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Quantum Convolutional Neural Network (QCNN) has achieved significant
success in solving various complex problems, such as quantum many-body
physics and image recognition. In comparison to the classical Convolutional
Neural Network (CNN) model, the QCNN model requires excellent numerical
performance or efficient computational resources to showcase its potential
quantum advantages, particularly in classical data processing tasks. In this
paper, we propose a computationally resource-efficient QCNN model
referred to as RE-QCNN. Specifically, through a comprehensive analysis of the
complexity associated with the forward and backward propagation processes in
the quantum convolutional layer, our results demonstrate a significant reduction
in computational resources required for this layer compared to the classical CNN
model. Furthermore, our model is numerically benchmarked on recognizing
images from the MNIST and Fashion-MNIST datasets, achieving high accuracy in
these multi-class classification tasks.
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1 Introduction

In the era of big data, as the scale of data continues to increase, the computational
requirements for machine learning are expanding. Simultaneously, theoretical research
indicates that quantum computing holds the potential to accelerate the solution for certain
problems that pose challenges to classical computers [1–3]. Consequently, the field of
Quantum Machine Learning (QML) [4–6] has gained widespread attention, with several
promising breakthroughs. On one hand, quantum basic linear algebra subroutines, such as
Fourier transforms, eigenvector and eigenvalue computations, and linear equation solving,
exhibit exponential quantum speedups compared to their well-established classical
counterparts [7–9]. These subroutines bring quantum speedups in a range of machine
learning algorithms, including least-squares fitting [10], semidefinite programming [11],
gradient descent [12], principal component analysis [13], support vector machine [14], and
neural network [15]. However, these quantum algorithms generally involve long-depth
quantum circuits, which require a fault-tolerant quantum computer with error-correction
capabilities. As a result, it is not straightforward to extend these theoretical quantum
advantages to Noisy Intermediate-Scale Quantum (NISQ) devices [16].

Hybrid quantum-classical machine learning models [17–21] based on the Variational
Quantum Algorithm (VQA) [22–26] emerge as a notable advancement for designing QML
algorithms with shallow-depth quantum circuits. A typical example is the Quantum
Convolutional Neural Network (QCNN) [27], which is a quantum analog of the
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Convolutional Neural Network (CNN) [28,29] composed of the
convolutional layer, the pooling layer, and the fully connected layer.
The QCNN model was first proposed by Cong et al. [30],
demonstrating accurate quantum phase recognition by utilizing a
small number of trainable parameters in comparison to the system
size. Since translating a complex quantum state into the classical
world may suffer from the challenge known as the “exponential
wall” problem, the processing of quantum data inherently
demonstrates the quantum advantages of the QCNN model over
the classical CNN model.

In addition to quantum data processing, the QCNNmodel is also
applied to classical data processing tasks [31–36]. These QCNN
models comprise a combination of quantum and classical
components, including a quantum circuit, classical circuits, and a
classical optimizer. Specifically, the quantum circuit consists of a data
encoding circuit and a parameterized quantum circuit, which together
form the quantum convolutional layer. The main idea of the quantum
convolutional layer is to extract features from the classical image by
transforming the data block, obtained from the image using a sliding
window, using a parameterized quantum circuit. This is in contrast to
the classical convolutional layer, where the transformation is
performed using a weight matrix known as the classical
convolutional kernel [29]. Furthermore, the quantum
convolutional layer may extract complicated features whose
processing may be classically stubborn [35,37]. The primary focus
of studies mentioned above is to enhance the numerical performance
of the model by improving the data encoding strategy and the
structure of the parameterized quantum circuit. Rotation encoding
[31,32], which offers ease of implementation, and amplitude encoding
[33], which reduces the number of qubits, are commonly employed
data encoding strategies in these QCNNmodels. Moreover, to encode
more information of classical data onto quantum states, Matic et al.
[34] proposed a data encoding strategy that combines two-qubit gates
with single-qubit gates. Their model achieved comparable
performance to the classical CNN model in radiological image
classification tasks. Additionally, there are several related works
focused on improving the structure of the parameterized quantum
circuit. Henderson et al. [35] utilized multiple random quantum
circuits to construct the quantum convolutional layer and achieved
promising performance on the MNIST dataset. Furthermore, Chen
et al. [36] constructed a trainable parameterized quantum circuit and
applied their model to high-energy physics. To explore the potential
quantum advantages of the QCNNmodel in classical data processing
tasks, it is common to compare the prediction accuracy directly
between the quantum and classical models. However, a specific
QCNN or CNN model may not exhibit excellent numerical
performance across all tasks. This perspective is highly dependent
on the specific task andmay be influenced by random factors. A more
solid perspective for exploring the potential quantum advantages
involves comparing computational resources used in the training
and prediction processes of the model. Therefore, it is crucial to
highlight either the excellent numerical performance or the efficient
computational resources when showcasing the potential quantum
advantages of the QCNN model over the classical CNN model.

In this paper, we propose a computationally resource-efficient
QCNN model referred to as RE-QCNN. Specifically, by employing
the amplitude encoding strategy [38,39] and the Quantum
Alternating Operator Ansatz (QAOA) [40–42] to construct the

quantum convolutional layer, the complexity of the forward
propagation process in this layer is O(kpoly(logN)). Here, k
and N respectively denote the sparsity and dimension of the
classical data. Furthermore, we analyze the parameter updating
process based on backpropagation [43] to obtain the complexity of
the backward propagation process in the quantum convolutional
layer. In detail, we extend the existing parameter shift rule [44–46]
to calculate analytical gradients for the QAOA circuit with
parameter sharing. As a result, when the sparsity k of the
classical data is O(logN), we conclude that the overall
complexity of the quantum convolutional layer is
O(poly(logN)). Compared to the complexity of the classical
convolutional layer, which is O(N) [29,47], our model
significantly reduces the computational resources required for
the quantum convolutional layer. Moreover, we perform
numerical experiments on our model using the MNIST and
Fashion-MNIST datasets. Our model achieves high accuracy in
these multi-class classification tasks. Our results are of great
significance for exploring the potential quantum advantages of
the QCNN model in classical data processing tasks within
the NISQ era.

The rest of this paper is organized as follows. In Section 2, we
review the frame of VQA. Section 3 describes the structure of RE-
QCNN in detail. Section 4 presents the result of numerical
experiments. Conclusions is given in Section 5.

2 Variational quantum algorithm

VQA utilizes parameterized quantum circuits on quantum
devices, with the parameter optimization task delegated to a
classical optimizer. This algorithm offers the benefit of
maintaining a shallow quantum circuit depth, thereby reducing
the impact of noise. This is in contrast to quantum algorithms
developed for the fault-tolerant era.

In detail, as depicted in Figure 1, VQA consists of three
components: the data encoding circuit, the parameterized
quantum circuit, and the classical optimizer. The data
encoding circuit is employed to encode classical data onto
quantum states. Two commonly used data encoding strategies
are rotation encoding and amplitude encoding. The rotation
encoding strategy encodes classical data using the Pauli
rotation operators, offering the benefit of being easy to
implement. On the other hand, the amplitude encoding
strategy encodes classical data onto the amplitudes of
quantum states. Subsequently, a parameterized quantum
circuit is applied to the data-encoding quantum state. The
parameterized quantum circuit is a unitary which relies on a
set of trainable parameters. The expressibility of the
parameterized quantum circuit is a crucial factor that
significantly affects the performance of VQA [48]. Then, the
output of the parameterized quantum circuit is measured to
calculate a cost function. Finally, the classical optimizer, such
as stochastic gradient descent [49], is used to iteratively update
the parameters for optimizing the cost function.

VQA has the notable benefit of offering a general framework for
solving diverse problems. In particular, hybrid quantum-classical
machine learning models can be seen as quantum counterparts to
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extremely successful classical neural networks. Next, we will
provide a detailed description of our RE-QCNN model
based on VQA.

3 The structure of RE-QCNN

In Figure 2, the structure of the QCNN model is illustrated,
which comprises three essential components: the quantum

convolutional layer, the pooling layer, and the fully connected
layer. This section provides a detailed description of our RE-
QCNN model, starting from its fundamental components.

3.1 Quantum convolutional layer

The classical convolutional layer is the pivotal layer in the
classical CNN model. This layer performs convolutional

FIGURE 1
The frame of VQA.

FIGURE 2
The structure of QCNN. The quantum convolutional layer contains several quantum convolutional kernels that transform the classical image into
different featuremaps. The detailed processing of classical data block into and out of the quantumconvolutional kernel is providedwithin the dashed box.

Frontiers in Physics frontiersin.org03

Song et al. 10.3389/fphy.2024.1362690

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1362690


operations on the classical image to extract features. Specifically, in
the convolutional operation, a data block is obtained from the image
using a sliding window, and a dot product is calculated between this
data block and a weight matrix referred to as the classical
convolutional kernel [29]. Unlike the classical convolutional
layer, the main idea of a quantum convolutional layer is to
extract features from the image by transforming the data block
using a quantum convolutional kernel, also known as a quantum
filter. The quantum filter consists of both a data encoding circuit and
a parameterized quantum circuit.

Data encoding strategy. In our RE-QCNN model, amplitude
encoding is adopted as the data encoding strategy. Let {Xd}Dd�1
represent the preprocessed D data blocks extracted from the
given classical image using a

��
N

√
×

��
N

√
sliding window with a

stride of 1, which contain all the information of the image.
Through the amplitude encoding strategy, each Xd ∈ RN is
encoded onto its respective quantum state denoted as |Xd〉.
Specifically,

Xd →|Xd〉 � 1
Xd‖ ‖ ∑

N

i�1
Xdi|i〉, (1)

where Xdi represents the i-th component of Xd and ‖Xd‖ ��������∑N
i�1X

2
di

√
is the 2-norm of Xd. The N-dimensional vector Xd is

encoded onto a superposition state |Xd〉with log N qubits. As a result,
amplitude encoding efficiently reduces the number of qubits
within our model. However, its implementation is challenging.
Specifically, to prepare an arbitrary quantum state, it is necessary
to use a quantum circuit whose size scales exponentially with the
number of qubits [38,39]. Nevertheless, when dealing with sparse
datasets such as the MNIST dataset employed in our numerical
experiments, amplitude encoding can be regarded as an efficient
strategy. As mentioned in Refs. [50,51], the preparation of an
arbitrary sparse quantum state can be accomplished using a
quantum circuit whose size scales polynomially with the
sparsity and the number of qubits.

Parameterized quantum circuit. We construct the parameterized
quantum circuit based on the QAOA circuit that was originally
designed to provide approximations for combinatorial optimization
problems. The QAOA circuit starts by constructing two
Hamiltonians HB and HC. Specifically, the Hamiltonian HB is
given by

HB � ∑logN
q�1

σxq , (2)

where σxq is the Pauli X operator acting on the q-th qubit. The
Hamiltonian HC is defined as

HC � ∑logN−1

q�1

1
2

I − σzqσ
z
q+1( ), (3)

where σzq is the Pauli Z operator acting on the q-th qubit.
Subsequently, the p-layer QAOA circuit is constructed by
iteratively applying e−iβjHB and e−iγjHC for p rounds, given by

U β, γ( ) � ∏p
j�1

e−iβjHBe−iγjHC , (4)

where parameter vectors β = [β1, . . ., βp], and γ = [γ1, . . ., γp].
Figure 3A displays the structure of the QAOA circuit. In more detail,
e−iβjHB and e−iγjHC can be decomposed into single-qubit and two-
qubit gates, as illustrated in Figures 3B, C. Specifically,

e−iβjHB � ∏logN
q�1

Rx 2βj( )
q
, (5)

e−iγjHC � ∏logN−1

q�1
e−i

γj
2 ICNOT q,q+1( )Rz −γj( )

q+1CNOT q,q+1( ), (6)

where Rx (·)q represents Pauli X rotation operator acting on the q-th
qubit, and Rz (·)q denotes the Pauli Z rotation operator acting on the
q-th qubit. An important characteristic of the QAOA circuit is
parameter sharing, which refers to the sharing of the parameter

FIGURE 3
The structure of QAOA circuit.
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among quantum gates within the same layer. This characteristic of
the QAOA circuit reduces the required parameters for constructing
the quantum convolutional layer. Moreover, the presence of two-
qubit gates in the QAOA circuit provides it with a strong
entanglement capability, resulting in a high expressibility of the
quantum convolutional layer [48].

Now, the output Xqcl (β, γ) of the quantum convolutional layer is
a

��
D

√
×

��
D

√
matrix, given by

Xqcl β, γ( ) �
h1 β, γ( ) . . . h ��

D
√ β, γ( )

..

.
. . . ..

.

h ��
D

√ −1( ) ��
D

√ +1 β, γ( ) . . . hD β, γ( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Here, for d ∈ {1, . . ., D}, hd (β, γ) denotes the expectation value of a
specific observable H, given by

hd β, γ( ) � 〈Xd|U† β, γ( )HU β, γ( )|Xd〉. (8)

A common form of H is expressed as

H � ∑S
s�1

csPs, (9)

where cs ∈ R, and Ps ∈ {I, σx, σy, σz}⊗logN. Specifically, we can use
H � ∑logN

s�1 σxs , where σ
x
s represents the PauliX operator acting on the

s-th qubit.

3.2 Pooling layer and fully connected layer

Pooling layer. We employ a downsampling function denoted as
down (·) to reduce the dimension of Xqcl (β, γ), and the resulting
output Xpl (β, γ) is represented as

Xpl β, γ( ) � down a Xqcl β, γ( )( )( ), (10)

where a (·) represents an activation function, such as the ReLU
activation function. Here, down (·) is implemented by computing
the maximum of different blocks of a (Xqcl (β, γ)). Specifically, these
blocks can be obtained by applying a 2 × 2 sliding window with a
stride of 2 to a (Xqcl (β, γ)), leading to the dimension of a (Xqcl (β, γ))
being reduced from

��
D

√
×

��
D

√
to

��
D

√
/2 ×

��
D

√
/2.

Fully connected layer. The fully connected layer maps the
features extracted by the quantum convolutional layer and the
pooling layer to the m-dimensional label space. Specifically, the
output yout (β, γ, W, b) of the fully connected layer can be
represented as

yout β, γ,W , b( ) � g WTXpl β, γ( ) + b( ), (11)

where W denotes the D/4 × m weight matrix, Xpl (β, γ) is flattened
into a D/4-dimensional vector, b represents the m-dimensional bias
vector, and g (·) is an activation function, such as the softmax
activation function used for the multi-class classification task.

3.3 Parameter updating

As described in Section 3.1 and 3.2, the forward propagation
flow of our RE-QCNNmodel involves several mappings. Let {Xd}Dd�1
be the preprocessed D data blocks. We denote the mapping of the
quantum convolutional layer as fqcl: {Xd}Dd�1 → Xqcl(β, γ), the
mapping of the pooling layer as fpl: Xqcl (β, γ) → Xpl (β, γ), the
mapping of the fully connected layer as ffcl: Xpl (β, γ)→ yout (β, γ,W,
b), and the mapping of the cost function as l: yout (β, γ,W, b)→ C (β,
γ, W, b). Now, the forward propagation flow is given by

l◦ffcl◦fpl◦fqcl. (12)

Here, we focus on the parameter updates of β = [β1, . . ., βp] and γ =
[γ1, . . ., γp] in the quantum convolutional layer. Following the
principles of backpropagation, for j ∈ {1, . . ., p}, the derivative of
C (β, γ, W, b) with respect to γj is given by

∂C β, γ,W , b( )
∂γj

� ∂C β, γ,W , b( )
∂yout β, γ,W , b( ) · ∂yout β, γ,W , b( )

∂Xpl β, γ( ) · ∂Xpl β, γ( )
∂Xqcl β, γ( ) · ∂Xqcl β, γ( )

∂γj

� ∑D
d�1

∂C β, γ,W , b( )
∂yout β, γ,W , b( ) · ∂yout β, γ,W , b( )

∂Xpl β, γ( ) · ∂Xpl β, γ( )
∂hd β, γ( ) · ∂hd β, γ( )

∂γj
.

(13)

The first term relies on the specific form of the cost function.
Specifically, the cost function quantifies the difference between the
predicted labels of our model and the true labels. Different tasks
typically use different cost functions. For instance, in the case of a
multi-class classification task, cross-entropy is commonly

FIGURE 4
The illustration of QAOA circuit division.
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employed as the cost function. Additionally, the second and third
terms are associated with the mappings of the fully connected layer
and the pooling layer, respectively. These three terms retain
classical structures and can be calculated using traditional
classical methods. Now, we focus on the calculation of the
fourth term. It is crucial to note that the QAOA circuit exhibits
parameter sharing, meaning that the same parameter is shared
among quantum gates within the same layer. Considering this
characteristic, we present the analytical expression for the
derivative ∂hd (β, γ)/∂γj.

Taking the 3-qubit QAOA circuit shown in Figure 4 as an example,
we divide this QAOA circuit into five components: V1, U1 (−γj), V2, U2

(−γj), andV3. Let V1,U1(−γj), V2, U2(−γj), and V3 denote the unitary
channels corresponding to each component, respectively. Then, the
expectation value hd (β, γ) described by Eq. 8 can be reformulated as

hd β, γ( ) � tr V1◦U1 −γj( )◦V2◦U2 −γj( )◦V3 ρd( )H[ ], (14)

where ρd = |Xd〉〈Xd|. Then, we have

∂hd β, γ( )
∂γj

� ∂tr V1◦U1 −γj( )◦V2◦U2 −γj( )◦V3 ρd( )H[ ]
∂γj

� tr V1◦
∂U1 −γj( )

∂γj
◦V2◦U2 −γj( )◦V3 ρd( )H⎡⎢⎣ ⎤⎥⎦

+tr V1◦U1 −γj( )◦V2◦
∂U2 −γj( )

∂γj
◦V3 ρd( )H⎡⎢⎣ ⎤⎥⎦.

(15)

Based on the parameter shift rule (see Supplementary Material), for
i ∈ {1, 2}, each Pauli Z rotation channel U i(−γj) satisfies

∂U i −γj( )
∂γj

� U i −γj + π
2( ) − U i −γj − π

2( )
2

. (16)

Then, we have

∂hd β, γ( )
∂γj

� tr V1◦
U1 −γj +

π

2
( ) − U1 −γj −

π

2
( )

2
◦V2◦U2 −γj( )◦V3 ρd( )H⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+tr V1◦U1 −γj( )◦V2◦
U2 −γj +

π

2
( ) − U2 −γj −

π

2
( )

2
◦V3 ρd( )H⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1
2
tr V1◦U1 −γj +

π

2
( )◦V2◦U2 −γj( )◦V3 ρd( )H[ ]

−1
2
tr V1◦U1 −γj −

π

2
( )◦V2◦U2 −γj( )◦V3 ρd( )H[ ]

+1
2
tr V1◦U1 −γj( )◦V2◦U2 −γj +

π

2
( )◦V3 ρd( )H[ ]

−1
2
tr V1◦U1 −γj( )◦V2◦U2 −γj −

π

2
( )◦V3 ρd( )H[ ].

(17)

Indeed, by estimating the aforementioned four expectation values,
we can obtain this derivative. The described process can naturally
be extended to the QAOA circuit with log N qubits. Similarly, we
can obtain ∂C (β, γ, W, b)/∂βj. Subsequently, by utilizing a
gradient-based optimization method, we can update the
parameters β and γ in the quantum convolutional layer.

3.4 Complexity analysis

In this section, we provide a detailed analysis of the complexity
associated with the forward and backward propagation processes in
the quantum convolutional layer.

For the forward propagation process, the D data blocks {Xd}Dd�1
are extracted from the given classical image using a

��
N

√
×

��
N

√
sliding window with a stride of 1, which contain all the information
of the image. Subsequently, {Xd}Dd�1 are sequentially processed by
the quantum convolutional kernel, and the resulting D expectation
values {hd(β, γ)}Dd�1 as described in Eq. 8 form the output of the
quantum convolutional layer, represented as a

��
D

√
×

��
D

√
matrix. In

detail, the quantum convolutional kernel consists of the data

TABLE 1 Complexity analysis of the quantum (gate complexity) and classical (computational complexity) convolutional layers. Here, the quantum and
classical convolutional layers handle D k-sparse N-dimensional data blocks respectively.

Process Quantum convolutional layer Classical convolutional layer

Forward propagation O(Dkpoly(logN)) O(Dk)

Backward propagation O(Dkpoly(logN)) O(DNk)

FIGURE 5
The visualization of MNIST dataset.
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encoding circuit and the parameterized quantum circuit. On one
hand, the data encoding circuit adopts the amplitude encoding
strategy as described in Eq. 1, and each Xd ∈ RN is encoded
onto its corresponding quantum state |Xd〉 using log N qubits.
Notably, as stated in Theorem 1 of Ref. [50], when Xd is k-sparse
(with k nonzero entries), the amplitude encoding strategy is
achieved by a data encoding circuit of size O(k logN), which
includes O(k log k + logN) single-qubit gates and O(k logN)
CNOT gates. Additionally, a quantum superposition query is
required to obtain the k nonzero entries of Xd [52]. On the other
hand, the parameterized quantum circuit is constructed based on the
QAOA circuit U (β, γ) with log N qubits, as described in Eq. 4.
According to Eq.5 and 6, e−iβjHB can be decomposed into log N
single-qubit gates, while e−iβjHC can be decomposed into log N
single-qubit gates and 2 log N CNOT gates in each layer of the
QAOA circuit. Therefore, the total number of quantum gates
required to implement U (β, γ) is O(ppoly(logN)), where p is
the number of layers. Finally, by performing measurements, we
estimate each hd (β, γ) with a complexity of
O((k + p)poly(logN)/ϵ2), where ϵ represents the additive error
in estimating this expectation value. Therefore, the overall
complexity of the forward propagation process in the quantum
convolutional layer is O(D(k + p)poly(logN)/ϵ2).

For the backward propagation process, the complexity of the

quantum convolutional layer primarily arises from the estimation of

{{∂hd(β,γ)∂γj
}p
j�1

}D
d�1

and {{∂hd(β,γ)∂βj
}p
j�1

}D
d�1

. As each ∂hd(β,γ)
∂γj

and ∂hd(β,γ)
∂βj

can

be obtained according to Eq. 17, the overall complexity of the
backward propagation process in the quantum convolutional
layer is O(Dp(k + p)poly(logN)/ϵ2).

Increasing the number of layers p in the parameterized quantum
circuit enhances its expressibility, thereby improving the numerical
performance of our model. However, when the parameterized
quantum circuit reaches a specific number of layers, it may exhibit

the barren plateau phenomenon [53,54]. This phenomenon poses
challenges to the model training and impacts its numerical
performance. Taking these factors into account, choosing p to be
O(logN) is reasonable. In addition, the additive error ϵ is considered
to be a constant, which is a general choice in the context of quantum
machine learning [55]. In this context, the complexity of both the
forward and backward propagation processes is O(Dkpoly(logN)).
Now, we can conclude that the complexity of the quantum
convolutional layer is O(Dkpoly(logN)).

Meanwhile, for the forward propagation process of the classical
convolutional layer, the aforementioned D data blocks {Xd}Dd�1,
which are all k-sparse N-dimensional vectors, are sequentially
processed by the classical convolutional kernel. This results in D
feature values {hd(w)}Dd�1. Specifically, each hd(w) is given by hd(w) =
wTXd, wherew is theN-dimensional weight vector [29]. Considering
that each Xd is k-sparse, the calculation of each hd(w) has a
complexity of O(k). Additionally, N classical queries are required
to obtain the k nonzero entries of Xd. Therefore, the overall
complexity of the forward propagation process in the classical
convolutional layer is O(Dk) [47]. For the backward propagation
process, the complexity of the classical convolutional layer primarily

arises from the calculation of {{∂hd(w)∂wj
}N
j�1}

D

d�1
. Since each ∂hd(w)

∂wj
is

calculated with a complexity of O(k), the overall complexity of the

TABLE 2 The configuration of the 2-layer RE-QCNN on MNIST dataset.

Parameter Quantum
convolutional

layer 1

Quantum
convolutional

layer 2

Num of qubits 5 5

Num of QAOA layers 2 2

Num of quantum filters 1 6

FIGURE 6
The performance of RE-QCNN on MNIST dataset.
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backward propagation process is O(DNk). Now, we can conclude
that the complexity of the classical convolutional layer is O(DNk).

The complexity analysis of the quantum and classical
convolutional layers, respectively handling D k-sparse N-
dimensional data blocks, is shown in Table 1. There is a trade-off
between the sizes of D and N, that is D and N form an inverse
proportional relationship. As a result, when N is relatively large and
the sparsity k of the data block is O(logN), the quantum
convolutional layer demonstrates a significant reduction in
computational resources compared to the classical CNN model.

4 Numerical experiments

To evaluate the performance of our RE-QCNNmodel, we conduct
numerical experiments on the MNIST and Fashion-MNIST datasets.

4.1 Performance of RE-QCNN on
MNIST dataset

The MNIST dataset consists of a training set with 60,000 images
and a test set with 10,000 images. Each image in this dataset is
composed of 784 (28 × 28) pixels. The visualization of the MNIST
dataset is depicted in Figure 5.

In detail, we conduct numerical experiments using the 2-layer RE-
QCNN model, which includes two quantum convolutional layers and
two pooling layers. The objective of these numerical experiments is to
recognize handwritten digit images across all categories. The model
configuration details can be found in Table 2. In this configuration, the
first quantum convolutional layer consists of a single quantum filter

implemented using a 5-qubit QAOA circuit with two layers. Specifically,
the quantum convolutional layer applies a 5 × 5 sliding window with a
stride of 1 to the normalized 28 × 28 image matrix, resulting in 576 data
blocks. Each data block, consisting of 25 pixels, is encoded onto its
respective quantum state using 5 qubits through the amplitude
encoding strategy. Subsequently, the 576 data-encoding quantum
states are sequentially processed by the 2-layer QAOA circuit.
Finally, the measurement outcomes of the observable H � ∑5

s�1σxs
are obtained, resulting in 576 expectation values. These expectation
values form the output of the first quantum convolutional layer,
represented as a 24 × 24 matrix. The second quantum convolutional
layer comprises 6 quantum filters, and each quantum filter is also
implemented using a 5-qubit QAOA circuit with two layers. Before the
output of each quantum convolutional layer enters the pooling layer, it
is subjected to a ReLU activation function, followed by a downsampling
function. Additionally, for this multi-class classification task, the fully
connected layer with the softmax activation function generates the
predicted label, and cross-entropy is employed as the cost function. We
conduct cross-validation experiments using 2-fold, 3-fold, 5-fold, and 7-
fold validation on a total of 70,000 images.

For each cross-validation experiment, the Receiver Operating
Characteristic (ROC) curve is depicted in Figure 6A. The ROC
curves reveal that our model trained using 2-fold cross-validation
lacks superior generalization capability. Specifically, at the False
Positive Rate (FPR) of 2%, our model achieves the True Positive Rate
(TPR) of 89%, indicating a convergence phase. Complete
convergence is achieved at the FPR of 10%. In contrast, our
model trained using 7-fold cross-validation demonstrates superior
generalization capability. The ROC curve exhibits noticeable
improvement at the FPR of 2%, and complete convergence is
achieved at the FPR of 10%. Furthermore, the stability of our
model is evaluated using the confusion matrix, as depicted in
Figure 6B. Overall, our model attains high accuracy in
recognizing handwritten digit images across all categories.

4.2 Performance of RE-QCNN on Fashion-
MNIST dataset

The Fashion-MNIST dataset consists of grayscale images of
fashion products, where each image is composed of 28 × 28 pixels.
This dataset comprises 70,000 images from 10 categories, with

FIGURE 7
The visualization of Fashion-MNIST dataset.

TABLE 3 The configuration of the 2-layer RE-QCNN on Fashion-MNIST
dataset.

Parameter Quantum
convolutional

layer 1

Quantum
convolutional

layer 2

Num of qubits 5 5

Num of QAOA layers 4 4

Num of quantum filters 40 80
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7,000 images per category. The training set contains 60,000 images,
while the test set contains 10,000 images. The Fashion-MNIST
dataset is considered to be more complex compared to the
conventional MNIST dataset. The visualization of the Fashion-
MNIST dataset is depicted in Figure 7. In detail, we conduct
numerical experiments to comprehensively assess our model’s
performance on the Fashion-MNIST dataset. The objective of
these numerical experiments is to recognize images across all
categories using the 2-layer RE-QCNN model, which includes
two quantum convolutional layers and two pooling layers. Next,
we present the performance of our model as obtained from
numerical experiments involving the QAOA circuit with different
random initial parameters, various numbers of layers, and different
levels of measurement errors.

Firstly, for the numerical experiments involving the QAOA
circuit with five different sets of random initial parameters, the
model configuration is consistent with the configuration used for the
MNIST dataset, with some details being different. Specifically, the
first quantum convolutional layer consists of 40 quantum filters.
Each of these quantum filters is implemented using a 5-qubit QAOA
circuit with four layers. The second quantum convolutional layer
comprises 80 quantum filters, and each quantum filter is also
implemented using a 5-qubit QAOA circuit with four layers.
These differences can be found in Table 3. Additionally, since we
are also dealing with a multi-class classification task, cross-entropy is
employed as the cost function. The accuracy of our model, using the
QAOA circuit with five different sets of random initial parameters, is
depicted as a function of epoch in Figure 8A. This figure illustrates
that the highest achieved accuracy is 92.94%, the lowest accuracy is
92.20%, and the average accuracy is 92.59%.

Subsequently, using the same model configuration and the
optimal initial parameters of the QAOA circuit mentioned above,
we assess the performance of our model under measurement errors
of 0, 0.03, and 0.05. Figure 8B reveals that the performance of our
model is quite resilient to such errors. Considering that the number
of layers in the parameterized quantum circuit of our model is
relatively shallow, gate errors may be effectively mitigated by error
mitigation techniques [56-59], which suggests small gate errors may
not significantly affect the performance of our model. Therefore, we

only assess the performance of our model under different levels of
measurement errors.

Finally, using the same model configuration and the optimal
initial parameters of the QAOA circuit mentioned above, we vary
the number of layers in the QAOA circuit to 2, 3, and 4. The
corresponding accuracy of our model is depicted as a function of
epoch in Figure 8C. This figure demonstrates that our model
achieves superior performance when a larger number of layers
are employed in the QAOA circuit. The result aligns with the
viewpoint that increasing the number of layers enhances the
entanglement capability of the QAOA circuit.

Overall, our model exhibits excellent numerical performance on
the more complex Fashion-MNIST dataset compared to the
MNIST dataset.

5 Conclusion

To explore the potential quantum advantages of the QCNN
model, it is common to compare the prediction accuracy directly
between the quantum and classical models. However, according to
the “no-free-lunch” conjecture, a specific QCNN or CNN model
may not exhibit excellent numerical performance across all tasks.
This perspective is highly dependent on the specific task and may be
influenced by random factors. A more solid perspective for
exploring the potential quantum advantages involves comparing
computational resources by quantifying the number of fundamental
computational elements used in the training and prediction
processes. By considering both perspectives, a more
comprehensive showcase of the potential quantum advantages
can be achieved. In this paper, we propose a computationally
resource-efficient QCNN model. Our model significantly reduces
the computational resources required for the quantum
convolutional layer compared to the classical CNN model.
Additionally, our model achieves high accuracy in the multi-class
classification tasks of recognizing images from the MNIST and
Fashion-MNIST datasets. Our results hold significant importance
in exploring the potential quantum advantages of the QCNN model
in the NISQ era.

FIGURE 8
The performance of RE-QCNN on Fashion-MNIST dataset.
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Several important aspectsmerit further investigation in the field of
QCNN. Specifically, a crucial research topic is to explore the impact of
parameterized quantum circuits on the numerical performance of the
QCNNmodel. Additionally, it is worth considering the exploration of
novel data encoding strategies, particularly those capable of handling
high-dimensional data such as video streams and 3D medical images.
This research will greatly contribute to diversifying the application
scenarios of the QCNN model.
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