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The socialist millionaires’ problem, emanating from the millionaires’ problem,
allows two millionaires to determine whether they happen to be equally rich
while remaining their riches undisclosed to each other. Most of the current
quantum solutions to the socialist millionaires’ problem have lower efficiency
and are theoretically feasible. In this paper, we introduce a practical quantum
secure protocol for the socialist millionaires’ problem based on single photons,
which can be easily implemented and manipulated with current technology. Our
protocol necessitates the involvement of a semi-honest third party (TP) responsible
for preparing the single-photon sequences and transmitting them to Alice who
performs Identity or Hadamard operations on the received quantum sequences via
her private inputs and the secret keys, producing new quantum sequences that are
subsequently sent to Bob. Similarly, Bob encodes his private inputs into the
received quantum sequences to produce new quantum sequences, which are
then sent to TP. By conducting single-particle measurements on the quantum
sequences received from Bob, TP can ascertain the equality of private inputs
between Alice and Bob, and subsequently communicate the comparison result to
them. To assess the feasibility, the proposed protocol is simulated on IBMQuantum
Cloud Platform. Furthermore, security analysis demonstrates that our protocol can
withstand attacks from outsiders, such as eavesdroppers, and from insider
participants attempting to grab the private input of another participant.
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1 Introduction

Since Bennett and Brassard [1] introduced the pioneering quantum key distribution
(QKD) protocol in 1984, leveraging the distinctive properties of quantum mechanics
instead of relying on computational complexity problems and demonstrating its
unconditional security, a multitude of quantum cryptographic protocols have since
been developed. These include quantum secret sharing [2–4], quantum secure direct
communication [5–7], and quantum key agreement [8, 9], aiming to address various
cryptographic tasks. Quantum cryptography offers significant security advantages
compared to classical cryptography, which is vulnerable to attacks from quantum
algorithms (e.g., Shor’s algorithm [10]).

In 1982, Andrew Yao [11] proposed the concept of the millionaires’ problem, with the
aim of solving the following task: two millionaires, each possessing their own wealth, seek to
ascertain the wealthier party without revealing their financial status. Boudot et al. [12]
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introduced an efficient scheme for the socialist millionaires’
problem, relying on three standard assumptions: discrete
logarithm, the Diffie–Hellman, and the Decision Diffie–Hellman.
In this problem, two millionaires aim to ascertain the equality of
their wealth. Nevertheless, as noted by Lo [13], securely evaluating
an equality function in a two-party setting is deemed impossible.
Consequently, the involvement of a third party (TP) becomes
imperative to address the millionaires’ problem. Indeed,
addressing the socialist millionaires’ problem is tantamount to
formulating a private comparison protocol for confidentially
comparing secrets. The reliability of the third party (TP) can be
categorized into three types: completely honest, semi-honest, and
dishonest. Since completely honest TP involvement in real life is
hard to find, and implementing dishonest TP is difficult, semi-
honest TP, who may misbehave but cannot collude with the
participants, is a more reasonable and widely used approach in
designing private comparison protocols up to now.

Quantum private comparison (QPC), which combines
quantum mechanics and classical private comparison, can be
used to solve the socialist millionaires’ problem that achieves the
comparison of the equality or inequality of two secrets while
ensuring the security of information transmission. The first QPC
protocol, incorporating EPR pairs and decoy photons, was
suggested by Yang et al. [14] in 2009, which allows the
equality relationship of two secrets to be determined by
involving a TP who is barred from accessing either the
comparison result or the private inputs. To conserve quantum
resources, Chen et al. [15] introduced a QPC protocol using
triplet entangled states. In this protocol, the classical message can
be divided into multiple groups, and comparison results can be
obtained even if not all data are completely compared. Lin et al.
[16] identified vulnerabilities in the protocol described in Ref.
[15], noting its susceptibility to intercept-resend attacks and
emphasizing the need for improvements. Afterward, several
QPC protocols were proposed using different quantum states
as carriers of quantum information, such as single photons [17],
Bell states [18, 19], multi-qubit entangled states [20–24], and
multi-qubit cluster states [25–28]. In addition, Ye [29] proposed
a QPC protocol using cavity quantum electrodynamics (QED),
which requires two-atom product states as carriers of quantum
information, and one two-atom product state can be utilized to
perform the equality comparison of 1 bit in each round. Chen
et al. [30] introduced a QPC protocol utilizing quantum walks on
a circle. This protocol requires a two-particle quantum walk state
and a quantum walk operator, and it can improve efficiency by
allowing private inputs to be compared all at once rather than bit
by bit. In order to compare the relationship of arbitrary single-
qubit states, Huang et al. [31] constructed a QPC protocol by
utilizing the special property of rotation encryption
and swap test.

The QPC protocols mentioned above mainly utilize low-
dimensional quantum states as carriers of quantum
information, with the classical message encoded on these
quantum states. In most quantum states, a single quantum
state can only convey 1 bit of information, limiting the
transmission efficiency of quantum states. To address the
issue, some scholars have focused on developing QPC
protocols based on high-dimensional quantum states instead

of low-dimensional quantum states since high-dimensional
quantum states can encode a greater amount of information.
In 2011, Jia et al. [32] introduced d-level GHZ states to solve the
millionaire problem. The private inputs are encoded into the
phase of the initial quantum entangled states by performing local
operations, and the phase information can be obtained by
performing collective measurements. In 2013, Yu et al. [33]
introduced d-level single particles to construct the QPC
protocol, with the aim of comparing the size relationship of
private inputs. Guo et al. [34] used entanglement swapping of
d-level Bell states to determine the equality and size relationship
of two secrets. Since the particles can be used multiple times, the
scheme has an advantage in efficiency. After that, Li and Shi [35]
proposed a QPC protocol utilizing quantum Fourier transforms,
wherein the encoding of private inputs into the phase of the
quantum state sent from the third party is employed. This
protocol achieves higher communication efficiency by
employing secret-by-secret comparisons rather than bit-by-bit
comparisons. Ji et al. [36] used (n+1)-qubit GHZ states as
quantum resources to compare the participants’ secrets, and
the requirement of quantum devices can be reduced as the
protocol only employs quantum states and quantum
measurements without the need for any entanglement
swapping and unitary operations. Wu and Zhao [37] proposed
a QPC based on d-level Bell states to determine the equality and
size relationship of two secrets.

Based on the analysis of the aforementioned protocols, it can
be deduced that QPC protocols utilizing low-dimensional
quantum states as quantum information carriers, have lower
transmission efficiency. In contrast, implementing high-
dimensional quantum states-based QPC protocols poses
challenges with current quantum technologies. In this paper,
we introduce a practical QPC protocol to address the socialist
millionaires’ problem utilizing single photons, as they are easier
to implement and manipulate with current technology. This
protocol utilizes single photons as carriers of quantum
information, with TP tasked with preparing groups of
quantum sequences and transmitting them to Alice who
performs Identity or Hadamard operations on the received
quantum sequences via her private inputs and the secret keys
to obtain new quantum sequences, which are then sent to Bob.
Similarly, Bob encodes his private inputs into the received
quantum sequences to produce new quantum sequences,
which are then sent to TP. By conducting single-particle
measurements on the quantum sequence received from Bob,
TP can ascertain the equality of private inputs between Alice
and Bob, and subsequently communicate the comparison results
to them. Two simulation experiments are conducted on IBM
Quantum Experience to showcase the feasibility of the proposed
protocol. Additionally, the incorporation of decoy photons
enables the detection of any potential eavesdropping during
the eavesdropping detection process.

The remaining sections of this paper are structured as follows:
Section 2 introduces preliminary knowledge, Section 3 outlines the
detailed steps of the proposed quantum secure protocol for the
socialist millionaires’ problem, Section 4 conducts two simulation
experiments, and Section 5 provides the corresponding analysis for
the proposed protocol. Finally, Section 6 concludes the paper.
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2 Preliminary knowledge

In this section, we will primarily introduce the Identity and
Hadamard operations, which are equivalent to two quantum
gates. In essence, a quantum gate can be represented as a
unitary matrix. When performing a quantum gate on an
n-qubit quantum state, the unitary matrix is of size 2n × 2n.
For a single photon, also known as a single qubit, the unitary
matrix is of size 2 × 2. Therefore, Identity or Hadamard
operations can be represented as a 2 × 2 unitary matrix, as
shown in the following equation.

I � 1 0
0 1

( ), H � 1�
2

√ 1 1
1 −1( ) (1)

For a single qubit, performing the Identity operation will
not change its state, while the state will change when
performing the Hadamard operation. That is
| 0〉 ↔ | + 〉, | 1〉 ↔ | − 〉.

Theorem 1. When using the Z-basis to measure | 0〉 and | 1〉
respectively, the measurement results yield | 0〉 and | 1〉
respectively with a probability of 1. However, when using
Z-basis to measure | + 〉 and | − 〉 respectively, the
measurement results yield | 0〉 and | 1〉 respectively, with an
equal probability of 0.5.

Proof. The measurement operators of Z-basis can be
represented as M0 � | 0〉〈0 | and M1 � | 1〉〈1 | , where M0 and
M1 are Hermitian matrices and satisfy the completeness equation,
that is,

I � M†
0M0 +M†

1M1 (2)

When performing themeasurement on | 0〉with the Z-basis, the
probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p1 0| 〉( ) � 〈0 |M†
0M0 0| 〉 � 〈0 | 0| 〉〈0 | 0| 〉 � 1 (3)

p1 1| 〉( ) � 〈0 |M†
1M1 0| 〉 � 〈0 | 1| 〉〈1 | 0| 〉 � 0 (4)

When performing themeasurement on | 1〉with the Z-basis, the
probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p2 0| 〉( ) � 〈1 |M†
0M0 1| 〉 � 〈1 | 0| 〉〈0 | 1| 〉 � 0 (5)

p2 1| 〉( ) � 〈1 |M†
1M1 1| 〉 � 〈1 | 1| 〉〈1 | 1| 〉 � 1 (6)

When performing the measurement on | + 〉 with the Z-basis,
the probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p3 0| 〉( ) � 〈+ |M†
0M0 +| 〉 � 〈0 | + 〈1 |�

2
√ 0| 〉〈0 | 0| 〉 + 1| 〉�

2
√ � 1

2
(7)

p3 1| 〉( ) � 〈+ |M†
1M1 +| 〉 � 〈0 | + 〈1 |�

2
√ 1| 〉〈1 | 0| 〉 + 1| 〉�

2
√ � 1

2
(8)

When performing the measurement on | − 〉 with the Z-basis,
the probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p4 0| 〉( ) � 〈− |M†
0M0 −| 〉 � 〈0 | − 〈1 |�

2
√ 0| 〉〈0 | 0| 〉 − 1| 〉�

2
√ � 1

2
(9)

p4 1| 〉( ) � 〈− |M†
1M1 −| 〉 � 〈0 | − 〈1 |�

2
√ 1| 〉〈1 | 0| 〉 − 1| 〉�

2
√ � 1

2
(10)

From Eqs 3–6, we can conclude that when using the Z-basis to
measure | 0〉 and | 1〉 respectively, the measurement results are | 0〉
and | 1〉 respectively with a probability of 1. From Eqs 7–10, we can
also conclude that when using the Z-basis to measure | + 〉 and
| − 〉 respectively, the measurement results are | 0〉 and | 1〉
respectively with the same probability of 0.5.

Theorem 2. When using the X-basis to measure | 0〉 and | 1〉
respectively, the measurement results are | + 〉 and | − 〉
respectively with an equal probability of 0.5. However, when
using the X-basis to measure | + 〉 or | − 〉 respectively, the
measurement results yield | + 〉 and | − 〉 respectively with a
probability of 1.

Proof. The measurement operators of X-basis can be
represented as M+ � | + 〉〈 + | and M− � | − 〉〈 − | , where M+
and M− are also Hermitian matrices and satisfy the completeness
equation as well, that is,

I � M†
+M+ +M†

−M− (11)

When performing the measurement on | 0〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p5 +| 〉( ) � 〈0 |M†
+M+ 0| 〉 � 〈0 | +| 〉〈+ | 0| 〉 � 1

2
(12)

p5 −| 〉( ) � 〈0 |M†
−M− 0| 〉 � 〈0 | −| 〉〈− | 0| 〉 � 1

2
(13)

When performing the measurement on | 1〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p6 +| 〉( ) � 〈1 |M†
+M+ 1| 〉 � 〈1 | +| 〉〈+ | 1| 〉 � 1

2
(14)

p6 −| 〉( ) � 〈1 |M†
−M− 1| 〉 � 〈1 | −| 〉〈− | 1| 〉 � 1

2
(15)

When performing the measurement on | + 〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p7 +| 〉( ) � 〈+ |M†
+M+ +| 〉 � 〈+ | +| 〉〈+ | +| 〉 � 1 (16)

p7 −| 〉( ) � 〈+ |M†
−M− +| 〉 � 〈+ | −| 〉〈− | +| 〉 � 0 (17)

When performing the measurement on | − 〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p8 +| 〉( ) � 〈− |M†
+M+ −| 〉 � 〈− | +| 〉〈+ | −| 〉 � 0 (18)

p8 −| 〉( ) � 〈− |M†
−M− −| 〉 � 〈− | −| 〉〈− | −| 〉 � 1 (19)

From Eqs 12–15, we can also conclude that when using the
X-basis to measure | 0〉 and | 1〉 respectively, the measurement
results are | + 〉 and | − 〉 respectively with the same probability of

Frontiers in Physics frontiersin.org03

Hou and Wu 10.3389/fphy.2024.1364140

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1364140


0.5. From Eqs 16–19, we can also conclude that when using the
X-basis to measure | + 〉 and | − 〉 respectively, the measurement
results are | + 〉 and | − 〉 respectively with a probability of 1.

3 Quantum secure protocol for the
socialist millionaires’ problem

The quantum secure protocol for the socialist millionaires’
problem is run between two participants, each of whom
possesses two secret inputs, A and B, respectively. The two
participants aim to determine the equality relationship between A
and B. The binary representations of A and B in FL

2 can be
represented as A′ � (a1, a2,/, aL) and B′ � (b1, b2,/, bL), where
L is the length of A′ and B′. If the length of A′ and B′ is less than L,
Alice and Bob fill in the high digit with adequate zeros. A semi-
honest third party is engaged in the preparation of the sequence of
single photons. In the entire process, TP may have access to some
immediate computation processes, but she cannot collude with any
participant. Before the protocol is executed, TP shares a secret key
TA � (ta1, ta2,/, taL) and TB � (tb1, tb2,/, tbL) between Alice
and Bob via a secure QKD protocol, respectively. Additionally, Alice
and Bob also share a secret key AB � (ab1, ab2,/, abL) using a
secure QKD protocol.

The detailed steps of the proposed protocol are described in the
following procedure.

Step 1: TP prepares λ groups of quantum sequences denoted as
S � (⊗L

i�1s
1
i ;⊗

L
i�1s

2
i ;/⊗L

i�1s
λ
i ), with each group being equivalent and

containing L photons randomly selected from
| 0〉, | 1〉, | + 〉, | − 〉{ }. Then, she prepares δ decoy photons and

inserts them into the sequence S at random positions to produce a
new sequence S′ and notes the positions of the decoy photons in S′
and each quantum state in sequence S. Finally, TP sends S′ to Alice.

Step 2:Upon receiving S′, Alice and TP perform the eavesdropping
detection to identify the presence of any eavesdropper. When TP
knows that Alice has received S′, TP securely conveys the positions
of the decoy photons and their corresponding measurement bases to
Alice through a classical channel. Subsequently, Alice measures the
decoy photons using the provided measurement bases and
communicates the measurement results back to TP. TP then
compares these results with the originally prepared δ decoy
photons. If they are different, the process is returned to Step 1.
Otherwise, they proceed with the following steps.

Step 3: Alice discards the decoy photons to get S. If
ai ⊕ tai ⊕ abi � 0, Alice applies the Identity operation to each
photon within the λ groups in S. Otherwise, Alice applies the
Hadamard operation to each photon within the λ groups in S.
Let the resultant sequence be SA. To detect the eavesdropper, Alice
adds δ decoy photons into SA to produce a fresh sequence S′A , which
is then sent to Bob.

Step 4: Upon receiving S′A, Alice and Bob perform the eavesdropping
detection in the samemanner as TP. If no eavesdropper is detected, Bob
removes the decoy photons from S′A to get SA. If bi ⊕ tbi ⊕ abi � 0, Bob
performs the Identity operation. Otherwise, Bob performs the

Hadamard operation. Let the resultant sequence be SB. To prevent
eavesdropping, Bob adds δ decoy photons into SB to produce a fresh
sequence S′B, which is then sent to TP.

Step 5: Upon receiving S′B, TP interacts with Bob in the same
manner as Alice and Bob to check whether the eavesdropper exists.
If not, TP gets SB by removing the decoy photons from S′B. In the
following, TP applies the Identity or Hadamard operation to each
photon within the λ groups in SB to produce a new sequence STP. If
tai ⊕ tbi � 0, TP performs the Identity operation. Otherwise, TP
performs the Hadamard operation. TP measures each photon of the
λ groups in STP with themeasurement basis determined by the initial
prepared quantum state in S to get the measurement results. If the
photon stays in | 0〉 or | 1〉, the measurement basis is the Z-basis,
Otherwise, the measurement basis is the X-basis.

Step 6: TP communicates the comparison results to both Alice and
Bob. If all measurement results in STP are the same as the initially
prepared quantum state in S, A and B are identical. Otherwise, A and
B are different.

4 Simulation experiments

Since single photons are easier to implement and manipulate
compared to low-dimensional and high-dimensional quantum
states, we simulate the aforementioned protocol on IBM
Quantum Experience using two concrete examples to
demonstrate its feasibility and correctness. The specifics of two
simulation experiments are outlined below.

4.1 Simulation I. Alice and Bob desire to
compare their private inputs, with A = 12 and
B = 12, respectively

A and B can be denoted as A′ � 1100 and B′ � 1100 in the form
of binary representations in FL

2 . For the sake of simplicity, any
eavesdropping or attacks will not be considered in the simulation
experiments. We assume that TP shares the secret keys TA � 1011
and TB � 1001 respectively, and then Alice and Bob also share a
secret key AB � 1101.

Suppose that the initial quantum sequence prepared by TP is
S � | 0〉, | 1〉, | + 〉, | − 〉{ }. After that, Alice performs the
operators H, I, H, I{ } on each photon of S to get SA �
H | 0〉, I | 1〉, H | + 〉, I | − 〉{ } and then she sends SA to Bob. In
the same way, Bob performs the operator H, I, I, I{ } on each
photon of SA to get SB � HH | 0〉, II | 1〉, IH | + 〉, II | − 〉{ } and
then she sends SB to TP. Finally, TP performs the operators
I, I, H, I{ } on each photon of SB to get STP �
IHH | 0〉, III | 1〉, HIH | + 〉, III | − 〉{ } � | 0〉, | 1〉, | + 〉, | − 〉{ }
and then measures STP with the measurement bases determined
by the initially prepared quantum state in S to get the
measurement results. That is, TP measures STP with basis
Z, Z, X, X{ } to get the measurement results denoted as
| 0〉, | 1〉, | + 〉, | − 〉{ }. Therefore, we can see that all

measurement results are the same as the initially prepared
quantum state, indicating that A and B are identical.
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The quantum circuit for Case I is depicted in Figure 1. By
executing the quantum circuit on IBM Quantum Experience, we
can obtain the measurement results shown in Figure 2. In
Figure 2, the string on the horizontal axis represents the
measurement outcome, corresponding to q [0]-q [3] from
right to left. The value on the vertical axis represents the
quasiprobability. It is important to note that both the
measurement bases selected in q [2] and q [3] are the X basis,
and the measurement outcome 1 and 0 are considered as | + 〉
and | − 〉 respectively. From Figure 2, we can see that the final
measurement outcome is | 0〉, | 1〉, | + 〉, | − 〉{ }, which is the

same as the initial prepared quantum state. This indicates that
A and B are identical.

4.2 Simulation II. Alice and Bob desire to
compare their private inputs, with A = 55 and
B = 22, respectively

A and B can be represented as A′ � 110111 and B′ � 10110 in
the form of binary representations in FL

2 . Suppose that L = 6, we can
see that the length of B′ is less than L, Bob will fill in the necessary 0s

FIGURE 1
The quantum circuit of Simulation I.

FIGURE 2
The measurement outcome in Figure 1.
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at the higher digits and thus B′ � 010110. We assume that TP shares
the secret keys TA � 101011 and TB � 100101 between Alice and
Bob, respectively, and Alice and Bob also share a secret key AB �
101101.

Suppose that the initial quantum sequence prepared by
TP is S � | + 〉, | 1〉, | 0〉, | + 〉, | − 〉, | 1〉{ }. Afterward, Alice
performs the operators H,H, I, I, I,H{ } on each photon of S to
get SA � H | + 〉, H | 1〉, I | 0〉, I | + 〉, I | − 〉, H | 1〉{ } , which is then
sent to Bob. In the same way, Bob performs the operators
I,H,H,H,H, I{ } on each photon of SA to get
SB � IH | + 〉, HH | 1〉, HI | 0〉, HI | + 〉, HI | − 〉, IH | 1〉{ }, which
is then sent to TP. Finally, TP performs the operators
I, I, H, H,H, I{ } on each photon of SB to get STP �
IIH | + 〉, IHH | 1〉, HHI | 0〉, HHI | + 〉, HHI | − 〉, IIH | 1〉{ } �
| 0〉, | 1〉, | 0〉, | + 〉, | − 〉, | − 〉{ } and then TP measures STP

using the measurement bases determined by the initially
prepared quantum state in S to obtain the measurement
results. That is, TP measures STP with basis X, Z, Z, X, X, Z{ }
to get the measurement results denoted as
| + 〉or | − 〉, | 1〉, | 0〉, | + 〉, | − 〉, | 0〉 or | 1〉{ }. Therefore, we

can see that not all measurement results are the same as the
initially prepared quantum state, indicating that A and B
are different.

The quantum circuit for Case II is depicted in Figure 3. By
executing the quantum circuit on IBMQuantum Experience, we can
obtain the measurement results shown in Figure 4. It is important to

note that the measurement basis selected in q [0], q [3], and q [4]
are all based on the X basis. The measurement outcome
1 and 0 can be considered as | + 〉 and | − 〉 respectively.
From Figure 2, we can see that the measurement
outcome is | + 〉or | − 〉, | 1〉, | 0〉, | + 〉, | − 〉, | 0〉 or | 1〉{ },
which corresponds to the measurement outcome q [0]-q [5]
from right to left. Since the measurement outcome is not the
same as the initial quantum state, A and B are different.

5 Analysis

5.1 Correctness analysis

In the proposed protocol, TP prepares λ groups of quantum
sequences denoted as S � (⊗L

i�1s
1
i ;⊗

L
i�1s

2
i ;/⊗L

i�1s
λ
i ), which is sent to

Alice. Then, Alice applies the Identity or Hadamard operation to
each photon within the λ groups in STP according to her private
inputs and the secret keys. Thus, we can get

SA � ⊗L
i�1 IorH( )s1i ;⊗L

i�1 IorH( )s2i ;/⊗L
i�1 IorH( )sλi( ) (20)

After that, SA is sent to Bob. Bob also applies the Identity or
Hadamard operation to each photon within the λ groups in SA
according to her private inputs and the secret keys. Thus, we can
also get

FIGURE 3
The quantum circuit of Simulation II.
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SB � ⊗L
i�1 IorH( ) IorH( )s1i ;⊗L

i�1 IorH( ) IorH( )s2i ;/⊗L
i�1 IorH( ) IorH( )sλi( )

(21)

After that, SB is sent to TP. TP also applies the Identity or
Hadamard operation to each photon within the λ groups in SB to
produce a new sequence STP. If tai ⊕ tbi � 0, Bob performs the
Identity operation. Otherwise, Bob performs the
Hadamard operation.

There are four cases that should be considered.
Case I: If ai � 0 and bi � 0, then

STP � ⊗L
i�1s

1
i ;⊗

L
i�1s

2
i ;/⊗L

i�1s
λ
i( ) (22)

When TP measures each group of quantum states in STP with
the measurement bases determined by the initially prepared
quantum state in S. We can easily observe that all the ith qubits
in each group of STP are the same as the initially prepared ith qubits
in each group of S, indicating that A and B are identical.

Case II: If ai � 1 and bi � 0, then

STP � ⊗L
i�1Hs1i ;⊗

L
i�1Hs2i ;/⊗L

i�1Hsλi( ) (23)

When TP measures each group of quantum states in STP with
the measurement bases determined by the initially prepared
quantum state in S. It is easy to see that not all the ith qubits in
each group of STP are the same as the initially prepared ith qubits in
each group of S, indicating that A and B are not identical.

Case III: If ai � 0 and bi � 1, then

STP � ⊗L
i�1Hs1i ;⊗

L
i�1Hs2i ;/⊗L

i�1Hsλi( ) (24)

We can see that STP in Case III is the same as in the Case II, and
thus we can deduce that A and B are not identical.

Case IV: If ai � 1 and bi � 1, then

STP � ⊗L
i�1s

1
i ;⊗

L
i�1s

2
i ;/⊗L

i�1s
λ
i( ) (25)

Similarly, we can also observe that STP in Case VI is the same as
in Case I, and thus we can deduce that A and B are not identical.

Therefore, the above results reveal that our protocol is correct.

5.2 Security analysis

5.2.1 External attacks
External attacks involve an outsider eavesdropper, Eve, who may

attempt to obtain valuable information about Alice’s or Bob’s private
inputs during the transmission of the quantum sequence between the
participants. Unfortunately, decoy photons are used during the
transmission of each quantum sequence. Both the sender and receiver
of the quantum sequences will perform the eavesdropping detection to
verify the presence of any eavesdropper. This technique guarantees the
security of the quantum sequence transmission, and any external attacks
including intercept-resend attack, auxiliary particle attack, the man-in-
the-middle attack and denial-of-service (Dos) attacks are invalid. In this
context, we primarily delve into the security aspects of the proposed
protocol concerning intercept-resend attacks, entanglement-measure
attacks, and Trojan-Horse attacks in detail.

5.2.1.1 The intercept-resend attack
The intercept-resend attack refers to the outsider eavesdropper,

Eve, intercepting the sequence sent from the previous participant
during the transmission of each quantum sequence. Once Eve
obtains the quantum sequence that carries the private inputs, she
has the option to measure them using the Z-basis and send a fake
sequence whose states match the measurement results instead of the
initial quantum sequences to the original receiver. We assume that
when a sender’s initial quantum state is | 0〉 or | 1〉, and Eve
intercepts and measures it with the Z-basis, she will evade
eavesdropping detection. If Eve measures it using the X-basis, she
will successfully evade eavesdropping detection with a probability of

FIGURE 4
The measurement outcome in Figure 3.

Frontiers in Physics frontiersin.org07

Hou and Wu 10.3389/fphy.2024.1364140

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1364140


1/2. For any selected decoy photon, the probability that Eve can
correctly choose the measurement basis is 1/2. Therefore, the error
rate of a decoy state that Eve introduced in the eavesdropping
detection is (1 − 1

2 × 1 − 1
2 ×

1
2) � 1

4. Since the number of decoy
photons is δ, the probability of detecting the decoy states that
Eve resends incorrectly is 1 − (34)δ . It is important to note that if
δ is sufficiently large, the error rate introduced by Eve in the
eavesdropping detection will approach 1, indicating that Eve’s
eavesdropping will be detected by the sender and the receiver,
and the entire protocol process will need to be restarted.
Therefore, the intercept-resend attack carried out by Eve is
invalid, and her attempts to pilfer any valuable information
regarding Alice’s or Bob’s private inputs prove futile.

5.2.1.2 The entanglement-measure attack
The entanglement-measure attack involves an outsider

eavesdropper, Eve, intercepting the sequence sent from the
previous participant during the transmission of each quantum
sequence. She then performs unitary operations to entangle the
prepared auxiliary particle sequence E � |E0〉, |E1〉,/, |En〉{ }
with the intercepted single-photon sequence. And the unitary
operations performed on each single photon can be denoted as

U Ei| 〉 0| 〉 � a e00| 〉 0| 〉 + b e01| 〉 1| 〉 (26)
U Ei| 〉 1| 〉 � c e10| 〉 0| 〉 + d e11| 〉 1| 〉 (27)

U Ei| 〉 +| 〉 � U Ei| 〉 ⊗
0| 〉 + 1| 〉�

2
√

� 1�
2

√ a e00| 〉 0| 〉 + b e01| 〉 1| 〉 + c e10| 〉 0| 〉 + d e11| 〉 1| 〉( )

� 1�
2

√
a e00| 〉 ⊗

+| 〉 + −| 〉�
2

√ + b e01| 〉 ⊗
+| 〉 − −| 〉�

2
√

+c e10| 〉 ⊗
+| 〉 + −| 〉�

2
√ + d e11| 〉 ⊗

+| 〉 − −| 〉�
2

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
2

+| 〉 a e00| 〉 + b e01| 〉 + c e10| 〉 + d e11| 〉( )
+ −| 〉 a e00| 〉 − b e01| 〉 + c e10| 〉 − d e11| 〉( )

⎡⎣ ⎤⎦
(28)

U Ei| 〉 −| 〉 � U Ei| 〉 ⊗
0| 〉 − 1| 〉�

2
√

� 1�
2

√ a e00| 〉 0| 〉 + b e01| 〉 1| 〉 − c e10| 〉 0| 〉 − d e11| 〉 1| 〉( )

� 1�
2

√
a e00| 〉 ⊗

+| 〉 + −| 〉�
2

√ + b e01| 〉 ⊗
+| 〉 − −| 〉�

2
√

−c e10| 〉 ⊗
+| 〉 + −| 〉�

2
√ − d e11| 〉 ⊗

+| 〉 − −| 〉�
2

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
2

+| 〉 a e00| 〉 + b e01| 〉 − c e10| 〉 − d e11| 〉( )
+ −| 〉 a e00| 〉 − b e01| 〉 − c e10| 〉 + d e11| 〉( )

⎡⎣ ⎤⎦
(29)

| e00〉, | e01〉, | e10〉, | e11〉{ } are four pure quantum states that are
determined by the unitary operations U, and they satisfy the
following condition.

∑
α,β

〈eα,β
∣∣∣∣eα,β〉 � 1 (30)

Moreover, the parameters a, b, c, and d satisfy the condition, e.g.,
|a|2 + |b|2 � 1 and |c|2 + |d|2 � 1. In the proposed protocol, the

eavesdropping detection is performed between each transmission
of the quantum sequence. If the decoy photon is in state | 0〉 or | 1〉
and Eve wants to avoid detection, the parameters b and cmust satisfy
b � c � 0. Similarly, if the decoy photon is in state | + 〉 or | − 〉 and
Eve wants to avoid detection, then a | e00〉 − b | e01〉 + c | e10〉 −
d | e11〉 � �0 and a | e00〉 + b | e01〉 − c | e10〉 − d | e11〉 � �0. Therefore,
we can easily deduce that

a e00| 〉 � d e11| 〉 (31)
When Substituting Eq. 31 and b � c � 0 into Eqs 26–29, we

can get

U Ei| 〉 0| 〉 � a e00| 〉 0| 〉 (32)
U Ei| 〉 1| 〉 � a e00| 〉 1| 〉 (33)
U Ei| 〉 +| 〉 � a e00| 〉 +| 〉 (34)
U Ei| 〉 −| 〉 � a e00| 〉 −| 〉 (35)

From Eqs 32–35, we can easily see that the auxiliary particles are
not related to the intercepted ones. No matter what the intercept
particles are, the auxiliary particles will always be in | e00〉. As a
result, Eve will fail to evade eavesdropping detection by performing
the entanglement-measure attack, and her attempts to pilfer any
valuable information regarding Alice’s or Bob’s private inputs also
prove futile.

5.2.1.3 The Trojan-Horse attacks
The Trojan-Horse attacks [38] mainly include the delay-photon

attack and the invisible photon eavesdropping attack. These attacks
may occur in a two-way communication protocol where quantum
states are returned to the sender. Since our protocol is a two-way
communication protocol, the initial quantum sequence prepared by
TP is returned to TP and the quantum sequence is transmitted in a
circular mode. Therefore, the Trojan-Horse attacks should be
considered. In order to prevent these attacks, both the
Wavelength Quantum Filter (WQF) and the Photons Number
Splitter (PNS) should be equipped to remove invisible photons
and separate legitimate photons from delayed photons, respectively.

5.2.2 Participants’ attack
Since the participants have the legal capacity to access more

information compared to an outside eavesdropper, the dishonest
individual has a high probability of obtaining the private input of the
dishonest participant without being detected. Therefore,
participants’ attack as high security risk should be prevented by
taking appropriate measures. Here, we analyze three types of attacks
by participants that are aimed at obtaining the private input of the
participants.

5.2.2.1 The attack from TP
As a semi-honest party, TP may exhibit improper behavior, but

she cannot collude with either Alice or Bob. If TP intends to usurp
the private input of Alice or Bob, she may perform external attacks
similar to Eve. Unfortunately, this action will be detected, as
discussed in Section 5.2.1, and TP cannot avoid detection by
eavesdropping. Although TP has some advantages in generating
the initial quantum sequences used for information transmission
and receiving the sequences encoded with private inputs and secret
keys, TP can only gain knowledge about the comparison result. In

Frontiers in Physics frontiersin.org08

Hou and Wu 10.3389/fphy.2024.1364140

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1364140


other words, TP is able to determine whether a bit of Alice and Bob is
identical or not, but it will not disclose whether the bit of Alice or
Bob is 0 or 1. In addition, both SA and SB are encoded with the
private inputs and the secret keys shared, TP remains unable to
access any information regarding the private inputs of Alice and Bob
without knowledge of the key AB. Therefore, the proposed protocol
is resistant to TP’s attack.

5.2.2.2 The attack from Alice
When TP sends S to Alice, Alice can intercept and measure it

directly. And then she sends carefully prepared quantum sequences
denoted as SA″ to Bob. When Bob applies the Identity or Hadamard
operation to each photon within SA″ via his private inputs and the
secret keys to obtain new quantum sequences denoted as SB′, which
is sent to TP. Afterward, Alice launches the intercept-resend attack
on SB′ that Bob sends to TP. In other words, Alice can intercept SB′
and send a fake sequence SB″ to TP. Once TP receives the counterfeit
sequence SB″, Bob will convey the positions of the decoy photons
and their corresponding measurement bases. Simultaneously, Alice
is aware of the positions of the decoy photons in SB″ and she can
discard them. Then Alice measures the remaining particles in SB″ to
obtain the measurement result. Although this attack can be
identified through the eavesdropping detection mechanism, Alice

has already obtained the final states, allowing her to deduce the
operations that Bob performs. However, Bob’s actions are influenced
by his private inputs and the confidential key TB shared exclusively
between TP and Bob. Alice remains unable to access any
information regarding Bob’s secrets without knowledge of the
key TB.

5.2.2.3 The attack from Bob
When Alice sends SA to Bob, Bob can measure each particle in

SA directly and obtain the measurement result. Bob can also infer
which operations that Alice performs. However, this attack will not
work. Firstly, the sequence S prepared by TP will not be disclosed to
Bob due to the simi-honesty of TP. Once Bob intends to know S by
performing outside attacks just like Eve does, he will be detected in
the eavesdropping detection. In addition, SA is encoded with the
private inputs of Alice and the secret key TA shared between TP and
Alice, and Alice also remains unable to access any information
regarding Alice’s secrets without knowledge of the key TA.

In summary, the proposed protocol remains resilient against
attacks from the participants, ensuring that the secrets of both Alice
and Bob are not compromised.

5.3 Efficiency analysis and comparison

In most of QPC protocol, the qubit efficiency is an important
indicator for evaluating the utilization rate of quantum states. However,
it does not take into account the decoy photons used in eavesdropping
detection, which can be considered as an independent process.

The qubit efficiency [39] ηe is given by

ηe �
ηc
ηt

(36)

Where ηc represents the total number of bits that Alice and Bob
want to compare, and ηt represents the total number of qubits used,
excluding the decoy photons. In our protocol, L-length classical-bit
information needs to be encoded using λL single photons as the
information carriers to encode them. Therefore, the qubit efficiency
of the proposed protocol is ηe � 1

λ, where λ represents the number of
repetitively prepared quantum sequences.

Next, we will discuss the value of E(λ), which represents the
average number of times the quantum sequences are repetitively
prepared. In Section 5.1, we can conclude that for all ith qubits in
each group of quantum states in STP, the measurement result of STP

FIGURE 5
The relationship between L and E(λ).

TABLE 1 Comparison among some typical two-party QPC protocols.

[14] [15] [17] [18] [28] Ours

Quantum state used EPR pairs GHZ state Single photons Bell states Five-particle cluster state Single photons

Quantum measurement Bell-basis Single-particle Single-particle GHZ-basis Single-particle Single-particle

Entanglement swapping No No No Yes Yes No

Unitary operation Yes Yes Yes No Yes Yes

QKD used No No Yes Yes No Yes

Qubit efficiency 25% 33% 25% 50% 40% [50%, 100%)
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is the same as the initial prepared quantum state S if and only if
ai � 0 and bi � 0 as well as ai � 1 and bi � 1. Therefore, the
probability that the measurement result matches the initial
prepared quantum state for a qubit is 1

2. We denote the
measurement result of one qubit being different from the initially
prepared quantum state as Situation I. For a L-length sequence, the
probability of Situation I appearing once is 1 − (12)L. How many
times should TP prepare the initial quantum state to make Situation
I appear once?We denote X as the event. Suppose that in Situation I,
when preparing λ groups of quantum sequences, the distribution of
X is denoted as

P X � λ( ) � 1
2

( )L( )λ−1
1 − 1

2
( )L( ) (37)

E(λ) can be calculated as

E λ( ) � ∑∞
λ�1

λP X � λ( ) � ∑∞
λ�1

λ
1
2

( )L( )λ−1
1 − 1

2
( )L( )

�
1 − 1

2
( )L( )
1
2

( )L lim
n ����→∞∑n

λ�1
λ

1
2

( )L( )λ

� 1

1 − 1
2

( )L

(38)

When L is large, we can obtain (12)L → 0 and E(λ) → 1. The
relationship between E(λ) and L can be seen in Figure 5. From Fig.8,
it is evident that E(λ) � 2 when L � 1, and E(λ) � 1.001 when
L � 10. Meanwhile, as L gradually increases, E(λ) approaches 1.
Therefore, the value of E(λ) � (1, 2], and ηe � 1

E(λ) � [0.5, 1).
Table 1 illustrates a comparison between the proposed protocol

and previous two-party QPC protocols.
Table 1 reveals that our protocol utilizes single photons as

carriers of quantum information, which is more feasible than Bell
states and multi-particle states. Although both Ref. [17] and our
protocol utilize single photons as quantum resources, the qubit
efficiency in Ref. [17] is only 25%, which is lower with our
protocol with the qubit efficiency of [0.5, 1). Additionally, our
protocol only utilizes unitary operations, which are relatively
easier to implement compared to the entanglement swapping
technology. The QKD technology does not used in Refs. [14, 15,
28] to share the secret key, but it is performed before the protocol
begins and its cost can be ignored. Therefore, our protocol is
more practical and efficient compared to the previous protocols
[14, 15, 17, 18, 28].

6 Conclusion

A single-photon-based quantum secure protocol for the socialist
millionaires’ problem is presented in this article. By utilizing single
photons as quantum information carriers, encoding the private input
through Identity or Hadamard operations, and obtaining the classical

outcome via single-particle measurement, the protocol is easier to
implement and manipulate compared to other existing protocols. By
executing the protocol, TP can ascertain the equality of Alice and Bob’s
private inputs and subsequently communicates the result to them.
Furthermore, the protocol’s feasibility is tested through simulation on
IBMQuantumCloud Platform. Security analysis demonstrates that any
attempt by eavesdroppers or insider parties to grab the private input of
another participant is invalid. Currently, the quantum protocols for the
socialist millionaires’ problem are primarily designed assuming that all
users, including TP, have complete quantum capabilities. In the future,
we aim to investigate the development of a quantum protocol that
accommodates classical users who can only reflect or measure the
received quantum states.
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