. For example, quantum dots are devices that
have small dimensions of a few nanometers. QuantumDot (QD)–based
OPUs incorporate quantum dots, nanoscale semiconductor particles
with dimensions of several nanometers, to enhance OPU functionality.
Semiconductor QDs represent a type of zero-dimensional, quantum-
confined device which exhibits distinct electronic and optical
characteristics. The three-dimensional quantum confinement within
QDs leads to the total localization of carriers, producing a discrete
spectrum characterized by a δ-function-like density of states [85]. The
precision control afforded by these quantum dots over photon emission
and absorption translates to more effective processing tailored for
specific machine learning tasks, thereby expanding the versatility of
photonic processing applications [86].

Lingnau et al. [87] furthered the domain with the use of coupled
quantum well devices on-chip, highlighting their potential in
creating excitable neuromorphic networks [88]. Present a PIC
consisting of quasi-single-mode slotted Fabry–Pérot lasers
coupled via an actively pumped waveguide. This research shows
how quantum optics can enable a variety of controllable excitable
states, including dual-state excitability and dual-state bursting
mixed-mode oscillations. A state-of-the-art large-scale integrated
quantum photonic circuit [89] has been successfully demonstrated
in silicon, boasting 16 waveguide spirals, 93 reconfigurable thermo-
optical phase shifters, 122 MMIs, 64 grating couplers, and
376 crossings. This reconfigurable device showcased its
capabilities in generating, manipulating, and managing (GMM)
entangled states directly on the chip.

Quantum photonics can allow for implementing quantum
algorithms on an integrated device, for instance implementing Shor’s
algorithm to factorize 15 into 3 and 5 [90]. This system comprises a
Quantum Fourier Transform subsystem and a two-qubit controlled
NOT gate. Variants of quantum photonic algorithms akin to these have
been employed in solving a standard eigenvalue problem [91], as well as
in the implementation of graph-theoretic algorithms utilizing a SiPh
quantum walk processor [92]. However, realizing these quantum-
enhanced accelerators presents many technical challenges and
feasibility questions [93]. Processing single photons in large
quantities requires high-speed, low-loss optical switches like lithium
niobate and barium titanate. Achieving the complete integration of
quantum circuits, including sources and detectors, remains an
unresolved endeavor.

2.1.3 Free-space photonics
Free-space optics represents a pivotal modality in optical

computing, diverging from traditional silicon-based mediums to
leverage plane light propagation in free space. This approach, as Hsu
et al. [94] highlights, exploits additional degrees of freedom such as
polarization, diffraction, and orbital angular momentum (OAM),
making it particularly suited to tasks involving imaging data and
computer vision applications. The use of diffraction for
manipulating incident light, as demonstrated by Zhu et al. [95],

1 https://lightmatter.co

2 https://www.lightelligence.ai

3 https://www.luminous.com
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and the implementation of a Laguerre-Gaussian mode sorter
(LGms) for super-multimode (de)multiplexing in optical
communications by Fontaine et al. [96], underscore the versatility
and potential of free-space optics in enhancing optical computing
capabilities.

Deep diffractive neural networks (D2NNs) stand as a notable
application of free-space optics. Lin et al.’s D2NN uses passive
diffractive layers to implement transforms, though it lacks rapid
programmability [97]. Another D2NN design employed orbital
angular momentum (OAM) to adjust the phase and amplitude
across multiple diffractive screens, enabling the manipulation
of light beams’ wavefronts for a trainable network architecture.
Hamerly et al. advanced the application of free-space optics in
optical computing by employing quantum photoelectric
multiplication to implement matrix-vector products through
coherent detection [98]. This method not only allows the optical
encoding of weights and inputs but also supports the
reprogramming and training of the accelerator. Capable of
operating at GHz speeds with sub-attojoule energy per MAC,
this accelerator scales to larger networks with N ≥ 106 neurons.
Another demonstration of D2NNs is reported in [99, 100] with
programmable optoelectronic devices as well as additional
variants such as D-NIN-1, and D-RNN. Such capabilities
indicate the increasing potential of free-space devices in
realizing practical, large-scale applications in areas like deep
learning, marking a departure from fully integrated photonic
processors.

Free-space devices show promise for large scalability, as shown
by the LightOn OPU [73] which can operate at 50 TOPS/watt with
input vector dimensions of 1 million × 2 million. This OPU can
accelerate randomized numerical linear algebra algorithms by
implementing very large random matrices optically. It shows how
optical properties such as scattering can circumvent the limitations
of a von Neumann architecture by performing high-dimensional
operations in a single computational step, reducing the effective
complexity from O(n2) to O(1). Moreover, the exploration of
complex analog computations in free space, as investigated by
Cordaro et al., further exemplifies the innovative uses of this
technology [101]. Their work on using a silicon metasurface-
based platform to solve Fredholm integral equations of the
second kind illustrates the broad applicability and the advanced
computational possibilities enabled by free-space optics.
Collectively, these developments not only underscore the
technological advancements in free-space optical computing, but

also highlight its expanding role in addressing sophisticated
computational challenges.

2.2 Computing paradigms

Analog processors leverage the continuous-time and space
properties of light to perform computations, whereas digital
photonic accelerators use digital encoding. This flexibility offers
two approaches to processing photonic signals and to designing
photonic accelerators for machine learning tasks.

2.2.1 Analog optical processing
Analog Optical Processing Units (A-OPUs) [64] use the

continuous values generated by the physical functionality of the
device by reading them out as computation results, to perform
operations like weighted summation in an energy-efficient
manner. This is particularly useful in scientific simulations
and optimization problems, where continuous solutions are
desired. Figure 3 shows an example of an A-OPU suited to
solve partial differential equations (PDEs) and ordinary
differential equations (ODEs) [102]. When the temporal
frequency of the input signal is near the resonant frequency of
the phase-shifted Distributed Feedback Semiconductor Optical
Amplifier (DFB-SOA), the resultant transfer function becomes
equal to that of a first-order linear ODE. Adjusting the injection
current at the input tunes the constant coefficient of this ODE. In
this way the phase-shifted DFB-SOA can be used to implement a
photonic ODE solver by controlling the injection current.

Analog photonic processing has also been applied to reservoir
computing (RC). Originating from concepts in liquid-state
machines and echo-state networks, RC is a type of machine
learning framework which maps inputs into a fixed non-linear
system, known as a “reservoir,” then processes this information
through a trainable readout mechanism to produce the model
output [103]. The reservoir can be implemented in many ways,
and A-OPU devices are increasingly explored as analog reservoirs,
showing success when applied to time-series data processing and
pattern recognition tasks [104–107]. Further, A-OPUs have also
played a role in quantum photonic processing, as seen in
Continuous-variable Quantum Optical Processors (CQOPs) [84,
108–111]. The analog approach uses the inherent properties of
photon behavior to efficiently perform quantum simulations or
produce solutions to optimization problems [64].

FIGURE 3
Schematic of an analog photonic ODE solver. (A)When injection current I is below the lasing threshold, the constant coefficient of the ODE can be
tuned by modulating the current. (B) The DFB-SOA can be biased to operate at the lasing mode and connected to an optical filter, achieving temporal
intensity differentiation. Reproduced without changes under terms of the CC-BY license from [102], Li et al. 2016, © Springer Nature.
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2.2.2 Digital optical processing
Digital Optical Processing Units (D-OPUs), on the other hand,

use discrete photonic signals for computation and processing [112,
113]. D-OPUs are often designed around enabling typical
computing operations like binary logic and bit manipulation, but
in a fast and efficient manner using the optical domain. Gostimirovic
et al. [114] proposed a hybrid photonic-electronic circuitry for a
digital logic architecture using ultra-compact vertical pn junctions
based on microdisk switches. With higher Δλ/V, where V is the
voltage, they used wavelength-division multiplexing to implement
NAND, NOR, and XNOR operations with a single MRR switch. The
gates are then expanded to explore complex CMOS-compatible
blocks such as adders, encoders, and decoders. Several aspects of
optical logic computing have also been explored using
semiconductor optical amplifiers (SOAs) [115, 116]. Many
mathematical operations can be implemented using Binary
Photonic Arithmetic (BPA) where photonic accelerators perform
binary arithmetic operations using discrete optical signals [117].
Digital photonic data transmission has also emerged in optical
interconnects for data compression, multiplexing, and encoding.
These technologies facilitate digital data handling between
processing units and memory components in high-performance
computing clusters.

In addition to standard bit operations, quantum photonic
devices can be used to achieve qubit behavior to facilitate
quantum algorithms. Such Quantum Digital Optical Processors
(QDOP) [118] can reach ultrafast (1 Tb/s) speeds for optical
logic operations [119]. In this context, quantum dot (QD) SOAs
have advantages such as minimal crosstalk between adjacent
wavelength channels due to QD isolation, which suppressed
carrier transfer between dots, and utilization of the cross gain
modulation (XGM) effect between two wavelength channels [120,
121]. These QDOP units would enable quantum computations and
algorithms that work with digital quantum information, facilitating
quantum-enhanced machine learning algorithms.

3 Photonic deep learning fundamentals

Photonic accelerators for deep learning are built on the
functionalities of photonic devices highlighted in Section 2. The
fundamental goal is to perform the intensive computations
required by deep neural networks efficiently and at high speed.
Neural networks are built out of linear products and nonlinear
special functions. Deep networks include many layers of these
operations, which results in their computational expense.
Accelerator design can target different components of a network,
from the lowest level of mathematical operations to higher-level
architecture blocks. Here, we present an overview of the main
neural network components and the ways that they are translated
to photonic implementations, along with some ways in which
performance considerations must be reinterpreted.

3.1 MAC operations in neural networks

The bulk of a network’s computation comes from the matrix
multiplications present in layer transforms, and one way to assess

network complexity is to count the number of multiply-accumulate
(MAC) operations required to evaluate the full network on a given
input. For a modified state a′ and a given accumulation variable a, a
MAC operation can be written as a′ ← a + (w × x).

In the general case of a linear layer in a network, the action of the
layer on an input consists of a weighted sum

xj � f ∑
i

wijxi + bj
⎧⎨
⎩

⎫⎬
⎭. (1)

“Neurons” xi from layer i transfer signals to neuron xj in the
following layer j through connection weights wij, linking a set of input
and output variables. bj is a “bias” offset for translation, making it an
affine transform. f{·} represents a discriminatory nonlinear
“activation” function [122, 123]. In a typical network, this is
chosen to be either a sigmoid-shaped function, such as the logistic
or hyperbolic tangent functions, or a ramp-shaped function, such as
the rectified linear unit (ReLU=max{0, x}). The output variables xj are
often referred to as the “activations.” The weighted sum of Eq. 1 forms
a set of parallel MAC operations and is thus computed as a matrix
multiplication of sizeN ×M to convert an input of sizeM to an output
of size N, and in terms of computational complexity often accounted
for as O(N2), given that in practice the input and output size of
internal layers are typically of similar magnitude.

Convolutional neural networks, on the other hand, act on windows
of the input tensor, making use of the locality of information in data. As
a result, they are especially suitable for tasks on images and other natural
signals. Conceptually, a 2D convolution layer takes in a 3D input tensor
of size (H ×W × Cin) and a 4D kernel tensor of size (Cin × Cout × k0 ×
k1), and outputs a 3D tensor of size (H × W × Cout). Overall, the layer
must apply the kernel transform to all k0 × k1 windows of the input,
multiplying them together and summing the values in a convolution
operation. In practice, kernel windows are usually square and relatively
small (width < 10). However, the input and output channel numbers
may be in the hundreds (e.g. up to 512 in VGG [124]). In CNNs, the
activation functions are often followed by a pooling operation over
windows of the output, which may consist of further MACs (as in
average pooling), or of another nonlinear function (as in
maximum pooling).

Computationally, there are many ways of formulating this
multiple-channel, multiple-kernel convolution as generalized
matrix-matrix multiplication (GEMM) suitable for modern
hardware [125]. The im2col algorithm is often used as a
conceptual basis, vectorizing the input such that its values are
duplicated for multiplication with the kernel. This naive
construction results in a matrix multiplication between matrices of
sizeM × (ck2) and (HW) × (ck2), as depicted in Figure 4 [126]. Here the
desired number of output channels is reflected in the valueM. Modern
GPU implementations derive their efficiency from optimizations such
as re-using intermediate results and reducing the amount of matrix
reshaping. They also apply virtual memory strategies so that re-used
values are never physically duplicated in memory.

3.2 Photonic network principles

Designing PIC accelerators for deep learning relies on
translating photonic capabilities to these essential building blocks
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of neural networks. Accelerators can target the linear operations of
feedforward and convolution layers through fast photonic multiply
and accumulate methods. They can also target nonlinear functions
through switching and modulating.

As an illustration, in their groundbreaking work, Shen et al.
[127] laid out a construction of how photonic elements can be
mapped onto the components of a feedforward neural network for
an all-optical procedure. The linear operation of matrix multiplication
can be formulated as a unitary operation and readily implemented in
programmable photonic circuits (PPC), where phase shifters can tune
the optical paths, allowing reconfiguration of neural network weights.
Nonlinear activations can then be performed using optical switching
elements such as saturable absorbers. They also observe how in-situ
training of such an accelerator can be realized photonically not by the
backpropagation algorithm standard to digital NNs, but rather by
forward propagation and finite differencing to directly obtain the
gradient of each parameter. Following the PPC approach of Shen et al.,
many accelerators choose to implement linear operations photonically
using PPC for universal unitary operations. More recently, as an
alternative to general MZI mesh designs, Shokraneh et al. [128]
designed a “diamond” mesh structure specifically optimized for use
in neural networks.

In contrast with coherent, PPC-based designs, the other main
concept for linear operations in photonic accelerators is to leverage
non-coherent photonics through wavelength division multiplexing

(WDM) for parallel operations at scale. The broadcast-and-weight
protocol of Tait et al. [129] applied the analogy of the broadcast-and-
select WDM protocol by observing the similar network connectivity
of neurons between layers. Tunable filter banks based on microring
resonators (MRRs) can thus be used similarly to how wavelength
demultiplexers are realized in conventional digital interconnects.
While the protocol was originally introduced for linear network
layers, conceptually this extends naturally to convolutional layers,
as a linear layer is equivalent to a convolutional layer with a “1 × 1”
kernel. Feldmann et al. [130] have since demonstrated a photonic
tensor core that combines the abilities of microcombs and phase-
change materials to realize efficient encoding of data and kernels,
respectively. Movement of data is minimized with in-memory
photonic MAC operations and reduces footprint cost by
multiplexing within a single core. Meanwhile, Xu et al. [131]
introduced a convolutional accelerator that emphasizes maximized
input size capacity, handling full-resolution images of 500 × 500 pixels
by making use of both time and wavelength interleaving.

Photonic devices are naturally suited to the linear nature of
matrix multiplication, but it is also possible to implement all-
optical activations with optical switching implemented for
instance in the action of a saturable absorber or nanocavities,
as suggested by [127]. Other possibilities include using carrier
effect in MRR, or state changes in a material as in a structural
phase transition [65]. In addition, some accelerators implement

FIGURE 4
A depiction of the basic im2col formulation of multi-channel multi-kernel convolution as a generalized matrix-matrix multiplication (GEMM).
Reproduced from [105], © IEEE.

Frontiers in Physics frontiersin.org08

Atwany et al. 10.3389/fphy.2024.1369099

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1369099


pooling operations photonically, for instance with ring
modulators [132], or MMIs [133]. However, the power
consumption required to trigger activation switches and to
maintain a sufficient signal-to-noise ratio at receiving
photodetectors can dominate otherwise passive multiplication
steps [127]. As such, many accelerator designs compute these
functions in a hybrid optoelectronic manner, converting the
output to the electronic domain between multiplication layers.

In addition to handling the arithmetic intensity of deep learning
applications, memory implementation is an essential consideration
when developing practical hardware accelerators. One important
implementation is memristors. Memristors, or resistance switches,
were first proposed theoretically as the completion of the three other
“fundamental” electrical components: resistors, capacitors, and
inductors [134]. The internal state of a memristor is a function
of the history of current and/or voltage which has passed through it
[135]. Devices that contain “crossbar” arrays of connected
memristors have been successfully applied in deep learning
applications. A noteworthy example is the ISAAC accelerator
[136], which introduced the use of electronic memristive crossbar
arrays. Since then, optical memristors have shown improved
efficiency over electronic versions in accelerators. Mao et al.
[137] provide a comprehensive overview of how practical
memristor behavior can be implemented with photonic
elements, and highlights how memristors can have various
functionalities for light detection, data storage, and in-
memory computing. Choi et al. [138] demonstrate a model of
in-memory processing that can be realized by photonics
integrated circuits using coupled resonators, where the
coupled memristive quantities are the intensity distribution
and optical coherence. They indicate that their design is
scalable to neural network applications.

3.3 Performance considerations

When translating neural network computation to alternative
hardware, it can be challenging to make direct comparisons in
different aspects of performance. In conventional hardware, the
layer transform is considered the primary MAC hardware
bottleneck as layer size grows [139]. Figure 5 indicates the

requirements in hardware which performs MACs individually
and does not compute in memory. In this case, network MACs
can be counted uniformly, and for modern networks such as
Vision Transformer or ResNet, this can reach 500 billion MACs
in a single forward pass4. However, a full optical matrix
multiplication can be performed, in principle, in a single step,
without consuming any power, independent of the matrix size
[127, 140]. The main sources of energy consumption or latency
are generally shifted to aspects of transmission, modulation, and
detection, performed by various components in the device [139],
so photonic device architectures must make tradeoffs in
balancing these factors.

As a result, the complexity of photonic MAC operations must
be conceptualized differently than in conventional hardware. In
the photonic case, “complexity” is no longer tied to algorithmic
complexity in terms of counting individual multiply-accumulate
steps. As Miscuglio et al. state, “one must distinguish between the
complexities of the computational algorithm vs that of the
system’s execution time” [140]. By comparison, it is important
to note that GPUs are still bound by the O(N2.8) (Strassen [141])
or O(N2.373) (Coppersmith-Winograd [142]) complexity of
matrix multiplication algorithms, and their optimization is in
reduced system execution time due to parallelism, value re-use,
and minimized I/O cost. In order to make comparisons, a more
appropriate frame is to think of “effective” MACs per time. For
instance, when we say that a photonic operation is “O(1),” we
mean that the entire computation is executed in a single “atomic”
computing operation. In a passive component, this can effectively
be the speed of light propagating through the medium. This is
also why compute density becomes a more important metric to
consider, as photonic components may individually be larger, but
a single component can implement many “effective” MACs. As a
result, many accelerators report normalized performance
statistics in terms of operations per area.

FIGURE 5
An illustration of the signal pathway required for MAC in amodern chip. The passing of information occurs betweenMAC processors performing a+
(w × x), memory caches, and non-linear operations f{·}. Reproduced with permission, from [139], Nahmias et al. 2020 © IEEE.

4 Based on PyTorch library standard implementations, initializedwith default

weights pulled on 22 March 2024, code using the torchprofile utility on a

forward pass of each network on a random tensor of size (32, 3, 224, 224)

as a representative input batch size.
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Another distinction arises particularly in analog photonic
accelerators in the way that “bit precision” is translated to
photonic hardware. As discussed by Shiflett et al. [143], “While
we use the terminology ‘bits of precision’ for analog photonic
computation, what we are actually describing is the log2 of the
number of separable optical power amplitudes at the output.”
Numerical precision becomes reliant on the signal-to-noise ratio
of transmission among device components. This presents a source of
energy overhead as for instance the power of input lasers must be
increased in order to increase this ratio. In the case of MRR-based
designs, a tradeoff between multiplexing parallelism and numerical
precision may also arise, through the power cross-coupling
coefficient k2: roughly speaking, lowering it reduces crosstalk, but
also increases losses. Changing the spacing of MRRs will have an
impact on the overall footprint of the device. The number of
components for parallelism in turn impacts the amount of added
time that may be incurred if operations must be performed
sequentially, in case the data size exceeds the capacity of a single
optical element. One way to normalize for these effects is to assess
the efficiency of the WDM usage in terms of energy per wavelength
utilized [143].

In practice, it can sometimes be more efficient to use hybrid
methods that offload some network tasks to standard electronic
implementations, in which case energy consumption and speed
limitations are incurred in optoelectronic conversion. The added
energy expense can come from the receiver stages that follow
detection, which may consist of amplification, sampling, and
quantization [129]. Many accelerators apply nonlinear layers in the
electronic domain, and some even combine photonic multiplication
with electrical addition [144, 145], especially when network weights or
activations are reduced to one-bit representations. Optoelectronic
conversions can introduce speed bottlenecks not only through DAC/
ADC conversion steps but also by reverting to a dependence on
electronic clock rate for sequential operations.

4 Integrated photonic deep learning
accelerators

In this section, we discuss examples of integrated circuit PDLAs
which explore the challenge of mapping deep learning onto
photonic hardware, showing comparative advantages and
tradeoffs in various approaches. We group the accelerators on an
application level according to important deep learning use cases:
convolutional networks; linear models and sequence processing; and
real-time or edge computing applications. These examples
implement popular existing neural network architectures, which
can facilitate nearer-term adoption. We provide two tables to
aggregate main operating principles (Table 1), and summarize
features and figures-of-merit (Table 2). Figure 6 shows the high-
level application categories.

4.1 Focus on CNNs

A prominent approach in photonic accelerators for deep learning is
focused on implementing convolutional neural networks (CNNs) for
fast photonic inference on computer vision tasks. Many convolution

accelerators are based on WDM and resistive memory, which are
implemented through configurations of components such as ring
resonators, modulators, and interferometers. The WDM parallelism
can be applied in an analog manner, or in a digital manner acting on
different bits in parallel.

An early entry into photonic CNN accelerators was
ConvLight, introduced by Dang et al. [146]. ConvLight
implements an end-to-end architecture, with feature extraction
blocks applying memristive convolution, semiconductor-optical-
amplifier (SOA) ReLU activation, cascaded optical comparators
for max pooling, and finally a memristive linear layer. The
convolution unit comprises a WDM waveguide, a Weight
Resistor Array (WRA) based on memristors, a Ring Modulator
Array (RMA), and an SRAM buffer (SB). Weight values are stored
in memristor conductance, which can be dynamically adjusted by
applying an external current flux. Each weight bank in a weight
resistor array consists of 9 memristors, representing a (3 × 3)
convolution filter. The output currents from these memristors are
accumulated and fed into a modulator, where SOAs modulate the
values for the element-wise ReLU activation. Post modulation, the
modes are dropped from the WDM demux using a decoupler, and
each isolated lightwave is then directed to the subsequent layer.
Successive feature extraction units are joined by electronic interface
layers. Finally, the accumulated current from each memristor bank is
digitized for an output value. When compared to the FPGA-based
Caffeine accelerator [7] and memristor crossbar-based ISAAC
accelerator [136], ConvLight showed 250× and 28× higher CE,
respectively. These comparisons were based on training and
inference tasks executed on four versions of the VGG [124] model
applied to the MNIST dataset [147].

Notably, ConvLight uses one memristor for each weight, making
its footprint scale with the number of network parameters.
Mehrabian et al. [148] later introduced PCNNA, a proof-of-
concept analog design which presents improved usage of
parallelism with MRR weight banks structured based on the
broadcast-and-weight (BW) protocol. Figure 7 depicts the basic
formulation of the protocol. PCNNA makes use of the fact that
the same kernel values of the layer are applied to all windows of the
input, and that iterating over all the windows not costly in a photonic
implementation, in comparison with conventional hardware. They
use microrings only for the kernel receptive field of size k, multiplied
by the number of kernels for the output depth. Given that the kernels
share the same receptive field of the input, they can be executed in
parallel. Figure 8 shows the difference in their approach. Overall, this
reduces both the number of wavelengths required to represent the
input feature map, and the number of microrings needed at the
following layer for demultiplexing. They show that in execution time,
the iteration over receptive fields fits within a single slow clock cycle.

Otherwise, the photonic multiplication flow takes place as usual:
a waveguide is employed as a transmission line to broadcast
multiplexed wavelengths to the next layer, such that each neuron
in the destination layer receives all incoming wavelengths. The
amplitude of each wavelength at the output is determined by a
weighting function corresponding to the incident power and biasing
potential of the MRR. Following multiplication, a photodiode
integrates all incoming wavelengths, generating an aggregate
photocurrent to implement the accumulation operation. With
this design, a representative layer of a network such as AlexNet
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[4] can be evaluated 3 orders of magnitude faster than electronic
computation, even including the time cost caused by electronic I/O.

In contrast, it is also possible to implement parallelism along the
receptive field dimension. Shiflett et al. take this approach in their
Albireo accelerator [143]. In their construction, computation is
performed concurrently on multiple receptive fields of the input. The
Photonic Locally Connected Units (PLCUs) of Albireo contain a grid of

MRRs, where the input dimension is the number of kernel elements
represented by MZMs, and the output dimension is the number of
receptive fields, each transmitted to an output photodetector. Each
PLCU processes a single channel of the convolution, simultaneously
computing on all receptive fields. However, tomaintain sufficient analog
precision, the maximum number of wavelengths for each PLCU is
restricted, so to process more fields simultaneously, multiple PLCUs are

TABLE 1 High-level properties of the accelerators featured in the review.

Accelerator
(Year)

NN types Analog vs.
digital

All-optical vs
hybrid

Main photonic
components

Optical nonlinearity
(implementation)

ADEPT [168] (2021) Linear,
CNN,Transformer

Analog Hybrid MZI N/A

Albireo [143] (2021) CNN Analog Hybrid MRR accumulation, MZM
multiplication

N/A

Ascend [171] (2022) Linear, CNN Analog Hybrid MRR weight banks N/A

Bayesian [166] (2022) Bayesian NN Analog Hybrid MZI mesh N/A

Bitwise [155] (2021) CNN Digital Both versions MZI (optical accumulate), MRR
(optical AND)

Tanh (piecewise-linear
approx. w/bit mapping)

BPLight-CNN [192] (2021) CNN Analog Hybrid MRR weight banks ReLU (SOA), maxpool
(optical comparators)

ConvLight [146] (2017) CNN Analog Hybrid MRR weight banks ReLU (SOA), maxpool
(optical comparators)

CrossLight [149] (2021) CNN Analog Hybrid MRR weight banks, hybrid tuning N/A

DNNARA [160] (2020) CNN Digital All-optical MRR for WDM, hybrid plasmonic-
photonic (HPP) 2 × 2 switch

Sigmoid (RNS approx.)

DNNARA-E [145] (2022) CNN Digital Hybrid MRR for WDM, hybrid plasmonic-
photonic (HPP) 2 × 2 switch

Sigmoid, ReLU, maxpool
(RNS approx.)

FICONN [194] (2023) Linear Analog All-optical MZI mesh MVM ReLU (MZI phase shift)

HolyLight [45] (2019) CNN Analog Hybrid Microdisks N/A

HQNNA [159] (2022) CNN Digital Hybrid MRR banks, hybrid tuning, VCSEL
arrays

Sigmoid (SOA)

LightBulb [156] (2020) CNN Hybrid Hybrid Racetrack memory, microdisk
XNOR gate, PCM-based ADC

N/A

LiteCON [193] (2022) CNN Analog All-optical Microdisk multiplication, crossbar
array

ReLU (SOA), maxpool
(optical comparator)

Mindreading [176] (2020) Linear, RNN, CNN Digital Hybrid Microdisk adders and shifters Logistic, tanh, ReLU
(quantized approx.)

Netcast [174] (2022) CNN Analog Hybrid MZM N/A

PCNNA [148] (2018) CNN Analog Hybrid MRR weight banks N/A

PIXEL [144] (2020) CNN Digital Both versions MZI (optical accumulate), MRR
(optical AND), RF memory

Tanh (piecewise-linear
approx. w/bit mapping)

RecLight [164] (2022) RNN Analog All-optical MRR banks, VCSEL arrays,
memristors, hybrid tuning

Sigmoid (SOA)

ROBIN [158] (2021) CNN Digital All-optical MRR banks, hybrid tuning, VCSEL
arrays

N/A

SONIC [150] (2022) CNN Analog Hybrid MRR banks, hybrid tuning, VCSEL
arrays

N/A

Tiled MM [175] (2023) Linear Analog Hybrid MZI mesh, coherent crossbar N/A

TRON [163] (2023) Transformer Analog Hybrid MRR banks, hybrid tuning, VCSEL
arrays

GELU (SOA)
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TABLE 2 Features, figures-of-merit, and applications of accelerators. We reproducemetrics in the form reported by the paper, as not all accelerators report
consistent figures-of-merit. Approximate values are indicated by “~” where only relativevalues were reported, or were only reported visually in a plot. “—”
indicates that a value was not directly reported in the paper. Acronyms: GOPS = giga operations/second; IPS = inferences/second; FPS = frames/second;
MVM = matrix-vector multiplication; EPB = energy per bit.

Accelerator
(Year)

Features Figures-of-merit
(reported)*

Network
architecture

Task (accuracy)**

ADEPT [168] (2021) focuses on accelerated GEMM; can be
applied in multiple network types

- 10.59 IPS/W/mm2

- 7,476.78 IPS/W
- 217, 201 IPS

ResNet-50, BERT-large,
RNN-T

within 1% of benchmarks

Albireo [143] (2021) provides analysis of bit precision;
distributes across locally connected
groups for added parallelism

- 124.6 mm2 area
- 395 GOPS/mm2

- 17.7 GOPS/W/mm2

VGG-16, ResNet18,
MobileNet, AlexNet

-

Ascend [171] (2022) uses photonics for chip interconnects 770 mm2 area (24.07/chiplet) VGG-16, ResNet-50,
DenseNet-201,
EfficientNet-B7

-

Bayesian [162] (2022) implements network pruning; provides
uncertainty characterization

0.5 W power Custom MNIST (~81%)

Bitwise [155] (2021) bit-level parallelism; circulant matrix
formulation for bitwise MVM

~1,000 mm2 area (OOE)
~0.1 mm2 area (OEE)
~100 Js energy-delay product

AlexNet, ZFNet, ResNet-
34, VGG-16, GoogleNet

ImageNet (−)

BPLight-CNN [192]
(2021)

supports training - 90,985 GOPS (inference)
- 44,030 GOPS/mm2 (inference)
- 9,327.5 GOPS/W

VGG, LeNet MNIST (95%)

ConvLight [146]
(2017)

early example of end-to-end network - 15,000 GOPS/W
- 20,000 GOPS/mm2

- 1.8 mm2 area (weight banks)

VGG MNIST (94%)

CrossLight [149]
(2021)

designs for robustness to fabrication and
runtime variations

- 28.78 pJ/bit
- 52.59 kFPS/W
- 0.9 mm2 area

LeNet, custom Sign-MNIST (~90%) STL10 (~70%)
CIFAR10 (~75%) Omniglot (~75%)

DNNARA [160]
(2020)

applies residue arithmetic MVM - 12.6 GOPS/mm2/W
- 55.64 mm2 area

LeNet, VGG, DeepFace,
ResNet

-

DNNARA-E [145]
(2022)

applies residue arithmetic MVM
up to 80x speedup over GPU

- 0.39 TOPS/mm2

- 3.22 TOPS/W
- 24.91 GOPS/mm2

- 124.78 mm2 area

LeNet, VGG, DeepFace,
ResNet

-

FICONN [194] (2023) supports training
experimentally validated

- 34.2 mm2 area
- 0.53 TOPS
- 9.8 pJ/OP

Custom vowel classification (92.7%)

HolyLight [45] (2019) accelerates power-of-two quantized
(P2Q) CNNs; achieves equivalent
accuracy to electronic implementation

- 280.42 (M version), 22.46 (A
version) mm2 area
- ~103 (M), ~105 (A) FPS/W
- ~105 (M), ~106 (A) FPS

LeNet, ResNet-18, AlexNet MNIST (98.9% LeNet-5) ImageNet
(79.4% AlexNet, 88.6% ResNet-18)

HQNNA [159] (2022) applies both WDM and TDM; supports
different precision among layers

- 57.5 W power
- ~1014 GOPS/EPB

AlexNet, ResNet-20,
custom

CIFAR10 (76.4% AlexNet, 79.7%
ResNet) SVHN (87.9% custom)

LightBulb [156]
(2020)

uses binarized CNN weights; photonic
implementations of XNOR, ADC, and
I/O

- 24.05 mm2 area
- 65.83 W
- ~103 FPS/W
- ~105 FPS

MobileNet, ShuffleNet,
ResNet

ImageNet (MobileNet 91.4%, ShuffleNet
87.3%, ResNet 87.9%)

LiteCON [193] (2022) supports training
292x potential speedup over GPU

- 90,853 (train), 98,958 (test)
GOPS
- 1,132.85 GOPS/W (avg.)

VGG-Net, LeNet ImageNet (98%)

Mindreading [176]
(2020)

real-time EEG analysis application
minimizes power budget

- 21.55 W
- 0.08041 mm2 area
- 1000 IPS/W

EEG-Net EEG classification (97.6%)

Netcast [174] (2022) edge compute application
experimentally validated

< 1 photon/MAC (effective) Custom MNIST (98.8%)

PCNNA [148] (2018) MRR bank + BW protocol BW proof of
concept

2.2 mm2 area (weight banks) Custom -

(Continued on following page)
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clustered in PLC groups (PLCGs). Overall, each PLCG implements a
single kernel of the layer, acting on the same input volume in parallel,
which is broadcast to all PLCGs at the same time. This distributed
structure also gives Albireo the ability to implement depth-wise
separable convolution layers, which are often used in practice.
Albireo illustrates how parallelism is constrained by the number of
possible wavelengths, informing design choices based on the expected
dimensions of the kernel size, number of kernels, and number of
receptive fields in the input.

Optimizations can also be made to balance the overall configuration
of the weight banks. Non-coherent architectures are highly susceptible to
process variations, as well as runtime variations induced by heat and
environmental factors. For instance, increasing the length of the
waveguide hosting the MR banks increases the total optical signal
propagation, modulation, and losses, which in turn increases the
laser power required for optical signals to be detected error-free;
crosstalk noise can also substantially deteriorate weight
resolution [149]. In their CrossLight accelerator, Sunny et al.
[149] perform device-level optimizations to improve robustness.
They make adaptations such as hybrid thermo-optic and electro-
optic tuning to compensate for thermal crosstalk, and determine

an optimal number of MRs per wave bank which can still support
16-bit resolution. They take into consideration layout spacing,
wavelength reuse within weight banks, and optical splitter losses.
They report that the final optimized configuration has 9.5× lower
energy-per-bit and 15.9× higher performance-per-watt over
other photonic accelerators.

Sunny et al. introduce another approach to increasing efficiency
with SONIC [150], an accelerator architecture optimized for
networks that have been compressed using techniques developed
in deep learning practice [151]: Figure 9 depicts the SONIC
accelerator architecture.. The first compression technique is to
apply sparsity-aware training to induce layer-wise sparsity [152].
In the accelerator, sparse and dense vectors can be buffered
separately, and the sparse input path uses power gating to
prevent VCSELs from being driven for a zero element. The
second technique is clustering model weights post-training to
restrict to a fixed number of unique weights. This assumption
allows for lower resolution requirements in DAC conversion. In
SONIC, sparse vector weights can be reduced to 6 bits, while dense
activation values are kept at 16 bits. This separation of pathways is
reflected in the overall architecture, as shown in Figure 6. These
adaptations allow SONIC to improve energy-per-bit 8.4× and power
efficiency 5.8× over electronic accelerators.

In contrast with analog methods, some accelerators operate in a
digital paradigm, using photonic parallelism for concurrent bitwise
and logical tasks. An early example within this domain is the
HolyLight accelerator, as introduced by Liu et al [45], which is
designed to accelerate power-of-2 quantized (P2Q) CNNs [153].
The device incorporates matrix-vector multipliers (MVMs), and a
16-bit ripple-carry adder constructed from full adders using
microdisks, alongside P2Q-CNN inference units. This system
uses digital electronics to compute the generate and propagate
values from the output of each full adder, while the photonic
accelerator calculates the sum and carry operations. Two

TABLE 2 (Continued) Features, figures-of-merit, and applications of accelerators. We reproduce metrics in the form reported by the paper, as not all
accelerators report consistent figures-of-merit. Approximate values are indicated by “~” where only relativevalues were reported, or were only reported
visually in a plot. “—” indicates that a valuewas not directly reported in the paper. Acronyms: GOPS = giga operations/second; IPS = inferences/second; FPS
= frames/second; MVM = matrix-vector multiplication; EPB = energy per bit.

Accelerator
(Year)

Features Figures-of-merit
(reported)*

Network
architecture

Task (accuracy)**

PIXEL [144] (2020) applies serial-parallel multiplication 0.1 (OE), 100 (OO) μm2 (MAC
unit) 1503 (OE), 1044 (OO) mJ
(ResNet)

AlexNet, VGG, ResNet-34 -

RecLight [164] (2022) first non-coherent photonic RNN
accelerator

- 104 GOPS
- 10-9 J/bit

Custom Weather prediction (0.5650 MAE)
IMDB analysis (76.8%) Penn Treebank
(65.78 perplexity)

ROBIN [158] (2021) heterogeneous MR precision
performs noise injection analysis

- ~1.5e6 (EO)
- ~3.25e6 (PO) FPS
- ~105 FPS/W

Custom SignMNIST (~92%) CIFAR10 (~92.5%)
STL10 (~91%) SVHN (~97%)

SONIC [150] (2022) designed around network compression
methods

- ~105 FPS/W
- ~10−11 J/bit

Custom MNIST (92.89%) CIFAR10 (86.86%)
STL-10 (75.2%) SVHN (95%)

Tiled MM [175]
(2023)

focus on linear operations;
experimentally validated

- 0.12 TMACs/mm2

- 0.816 mm2 area
Custom detect DDoS attacks (63.6% Cohen’s

kappa score)

TRON [163] (2023) highly relevant architecture and
application

- 1e6 GOPS
- 1e-10 J/bit

Transformer, BERT, ViT,
Albert

TED translate (70.4%) BERT IMDB
analysis (85.8%) Albert IMDB analysis
(88.7%) ViT-base ImageNet (98.0%)

FIGURE 6
Areas of application which can be accelerated by PDLAs.
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variations of this architecture were developed to explore different
aspects of computational efficiency, including the maximum speed
of MRR operation, as well as considerations related to noise and
signal degradation. HolyLight-M incorporates digital-to-analog
converters (DACs) and analog-to-digital converters (ADCs) for
the transition between digital values and optical signals.
HolyLight-A integrates multiple photonic shifters and adders,
connected through a shared bus system. Both variants of
HolyLight demonstrate a 5× improvement in power efficiency
compared to traditional GPU, CPU, and TPU architectures.
Figure 10 shows the overall flow of the accelerator design.

The PIXEL accelerator of Shiflett et al. [144] is a photonic
accelerator that uses a combination of MRRs for bitwise logic
operations, and MZMs for accumulation. Mathematically, PIXEL is
modeled after the Stripes (STR) [154] formulation of accelerated
neural networks through serial-parallelmultiplication. In thismethod,
the computational time is linear in the length of the serial input, which
is the bit precision of a given network layer. The authors present
efficient photonic implementations, with one hybrid Optical-
Electrical (OE) version that multiplies in the optical domain and
then accumulates in the electrical domain, and a fully Optical-Optical
(OO) version for both multiplying and accumulating in the optical

FIGURE 7
An MRR bank-based broadcast-and-weight protocol. A bundled wavelength is propagated through an MRR bank as it enters. Through the tuning of
corresponding rings, each bank weights each wavelength. Photodiodes create photocurrents by adding all wavelengths together. Photo-currents
modulate light waves of wavelength λm. Multiplexing of all laser beams is used to broadcast the beams to the next layer. Reproduced with permission,
from [148] Mehrabian et al. 2018 © IEEE.

FIGURE 8
Illustration of MRR bank use in convolution: a 16 × 16 input feature map with 5 kernels of 3 × 3 is implemented in (A) using one ring per input
wavelength, whereas (B) uses only one ring per distinct kernel value required to cover the receptive field, which results in fewer required MRRs.
Reproduced with permission, from [148], Mehrabian et al. 2018 © IEEE.
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domain. PIXEL’s OMAC units use radio frequency memory for
storing filter weights in addition to the MAC unit.

In PIXEL, each MZM accumulates a single wavelength, which
increases the number of MZMs in their design, reducing area
efficiency. Later, Shiflett et al. [155] advanced on the PIXEL
design to improve the usage of WDM by implementing
parallelism in bit-wise operations. In this design, the bitwise
matrix multiplication uses a circulant matrix formulation to take
advantage of broadcasting a single bit value to multiple processing
elements (PE). The authors again present two versions with different
accumulation implementations. In both cases, MRRs are used to
implement a bitwise AND operation. The first version then applies
electronic processing for summation (O-E-E), while the other uses
MZIs for accumulation, with a final electrical summation (O-O-E).
The comparison with an all-electronic version of the accelerator
shows that the EDP of the O-O-E implementation is 33.1% lower,
and its speed is 79.4% faster.

Many accelerators based on logical operations rely on ripple-
carry adders and SRAMs, both of which can limit the frequency and
inference throughput of the accelerator when trying to replicate
higher bit precision, due to the adder’s long critical path and the
SRAM’s access latency. Zokaee et al. [156] take a distinct approach
to address this problem by processing binarized CNNs rather than
CNNs with floating point weights. Their accelerator, LightBulb, uses
microdisks to implement XNOR gates and popcount operations,
followed by a photonic phase-change memory (pPCM)
implementation of ADC. It also reduces input/output latency by
using photonic racetrack memory, to enable 50 GHz operating
speed. To replace floating-point MACs with XNORs and
popcounts, LightBulb first binarizes the weights and activations
of a CNN into linear combinations of (−1, + 1)s, allowing the MRR
to take advantage of bit-wise parallelism. pPCMs then achieve an
ADC step photonically by implementing a temporal binary search
[157]. LightBulb compares favorably against state-of-the-art GPU,

FIGURE 9
An overview of the SONIC architecture, showing the distinct pathways of data which participates in either sparse or dense computations.
Reproduced with permission, from [150], Sunny et al. 2022 © IEEE.

FIGURE 10
Diagram of the Holylight accelerator architecture [45]. (A) shows the overall chip node, which consists of multiple connected tiles (B). Tiles contain
Photonic Processing Units (PPUs). (C) is the PPU structure of the HolyLight-M variant, and (D) is the HolyLight-A PPU. Reproduced with permission from
[45], Liu et al. © EDAA.
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FPGA, ASIC, ReRAM, and photonic CNN accelerators when tested
on binarized MobileNet, ShuffleNet, and ResNet architectures.
Overall, LightBulb achieves its efficiency by using photonic
components for logical operations, ADC, and data I/O, which are
typically large sources of latency and energy overhead. LightBulb
improves throughput 17× to 173× over prior optoelectronic
accelerators and increases throughput per Watt by 17.5× to 660 ×.

The ROBIN accelerator from Sunny et al. [158] also makes use
of binarization, but uses only binarized weights, leaving activation
function values at 4-bit precision. This is intended to mitigate loss of
accuracy. To implement this, ROBIN uses heterogeneous MRRs
with different precisions, within an overall BW-based design, with
improved pipelining of interactions with the electronic control unit.
ROBIN also implements photonic batch normalization and adds
circuit- and device-level optimizations intended to account for the
effects of process variations. They perform extensive optimization
over device configurations to develop two versions, one optimized
for FPS performance (ROBIN-PO), and the other for area and
energy efficiency (ROBIN-EO). ROBIN-EO achieves approximately
4x lower energy-per-bit than electronic BNN accelerators, whereas
ROBIN-PO shows roughly 3x better performance than electronic
BNN accelerators.

Later, Sunny et al. also applied mixed precision to reduce memory
requirements with their Heterogeneous QuantizationNeural Network
Accelerator (HQNNA) [159]. HQNNA uses non-coherent photonics
based on bothWDM and a novel Time Division Multiplexing (TDM)
approach with bit-slicing. The matrix-vector multiplication unit
(MVU) performs multiplication and accumulation optically by
distributing bit slices across time steps, then using digital shift and
adder circuits to produce the final output. Bits that interact in the same
dot product are assigned the same wavelength for photonic
multiplication and transmitted in one step, with the resulting value
shifted and buffered digitally after ADC. This is repeated for the
number of bits per slice. This results in performing multiple smaller

products rather than a single large product, which improves efficiency
given the low latency and energy consumption of photonic
multiplication. It also allows for heterogeneous precision across
layers. This MVU design is applied both in linear and
convolutional layers. HQNNA shows 52.2× and 3.59×
improvement in EPB over LightBulb and ROBIN, respectively.

Peng et al. introduced another numerical innovation with
DNNARA [160], which combines WDM with a Residue Number
System (RNS). With RNS, a number can be represented as pairwise
coprime moduli. Because residue arithmetic is digit-irrelevant, results
can be combined separately during the residue operation and
ensembled at the end, representing addition by mappings in the
arithmetic system. Every modulo digit has a single-bit output without
repetition, enabling computation-in-network using one-hot encoding
photonic routing. RNS can allow for optical components with shorter
optical critical paths, and the use of one-hot encoding also facilitates
fast switching between the electrical and optical domains. However,
the implementation of sigmoid activation functions like logistic and
hyperbolic tangent with RNS is difficult. As a result, logistic and tanh
functions are approximated by their Taylor series, and they can be
implemented as polynomials with adders and multipliers. In
subsequent work, the authors introduced DNNARA-E [145],
which substitutes DNNARA’s optical adders with electrical adders
for reduced area, improved power usage, and ReLU activation
function implementation. Overall, this results in three times better
throughput than the original DNNARA.With a similar power budget,
DNNARA-E achieves on average 80x speedup over the NVIDIA
Tesla V100 GPU.

4.2 Beyond convolution

While convolutional neural networks remain an essential area of
deep learning, many other architectures are important in practice

FIGURE 11
Overview of the TRON accelerator architecture, which replicates the multi-head attention and feedforward blocks of the Transformer architecture.
Reproduced with permission, from [163], Afifi et al. 2023, © Association of Computing Machinery.
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and contribute to overall deep learning inference usage. This
includes architectures that power ChatGPT and other sequence-
based tasks, which can be extremely inefficient to evaluate on
standard hardware. In addition, many computer vision models
are also replacing convolutions with linear layers, as in the
Vision Transformer [161]. Recent accelerator designs have begun
to address this shift.

Importantly, the Transformer architecture has risen to
prominence both in its original context of natural language
sequence processing [162], and more recently as a strong
alternative in image tasks [161]. To adapt to this trend, Afifi
et al. [163] introduced TRON, the first SiPh hardware accelerator
for Vision Transformers (ViTs). TRON utilizes non-coherent SiPh
circuits to replicate the Transformer architecture’s feedforward and
multi-head attention (MHA) units. The required matrix
multiplications are performed with an MR weight bank, with a
design that efficiently pipelines the operations to re-use intermediate
results. The softmax operation is efficiently approximated in the
electronic domain, making TRON a hybrid model. TRON also
replicates the GELU activation similarly to the method in a
standard architecture, scaling the output data vector using an
MR, applying a sigmoid function, and then applying MR
multiplication again between this output and the data vector. MR
units also implement normalization layers, and residual connections
are performed through coherent summation. Depending on the
application, Transformers may perform encoding only, or both
encoding and decoding. TRON is structured so that decoder
blocks can re-use the VCSEL arrays which drive input to the
MHA unit. This reuse also introduces efficiency by reducing laser
power consumption and crosstalk between channels. Figure 11
illustrates this overall structure. Software optimization techniques
can also be applied to further reduce the memory footprint of the
Transformer for additional performance improvement. TRON is
simulated for popular Transformer-based models including BERT
[162] and ViT. When compared against state-of-the-art GPU and
FPGA accelerators, TRON shows 262× better GOPs than general
GPU benchmarks, and 55× improvement over FPGA. It also
improves energy-per-bit by 4,231× over GPU, and 8× for FPGA.

Another essential class of neural networks is Recurrent Neural
Networks (RNNs). Sunny et al. introduced a novel non-coherent
photonic RNN accelerator called RecLight [164] which can
accelerate NNs that consist of recurrent components, including
Gated Recurrent Units (GRUs) and Long Short-Term Memory
Networks (LSTMs) [165]. These architectures process sequence
data by assigning a trainable “hidden” state to each sequence
element. These weight matrices form connections across the
sequence. Further, “gating” weights are optimized to either
propagate information or suppress unnecessary pathways. To
achieve the recurrent network structure, RecLight uses separate
MAC units are used for input and hidden state weight matrices.
RecLight achieves better parameter resolution by reducing thermal
crosstalk, applying a hybrid tuning approach with both thermo-
optic (TO) and electro-optic (EO) tuning. When compared with
electronic RNN accelerators, RecLight improves energy-per-bit up
to 1730×, and has up to 2,631.6× better throughput.

Sarantoglou et al. [166] explore the area of uncertainty
quantification and Bayesian networks by introducing an
accelerator with two innovative schemes: the first is the Bayesian

regularized, aimed at reducing power consumption, and the second
is the fully Bayesian, which offers insights into phase shifter
sensitivity. Their approach focuses on the MNIST dataset [147]
classification with 512 phase shifters, with their architecture similar
to the one presented by Perez et al [167]. The system incorporates
pre-characterization stages that monitor the variation between the
applied current (I) and the induced phase shift (ϕ). These pre-
computational steps are designed to counter fabrication errors and
inter-element crosstalk through passive offsets. Their findings
demonstrate a significant reduction in the processing power
required by the photonics integrated Circuit (PIC) without
sacrificing classification accuracy. Moreover, the fully Bayesian
scheme not only reduces energy consumption but also provides
valuable data on phase shifter sensitivity. Consequently, this allows
for the partial deactivation of phase actuators, substantially
simplifying the driving system. The phase tuning process is based
on an offline training scheme that takes into account uncertainty.
Instead of defining optimum phase shifter values through training, a
parametric Probability Distribution Function (PDF) is defined for
each phase shifter and is optimized by updating variational
parameters at every iteration. Aside from indicating the correct
values for phase shifters, this Bayesian procedure also quantifies
their robustness to phase deviation. Using this data, novel
algorithms can be developed for adjusting and controlling
photonic accelerators, which can further increase their robustness
to noise and hence allow for increased scale.

In practice, many modern applications require greater flexibility
than a straightforward translation of a network as a unit. To expand the
use of photonic accelerators beyond cases that simply apply a fixed
architecture, it is essential to develop devices with increased generality.
For instance, Demirkiran et al. emphasize the relevance of linear
acceleration and efficient matrix multiplication with their ADEPT
accelerator [168]. ADEPT addresses important aspects of
implementing linear layers, including the fact that most layer
transforms are non-square, which can present a performance issue
when multiplication and addition are combined in a single optical
step. ADEPT favors an optoelectronic architecture combining optical
general matrix-matrix multiplication (GEMM) operations with a digital
electronic ASIC for nonlinear operations such as activations. In its
pipeline, SVD and phase decomposition are performed on the original
weights as an up-front digital operation. The design incorporates
optimized buffering to minimize the speed bottleneck in
optoelectronic transfer. They choose MZI components over MRR,
citing their improved compatibility with electronic devices, which
can facilitate the integration of the accelerator in practice. ADEPT
can accommodate more modes as opposed to other accelerators,
illustrating the benefit of a generalized design that can be compared
to benchmarks beyond CNN applications. ADEPT shows competitive
performance on benchmarks for ResNet-50 [169], BERT-large [162],
and RNN-T [170]. They also report 2.5 × better throughput per watt
compared to state-of-the-art photonic accelerators.

Li et al. introduced the ASCEND accelerator [171], a chiplet-
based system that utilizes the inherent low-latency characteristic of
photonic interconnects to facilitate multi-chiplet broadcasting of
data and weights within a neural network. This approach leverages
the superior speed of optical communications over electrical
interconnects [172, 173]. By enabling chiplets to communicate
seamlessly, ASCEND minimizes delays in mapping convolution
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layers both within and across chiplets. The accelerator’s physical
layout features columns and rows of local Processing Elements (PEs)
organized into unit 2D arrays across chiplets. These PEs
communicate with the Global Buffer (GLB) through a waveguide
in a unicast manner, while broadcast communication from the GLB
to each PE is also facilitated via a waveguide. This arrangement
allows for the mapping of convolution layers at the granularity of the
2D PE array, ensuring efficient one-hop communication both within
and between chips. ASCEND not only reduces energy consumption
by 37% for DenseNet and 67% for ResNet-50 compared to chiplet-
based accelerators with metallic interconnects but also achieves up
to a 52% improvement in speed. This demonstrates the advantages
in energy efficiency and processing speed gained by incorporating
diverse photonic elements in accelerator architectures.

4.3 Alternative applications

Another approach focuses on matching the particular strengths of
photonics to applications such as edge computing and real-time
applications, as well as cases where initial analog-to-digital conversion
of input data can be avoided, for a direct pipeline to optical inference. In
this area, Sludds et al. introduced Netcast [174], a protocol that employs
delocalized analog processing, performing efficient photonics inference
using cloud-based smart transceivers to streamweight data to edge devices.
This protocol is designed to facilitate the deployment of advanced neural
network models on devices with strict power, processing, and memory
constraints. Using wavelength divisionmultiplexing (WDM), Netcast uses
the optical spectrum for high-capacity data transmission by integrating
cloud servers with smart transceivers that broadcast deep neural network
weights. Optical matrix-vector multiplication is performed on-site in the
edge devices equipped with broadband optical modulators. The weight
matrix of one DNN layer is encoded on a time-frequency basis by the
amplitude-modulated field. This is streamed to the client, which can
modulate it using a broadband optical modulator to separate the
wavelengths to N time-integrating detectors to produce the desired dot
product. The Netcast design maximizes the number of MACs performed
by every component in the client: in effect, this allows it to achieve an
efficiency of less than one photon perMAC (0.1 aJ/MAC). Netcast can be
readily integrated into applications that operate on data streamed through
existing commercial network switches. Through this method, milliwatt-
class edge devices can compute at teraFLOPS rates, which were
traditionally reserved for cloud computing infrastructures with much
larger sizes and power consumption.

In another case, Giamougiannis et al. [175] introduced a
coherent analog SiPho computing engine designed for fast optical
Tiled Matrix Multiplication (TMM) at 50 GHz. This accelerator
incorporates Coherent Linear Neurons (COLNs) equipped with
high-speed Silicon Germanium Electro-Absorption Modulators
(EAMs) for both weight and input imprinting. The accelerator
was deployed in a data center traffic inspection system for
network security applications to highlight its practical capabilities
in performing TMM. The photonic engine was experimentally
tested for identifying Distributed Denial-of-Service (DDoS) attack
patterns by classifying Reconnaissance Attacks (RAs). The size of the
network is small: only 6 input features, one hidden layer of
8 neurons, and 2-neuron output. However, even this small
classifier suffices to solve a practical use-case, demonstrating the

advantage of integration into applications where replicating a large
network size is not the primary aim.

Another interesting application is demonstrated by the ultra-low-
power photonic MindReading accelerator by Lou et al. [176], intended
for real-time processing of Electroencephalography (EEG) signals. The
EEG device has a sampling rate of 128 Hz, so MindReading seeks to
minimize power consumption while matching this rate for inference. To
do this, MindReading uses microdisks to perform energy- and area-
efficient photonic shifting and adding operations. The accelerator utilizes
logarithmic quantization applied to both weights and activations of
convolution, recurrent, and fully connected layers. Floating point
multiplication is replaced by addition and shift operations with a low
bit width requirement so that precision can be reduced to 4 bits with
minimal loss in accuracy. This accelerator replicates the structure of
EEG-Net, which includes convolutional, fully-connected, and LSTM
layers. The LSTM component requires sigmoid (tanh and logistic)
activations, so MindReading uses a photonic unit for quantizing these
functions. An eDRAM buffer is used for storing EEG signals as well as
intermediate results generated by the Photonic Processing Unit (PPU).
Then, by using photonic additions and shifters, the PPUcomputes binary
logarithms and logarithmic accumulations for ULQ-quantized EEG-
NET.MindReading reduces power consumption by 62.7% and increases
throughput by 168.6% on average in comparison to existing accelerator
counterparts for the same classification task. Overall, MindReading
achieves approximately 1000 IPS (inferences per second) per Watt,
whereas FPGA, CPU and GPU can reach less than 5 IPS per Watt.

5 Discussion and research gaps

5.1 Ongoing challenges

Despite the considerable advantages that photonic DL accelerators
offer over their electronic counterparts, many challenges persist. In
terms of design, the limited scale of PICs still restricts the numerical size
of both the input vectors that can be loaded onto photonic hardware
and the size and number of internal network layers. Challenges arise
when scaling to larger matrices, due to the increasing number of phase
shifters in MZI meshes that consume 15 mW on average [99]. The
power consumption required for large MAC operations would
necessitate thousands of such phase shifters, which increases the cost
of thermal management. As an alternative, NOEMS devices have been
considered a suitable replacement due to their near-zero static power
dissipation as they wiggle the waveguide back and forth [177]. For
WDM systems, the in put supported is ultimately limited by the
number of wavelength channels that can be multiplexed on a single
waveguide bus. However, the number of neurons can be expanded with
spectrum reuse techniques for the WDM schemes as reported in [129].
Another challenge to scaling is the implementation of caching memory
subsystems, which becomes difficult when handling real workloads
generating substantial intermediate data. To execute large-scale neural
networks, electronic memories such as SRAM and DRAM can be
integrated with optical video memory modules [178].

In the case of coherent approaches, scaling the network can be
restricted by the number of required components. Shafiee et al. [179]
have conducted an extensive comparison among the Reck, Clements,
and Diamond designs to assess their comparative robustness to optical
loss and crosstalk noise. This evaluation was carried out by measuring
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the degradation in inference accuracy with an increased mesh scale.
Their work highlights the drawbacks of increasing scale primarily by
increasing mesh size. However, advances in PPC design present
alternatives where the number of elements in a mesh can be
reduced without compromising computational capacity. For
instance, in addition to the reduced footprint resulting from a
different configuration of components, algorithmic improvements
can enhance the fidelity in computing of photonic unitary operation,
as shown by Yu and Park [180]. They build on the Clements design by
introducing the “pruning” of redundant rotations in the computed
operators. The design of Buddhiraju et al. [181] applies a resonator-
based architecture utilizing the frequency synthetic dimension, to
achieve O(N) scaling in footprint and gate numbers. They report a
higher compute density than MZI meshes at approx. 10 TMACs per
second per unit area (mm2), which is comparable with silicon crossbar
designs. However, the values of N are restricted by the free spectral
range of the sources and the device bandwidths. Recent work by Piao
et al. [182] focuses on a method that exploits space-time duality for
programmable photonic “time” circuits (PPTCs). PPTCs use coupled
resonators which substitute spatial optical path length with field
evolution in the time domain. This design achieves O(N) scaling in
both spatial circuit footprint and the number of optical gates. Other
important contributions have also been made to advance error
correction mechanisms, mitigating fabrication-induced inaccuracies
that compromise the performance of large-scale systems.
Bandyopadhyay et al. [183] focuses on improving the fidelity of
MZI and mesh-based unitary operations such that, at an application
level, developers can assume the underlying hardware will maintain
fidelity. Their proposed method involves deterministic correction of
hardware errors within optical gates using local corrections. Overall,
these examples present interesting possibilities for pushing scale
boundaries for PPC-based accelerators.

In the case of MRR-based noncoherent approaches, scaling up can
also present problems with increased power requirements and thermal
accumulation. Such as nano-optoelectromechanical systems (NOEMS)
[184] and liquid crystals on silicon LCOS [67], can notably improve
energy efficiency due to the low voltage bias conditions. Efficient
weight tuning is achievable with low-loss thermal phase shifters.
Moreover, high speed, low voltage swing modulators (1-2 Vpp)
[185, 186] promise improved energy efficiency by consuming
less power on the CMOS driver and modulator [67]. Other
improvements can be achieved using integrated photoconductive
heaters [187] with resonant tuning over a wide dynamic range
without the need for additional tuning mechanisms or additional
electrical interfaces. Integrated with silicon photonics, lithium niobate,
and barium titanate electro-optical modulators provide high-speed
phase modulation and low operating voltage, making them extremely
attractive for photonic accelerators.

In addition to such improvements in the photonic
mechanisms, in order to make advances in practical adoption, it
is essential to improve standardization in the reporting of design
and performance statistics. Comparisons can be hard to make
across the literature, as there is limited consistency and
completeness in reporting metrics, in terms of hardware and
network configurations as well as datasets. Some accelerators do
not report inference accuracy, which is a critical statistic
considered by deep learning practitioners. It is also crucial to
consider that for photonic accelerators to be adopted, they must

either integrate seamlessly with existing deep learning platforms
such as PyTorch, or present similar user-friendly software libraries
where application-level adaptations can be made.

Finally, it is important to note that most accelerators which have
been practically implemented still focus on inference with offline
training. While this is particularly useful in real-time applications
requiring high-speed inference, or edge computing with resource
constraints, in practice, the bulk of arithmetic intensity in deep
learning is incurred during the training process. Attention has
increasingly shifted toward designing accelerators that can
execute online photonic training. Buckley et al. [188] provide a
recent survey on the status of training capability in PDLAs. Hughes
et al. introduced a theoretical treatment considering algorithmic
aspects of training in optical platforms [72], and more recently this
proposal has been realized experimentally with over 94% accuracy
on the MNIST digit recognition task [189]. Free-space devices have
been studied by Spall et al. in both hybrid [190] and all-optical [191]
variants. Dang et al. have proposed extensions of their ConvLight
design which can also accommodate training [192, 193].

Bandyopadhyay et al. [194] have advanced this in the area of PIC by
fabricating and testing an all-optical device that performs both inference
and in situ training. Their Fully Integrated Coherent Optical Neural
Network (FICONN) system incorporates Nonlinear Optical Function
Units (NOFUs) and Coherent Matrix Multiplication Units (CMXUs).
Taking cues from the proposed forward difference estimation of [72,
127], FICONN demonstrates an advance in efficiency by perturbing all
parameters at once in a random direction, rather than individually
perturbing the parameters. The system implements a 3-layer DNN and
achieves 92.7% test accuracy on vowel classification, comparable to
digital computation results on similar tasks. FICONN’s power
consumption is dominated by thermal phase shifters, indicating that
its performance can be improved even further with more efficient phase
shifting units. Observations on the training curve and time to
convergence indicate that this area presents a rich potential for
comparison with training algorithms in standard hardware.

5.2 Further research

There is much room for research into alternative ways of
maximizing the use of photonic components and building
improved neural network designs around those novel abilities.
Many approaches to date focus on replicating existing neural
network architectures, but pushing the boundaries of photonic
deep learning will require novel network designs that maximally
exploit the strengths of photonics. One important avenue is to
rethink the functions that are used within neural networks. Recent
work has demonstrated the advantages of architectures that leverage
spectral transforms applied globally to input data, particularly
successful for PDE and scientific computing applications [195].
Implementing special functions and spectral transforms is more
costly in digital hardware, which has so far restricted their utility
for large-scale models. However, the inherent properties of photonic
devices could make such models more computationally viable [39,
196]. Further, the capacity of MZI meshes for encoding complex-
valued operations opens the opportunity for applying complex-valued
networks, which have important theoretical advantages but are
currently impractical to implement in standard hardware [197].

Frontiers in Physics frontiersin.org19

Atwany et al. 10.3389/fphy.2024.1369099

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1369099


Another direction is to push the boundaries of device
configurations and component optimization through inverse design
methods. Improved approaches can for instance enable more advanced
design of reconfigurable and tunable components [198, 199]. Recently,
researchers have begun to explore the power of machine learning for
inverse design. Deep learning shows promise for expanding possibilities
in fast, robust, data-driven inverse design, opening the door for free-
form approaches [200, 201]. Applying deep learning-enhanced device
design methods can, in turn, push the boundaries of what is possible in
creating accelerators for deep learning.

Also, on the horizon of photonic accelerators is the field of
quantum photonic ML accelerators (QPMLAs). Advances can
occur both in the physical layer implementation using quantum
memristive (QM) devices and in the improvement of algorithms
that run on the application layer of the quantum fabric. A physical
realization of a QM photonic system has been reported in [202].
The structure is based on classical photonic devices such as a
tunable (dissipative) 50:50 beam splitter and an MZI assembled
to realize quantum photonic characteristics without superconducting
devices. This technique was adapted for integrated photonics by [203],
realizing a reservoir computing model with three photons, nine
modes, and three quantum memristors. This glass-based quantum
machine was evaluated on both classical and quantum classification
tasks, achieving over 95% accuracy, alongside additional capability for
detecting quantum entanglement.

Also in the realm of Quantum Optical Neural Networks,
Steinbrecher et al. [204] implement a design and observe how
natural features of quantum optics can map to the operations of
neural networks. They discuss how quantum optics can push
beyond simply accelerating classical learning tasks by developing
networks which are inherently modeled on quantum states such as
coherence and entanglement, which is infeasible in classical
computers. This can greatly enhance analysis on physical systems
encoded by quantum information. Overall, integrating quantum
capabilities into deep learning applications presents an exciting
challenge for future developments in network design.

6 Conclusion

Many deep learning operations can be greatly accelerated partially
or entirely by photonic devices, allowing for remarkable speed and
significantly lower energy consumption compared to their electronic
counterparts. The increased compactness and integration density of
state-of-the-art on-chip integrated photonics circuits have brought
them into the realm of possibility for practical use in artificial neural
networks. As shown by the examples in this study, photonic processors
can be capable of performing deep learning inference with pre-trained
networks at reduced power consumption and enhanced speed. Further,
novel designs are even capable of training amodel from scratch for end-
to-end acceleration. OPUs still face persistent challenges in scalability

and integration, and further progress is necessary in more holistic
designs which fully integrate hardware, models, and algorithms. By
promoting awareness in the deep learning community of the cutting-
edge photonics capabilities, and knowledge of practical deep learning
considerations in the photonics community, PDLA technology has the
potential to circumvent existing resource constraints and expand the
boundaries of AI applications.
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