
eXplainable artificial intelligence
applied to algorithms for
disruption prediction in
tokamak devices

L. Bonalumi1,2,3*, E. Aymerich4, E. Alessi2, B. Cannas4, A. Fanni4,
E. Lazzaro2, S. Nowak2, F. Pisano4, G. Sias4 andC. Sozzi2 on behalf
of JET Contributors† and WPTE team‡

1Department of Physics, Università degli Studi Milano Bicocca, Milan, Italy, 2Istituto Scienza e Tecnologia
per il Plasma (ISTPCNR), Milan, Italy, 3DTT S.C. a r.l., Frascati, Italy, 4Department of Electrical and
Electronic Engineering, University of Cagliari, Cagliari, Italy

Introduction: This work explores the use of eXplainable artificial intelligence (XAI)
to analyze a convolutional neural network (CNN) trained for disruption prediction
in tokamak devices and fed with inputs composed of different physical quantities.

Methods: This work focuses on a reduced dataset containing disruptions that
follow patterns which are distinguishable based on their impact on the electron
temperature profile. Our objective is to demonstrate that the CNN, without
explicit training for these specific mechanisms, has implicitly learned to
differentiate between these two disruption paths. With this purpose, two XAI
algorithms have been implemented: occlusion and saliency maps.

Results: The main outcome of this paper comes from the temperature profile
analysis, which evaluates whether the CNNprioritizes the outer and inner regions.

Discussion: The result of this investigation reveals a consistent shift in the CNN’s
output sensitivity depending on whether the inner or outer part of the
temperature profile is perturbed, reflecting the underlying physical
phenomena occurring in the plasma.
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1 Introduction

Tokamak facilities rely on a combination of magnetic fields to confine the plasma. An
important role is played by the magnetic field generated by a net current toroidally flowing
in the plasma. To achieve efficient energy production in a fusion reactor, the plasmamust be
maintained for a sufficient amount of time that is much larger than the characteristic energy
confinement time. The plasma is sensitive over different spatial and time scales to
perturbations that can give rise to instabilities that destroy the magnetic configuration
on a very small timescale. These phenomena, called disruptions, cause a sudden
interruption of the plasma current that, in turn, induces strong electromagnetic forces
in the metallic vessel and in the surrounding structures. Furthermore, the disruption
process generates non-thermal relativistic electrons, called runaway electrons, that can
damage the first wall of the machine. Due to the intrinsic non-linearity of the phenomena
involved in a disruption, it is difficult to model the interactions that lead to the termination
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of the plasma discharge; however, it is possible to study processes
that precede a disruption to identify and avoid disruptions before
they happen. [1] performed a complete survey over a database of JET
disruptions, identifying the chains of events, such as human errors in
pulse management, MHD instabilities, like internal kink modes, or
most importantly, neoclassical tearing modes (NTMs). In metallic
wall machines, it is possible to identify the chain of events [2] related
to the ingress of impurities or loss of density control, which
determines the onset of an NTM and leads to disruption. Due to
its fast, non-linear nature and the wide range of phenomena that can
trigger a disruption, it is difficult to set up a system that is accurately
able to predict and avoid a disruption. Various studies have
highlighted promising applications of deep learning in the field
of nuclear fusion research [3–5]. The use of convolutional neural
network (CNN) architectures has shown great potential for
disruption prediction. This technique can be exploited to
monitor phenomena that lead to disruption (e.g., the locked
modes [6]) or trained specifically to predict disruptions both
using raw data from a specific tokamak [7] or across multiple
machines [8,9]. The use of deep CNNs proves to be especially
well-suited for the analysis of plasma profiles. In [10,11], the
authors proposed the use of a deep CNN for the early detection
of disruptive events at JET, utilizing both images constructed from
1-D plasma profiles and 0-D time signals. The predictors exhibit
high performance, also comparing themwith those of other machine
learning algorithms [12]. The use of CNNs allows learning relevant
spatiotemporal information straight from 1-D plasma profiles,
avoiding hand-engineered feature extraction procedures. The
CNN from [10] is adopted in the present paper to showcase the
ability of eXplainable AI (XAI) methods to interpret network
prediction, and its architecture is detailed in Section 2. The
spread of deep learning algorithms depends on the trust that the
scientific community has in these tools. One of the main causes of
skepticism is that it is not possible to provide an explanation, neither
in the testing phase nor in the training phase, of why a neural
network produces a certain output. This issue becomes even more
important when dealing with algorithms that are responsible for
preventing and mitigating disruptions. The eXplainable artificial
intelligence algorithms aim at providing an interface between
humans and AI, producing results that explain the behavior of
the neural network in a comprehensible way to humans [13,14]. An
XAI analysis is a very flexible tool that strongly depends on the
algorithm used. Specific XAI algorithms can be built ad hoc on the
given AI system, however there exist agnostic algorithms generally
applicable independently on the kind of AI. When dealing with
CNNs, XAI algorithms provide a visual explanation, by producing
heatmaps related to the input image that highlight the most relevant
part of the input in order to classify the image. This work aims at
addressing the problem of explaining how a neural network classifies
a disruption, trying to fill the knowledge gap between CNN
prediction and physical insights/interpretations. The application
of XAI algorithms to CNNs in the problem of disruption
prediction offers three main advantages. The first advantage is
that there must be consistency between the explanations offered
by XAI and the physical models. This consistency is essential to
assert that the algorithm is genuinely learning to predict disruptions.
So an analysis showing that the reason why an algorithm predicts a
disruption is the same as the physical models contributes to

increasing the trustworthiness of the NN. The second reason is
that XAI might be able to provide indications about which signals
are more useful for prediction, suggesting how to improve the
performance of the CNN itself. The third reason lies in the
unveiling of the CNN’s prediction process, enabling the
identification of novel data patterns that may have eluded
conventional physical investigations. This, in turn, offers
valuable insights for the development of new physical models.
In this paper, we will start analyzing a CNN trained to distinguish
between disruptive and non-disruptive input data frames and
compare the results with the physical classification of the
disruptions, comparing how the CNN handles different
disruptive paths. In Section 2.1, the CNN and training and test
database sets are explained. The database has been analyzed and
reduced, distinguishing between discharges following the two
different paths. Two XAI methods are introduced in Section 3.
Section 4 reports the results provided by the two methods, and the
results are discussed and compared in Section 5.

2 The architecture of the
neural network

The increasing use of deep learning in research is driven by
improved computer processing power, allowing for the analysis of
large datasets. Deep neural networks, known for their high accuracy
even without complex feature extraction of the input data, play a key
role in this. In image processing, convolutional neural networks
(CNNs) are widely favored for their effectiveness in handling
complex image data. Supported by these significant capabilities,

FIGURE 1
JET poloidal cross section: the 24 chords of the horizontal
bolometer camera (in green) and the 63 lines of sight of the HRTS (in
blue) are numbered according to the order in which they are taken to
construct the image of the profiles as input to the CNN.
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[10] proposed the use of CNNs for extracting spatiotemporal
features from JET 1-D plasma profiles (density, temperature, and
plasma radiation) by converting them into 2-D images. Particularly,
density and electron temperature from high-resolution Thompson
scattering (HRTS) are pre-processed to synchronize time scales and
eliminate outliers. Furthermore, in reference to Figure 1, showcasing
the HRTS’s 63 lines of sight in blue, lines from the 54th to the 63rd
position were excluded because of their inclination to generate
unreliable data due to the outboard position. Concerning plasma
radiation, in Figure 1, the 24 channels of the JET bolometer
horizontal camera are depicted in green. In addition, data from
these chords undergo the pre-processing steps mentioned for HRTS
data. Three spatiotemporal images are created, with each pixel
representing the measurement at the corresponding line of sight
and time sample. These images are vertically stacked and normalized
based on the signal ranges in the training set, producing an ultimate
image. Figure 2 reports two showcases referring to two JET pulses.
The generated images present, in a top-to-bottom sequence, and
density and temperature data from 54 lines of sight measured by the
HRTS, along with radiation data from the 24 chords of the
horizontal bolometer camera. In total, there are 132 channels,
and the data are presented over time. The final image is
segmented using an overlapping sliding window of 200 ms,
yielding individual image slices of size 132 × 101. As the CNN
operates as a supervised algorithm, we explicitly assigned labels to
slices in the training dataset. Those belonging to regularly
terminated discharges were labeled as “stable.” In contrast, for
disruptive discharges, the “unstable” label was automatically
assigned by detecting the pre-disruptive phase through the
algorithm proposed in [15]. For balancing the two classes, the
stable phases of disrupted pulses were not included in the
network training set, and the overlap durations of the sliding
window were different for regularly terminated and disrupted
discharges. Conversely, during the testing phase, a 2-ms stride

was used for all discharges, covering both regularly terminated
and disrupted pulses. Leveraging these diagnostics, which often
exhibit behaviors linked to the onset of destabilizing physical
mechanisms like MHD precursors, a straightforward CNN
disruption prediction model is first deployed. In addition to the
aforementioned plasma profiles, [10] takes into account 0-D
diagnostic signals commonly used in the literature, specifically
internal inductance and locked mode signals, as inputs for the
disruption predictor. The internal inductance is indeed a crucial
parameter because it provides information about the current profile
within the plasma and is known to be connected to the density limit
[16]. A higher internal inductance suggests a more peaked current
profile, concentrated toward the plasma core, while a lower internal
inductance indicates a more distributed or flat current profile.
Moreover, at JET, mode locking indicates when a rotating
(neoclassical) tearing mode locks with the external wall, which is
closely followed by the disruption typically manifesting in the later
stages of the disruptive process. JET provides a real-time mode
locking signal. In [10], this signal has been normalized by the plasma
current, as already done for disruption mitigation purposes. The
normalized locked mode signal contributes significantly to the
successful prediction of faster disruptions. The CNN architecture
shown in Figure 3 comprises a series of interconnected
convolutional (CU) and pooling (P) blocks, linked by a non-
linear activation layer with a ReLU function. These blocks filter
the input image both vertically (along the spatial dimension) and
horizontally (along the temporal dimension), extracting essential
features. These resulting features are fed into a fully connected
multilayer perceptron neural network (FC), where the final SoftMax
layer determines the likelihood of the input image slice belonging to
either a regularly terminated or a disrupted discharge. To
incorporate the two 0-D signals, the CNN architecture
underwent modifications by introducing them downstream of the
initial filter block. It is noteworthy that the first filter block was

FIGURE 2
Two illustrative cases contained in the database. Left, edge cooling; right, temperature hollowing. The values on the color bar are expressed in terms
of normalized unit [−1, 1].
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initially trained exclusively with 1-D diagnostic data, and its weights
were subsequently frozen. In a subsequent training phase, both the
second convolutional block and the FC block were trained using all
plasma parameters. Note that the network architecture enables the
separation of the two dimensions, spatial and temporal. Specifically,
the first two blocks (CU1 and Pmax) filter solely across the spatial
direction, while the subsequent two (CU2 and Pavg) filter
exclusively across time. This facilitates the seamless concatenation
of the 0-D signals (li and MLnorm) with the image features
processed by the initial convolutional and pooling blocks, thereby
preserving temporal synchronization. Figure 3 illustrates the
ultimate CNN architecture, as presented in [10], showcasing the
dimensions of input features for various blocks. Meanwhile, Table 1
provides a comprehensive overview of the corresponding
parameters. The vertical kernel size for the convolutional and
pooling blocks was designed considering a few constraints: a
kernel size equal to or larger than 24 would have been larger
than the bolometer number of lines of sight, and a small size
kernel would reduce the effect of the discontinuity between the
stacked diagnostic images. The small kernel size (5 × 1) allows the
network to still identify changes in the spatial dimension of the

HRTS scattering profile. Regarding time filtering, a similar operation
was performed. Due to the different time resolutions of the
diagnostics used, the filter size has been chosen to mainly process
the highest frequency signals (the bolometer data). To determine the
pooling type, two networks were trained: one with only average
pooling and another with only max-pooling. Analyzing their
performances on both the training and validation sets, it was
observed that average pooling exhibited lower performance
compared to max-pooling. However, the max-pooling response
proved to be overly sensitive to transient changes in the data
time traces. Consequently, the max-pooling layer was retained for
spatial processing (vertical pooling), while average pooling was
chosen for temporal pooling (horizontal pooling). Testing of
discharges that were not included in the training phase
underscores the predictor’s applicability across diverse
operational scenarios.

In this paper, the described CNN predictor is considered to
demonstrate the application of explainable AI, aiming to enhance
the understanding and confidence in the decision-making process of
the CNN predictor.

2.1 Database

The local balance of energy flowing into and out of a system
determines its temperature profile. Impurities can break this balance by
increasing the amount of energy that escapes as radiation. As a result,
the temperature profile becomes susceptible to impurity penetration.
The bolometer can provide an integrated measure of the radiative
emission of the plasma. Strong radiation is associated with a loss of
energy and, thus, a decrease in temperature. Usually, changes in the
temperature profile are preceded by radiative losses measured using the
bolometer. They depend on the distribution of impurity and density
inside the plasma and can be categorized into two different ways: edge
cooling (EC) and temperature hollowing (TH). Edge cooling is a

FIGURE 3
Final CNN architecture, where the internal inductance (li) and the normalized locked mode (MLnorm) serve as inputs to the second convolutional
unit. These inputs are concatenated with the output image generated by the max-pooling layer.

TABLE 1 CNN architecture.

CNN block Dimension Output feature size

CU1 (filter size) 5 × 1 128 × 101

Pmax (pool size; stride) 8 × 1; 8 × 1 16 × 101

CU2 (filter size) 1 × 11 18 × 91

Pavg (pool size; stride) 1 × 12; 1 × 4 18 × 20

MLP (input layer) 18 × 20 = 360 -

MLP (hidden layer) 360 -

MLP output layer (likelihood) 2 2
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collapse of the temperature profile at the edge, while temperature
hollowing is a decrease in the central value of the temperature, often
due to impurity accumulation on the plasma axis. A sketch of typical
shapes of the temperature profile during edge cooling and temperature
hollowing is depicted in Figure 4. These events are known to linearly
destabilize the 2/1mode [2], creating amagnetic island that rotates with
the plasma. As it grows, the island experiences drag forces that tend to
slow down its motion until the island locks onto the walls, leading to a
disruption.We analyzed a database composed of 87 pulses, divided both
in safe and disrupting modes, belonging to the train/test database of the
neural network presented in Table 1 of [10]. Our database is composed
of pulses that present a specific disruption path; in particular, the
disrupting pulses are preceded by edge cooling (EC), temperature
hollowing (TH), or a combination of TH, followed by EC (THEC).
Table 2 shows the distribution in EC, TH, and THEC. For our purpose,
the THEC pulses are considered pure TH. No indication regarding EC
and TH has been provided to the CNN in the training phase. The input
data are composed of radiation profiles of the horizontal chords of the
bolometer diagnostic and the radial profile of the electron temperature
from high-resolution Thompson scattering and the electron density.
Data from the different channels are converted into images and
vertically stacked. It is possible to define the time tEC/TH at which

the EC/TH starts by introducing indexes related to the shape of the
temperature profile [17], measured using the radiometer diagnostic, and
defining the start of the event by introducing a conventional threshold.
For every pulse of the database, tEC/TH has been measured. Two
examples are shown in Figure 2. In temperature and density, higher
channels correspond to a more external part of the profile. The
temperature profile is obtained using Thompson scattering, which
provides a measure of the electron temperature integrated along
different lines of sight placed on the radial dimension. Examples of
the different behavior for EC andTH are shown in Figure 2. The vertical
red line represents the time at which EC/TH occurs. On the left side, an
edge cooling case is presented. The collapse of the temperature at the
edge is visible in the plot by the increase in the darker points in the
region between channels 60 and 80, which represent the outer part of
the profile. The edge cooling event starts with an increment in the
radiated power, measured using the bolometer.

The plot on the right represents the input image for the neural
network in a temperature hollowing case. Here, the hollowing of the
temperature profile on the plasma axis occurs at t = 54 s, and it is
evident by looking at the channels between 20 and 40 that are part of
the temperature profile on the plasma axis.

3 The XAI techniques

In general, an XAI algorithm is an additional layer of analysis built
by the user on a given AI in order to produce an explanation of the
output for a certain input. In this work, the XAI analysis is built over an
existing CNN, described in Section 2, trained to predict disruptions. The
input of the CNN is composed of physical quantities, and the aim of the
XAI algorithm is to interpret which part of the input contributes the

FIGURE 4
Sketch of typical shapes of the electron temperature profile after edge cooling (green line) and temperature hollowing (red line) events, compared
with an equilibrium profile (black line).

TABLE 2 Summary of the different phenomena occurring in the pulses:
edge cooling (EC), temperature hollowing (TH), and a temperature
hollowing event followed by a combination of TH and EC (THEC). The safe
pulses do not exhibit any of these phenomena.

Type Total EC TH THEC

Disruptive 26 17 2 7

Safe 61 – – –
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most to the classification of the image as disruptive or safe. This allows
us to not only build a hierarchy of the most relevant physical quantities
but also to understand which part of the profile of a certain physical
input quantity matters the most. Various methods can be used to
explore this issue. One approach is to analyze the sensitivity of the
output when a perturbation is introduced at a certain point in the
classification chain. This type of analysis, known as sensitivity analysis,
produces a heatmap [18] that shows which part of the input has the
greatest impact on the output. We can use this approach in two modes:
agnostic and non-agnostic. In the agnostic mode, we do not delve into
the behavior of the CNN’s internal components (weights and
gradients). Instead, we directly perturb the input and analyze the
resulting output changes. Conversely, the non-agnostic mode
involves analyzing the output’s sensitivity with respect to the weights
within the network’s hidden layers. In Sections 3.1 and 3.2, we will
explain the methods adopted, briefly presenting an example of the
output produced.

3.1 Occlusion

The most straightforward agnostic approach is the occlusion
[19,20], where, as a perturbation, a constant value patch is applied
in a certain part of the input, and the effect of the patch on the output is
analyzed. We then interpret the fluctuation of the output as how
important the part covered by the patch is for the classification.
Each input image for the CNN is made up of 132 × 101 pixels, as
reported in Section 2. Adopting the overlapping window approach to
perform the occlusion is too computationally demanding because every
time slice must be analyzed for every possible position of the patch.
Therefore, the global input is divided intoM non-overlapping temporal
slices of dimension 132 × 101. To split the complete input intoM sub-
images, a zero padding p is introduced in order to ensure that Nt = p +
101 ×M, whereNt is the time length of the pulse. A patch of dimensions
W ×H is introduced in every slice, producing a perturbed image which
is the same as the original except for the area covered. The patch
replaces the value of the pixel, with a constant value V. The patch is
moved with a horizontal sh step and a vertical sv step. The width, height,
and vertical and horizontal steps define the number of positions that the
patch can assume to perturb the output. N perturbed sub-images Ioccl,k,
with k = 1, . . ., k, are obtained, where every image contains the patch in
a different position. The occluded input Ioccl,k is passed to the neural
network, resulting in an output fNN(Ioccl,k) with k ∈ [1,N], where
fNN: R

132×101 → R is a function that represents the CNN. Then,
we define Δk = fNN(Ioccl,k) − fNN(I) (I the original input) as the
difference between the output of the occluded input and the original
input. We define the fluctuation and the counting tensors δk and ck
as follows:

ck �

0 . . . 0 . . . 0 . . . 0
..
. ..

. ..
. ..

.

0 . . . 1 . . . 1 . . . 0
..
. ..

. ..
. ..

.

0 . . . 1 . . . 1 . . . 0
..
. ..

. ..
. ..

.

0 . . . 0 . . . 0 . . . 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

δk � Δkck. (2)

These are 132 × 101 matrices having the same dimensions (number
of pixels) as the original image, where the non-zero elements have
the same positions as the patch. The non-zero values of δk are the
values of the fluctuation Δk. The matrix δk represents, for a given
position of the patch, the pixels that, if occluded, produce the
fluctuation Δk. The matrix ck is built so that the sum over all the
possible k (positions of the patch) returns the number of times that a
certain pixel (i, j) is covered by the patch:

N i,j( ) � ∑N
k�1

c i,j( )k. (3)

Finally, we define the matrix δ as that matrix where every element (i,
j) is the fluctuation Δk averaged over all the possible positions of
the patch:

δ i,j( ) �
1

N i,j( )
∑N
k�1

δ i,j( )k with i ∈ 1, 132( ), j ∈ 1, 101( ). (4)

The matrix δ(i,j) represents the occlusion heatmap for a single sub-
image 132 × 101. The occlusion depends on five free parameters
related to the patch: the size (width W and height H), the value V,
and the stride (horizontal sh and vertical sv). These parameters define
how the input is perturbed by the occlusion method. By applying
this method to all the slices, the occlusion produces a 132 × Nt

output. Since the monodimensional signals are treated as distinct
inputs, their occlusion is also performed independently. A patch of
constant value V is applied to the 0-D signal region, leaving the 1-D
signals unaffected. This patch is moved along the horizontal axis
with step size sh, following the same algorithm as for the 1-D signals
generating a 2 ×Ntmatrix. An example is provided in Figure 5: at the
top, the heatmap for the 1-D signals is shown. Starting from the
bottom, the image refers to the radiation, temperature, and density.
The color intensity corresponds to the degree to which occluding a
particular input feature affects the neural network’s output. A
fluctuation of −1 indicates that occluding that input feature
reduces the network’s output by 1, from 1 to 0. This matrix
highlights the importance of each input feature for disruption
classification. For visualization purposes, the fluctuation related
to the signals is plotted in the plot in the middle, with the red
line referring to li and the green line referring to theML signal. The
areas where the occlusion produces the strongest fluctuation are
related to the bolometer and the central part of the temperature
profile. The monodimensional signals, on the other hand, become
important only in the transient phase, when the output of the neural
network (black trace at the bottom) changes from stable to unstable
or vice versa. The occlusion heatmap brought out an interesting
behavior: the neural network seems to be sensitive mostly to the
right part of the input. This behavior is shown in Figure 5 (top),
where the areas highlighted in the bolometer are asymmetric, with a
reverse d-shape.

3.2 Saliency map

The previous method is coupled with a non-agnostic method to
provide a more complete and general insight into the interpretation
of the neural network. There is a wide variety of non-agnostic
methods. Following [21], we define the saliency map as a matrix
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made up of the derivative of the output of the neural network
backpropagated to every single pixel of the input. Due to the
particular architecture of the neural network we are studying, the
gradient of the output will be backpropagated until the second
convolutional unit, as indicated in Figure 3. The second
convolutional unit will produce as output a matrix A(α,β). A
backpropagation to the input of the neural network is not
possible as the network is interrupted to add the
monodimensional signals before the second convolutional layer.
The first convolutional layer reduces the image size, but the ratio
between the distances remains the same. Therefore, we can
understand which areas of the input the saliency map output
refers to by simply rescaling it. The saliency map will have the
same dimension as the network layer, where every element (α, β) will
be the partial derivative of the output with respect to Aαβ(I) and is
calculated as follows:

gαβ � max
∂fNN I( )
∂Aαβ

, 0( ), (5)

where we have introduced the operator max(•, 0), known as the
ReLU (rectified linear unit), in order to filter out the negative values.
The derivative is calculated with a guided backpropagation

algorithm [22] that reduces the fluctuation of the gradient in the
presence of the non-linear activation layer (e.g., the ReLu). The
definition in Eq. (5) must be adapted to the structure of the neural
network that we are trying to analyze. In this case, the global input
Itot ∈ M132×Nt is sliced in a set of 132 × 101 images by means of an
overlapping sliding window so that every pixel of Itot appears in the
sliding window 101 times. Given a certain pixel aij ∈ Itot with 1 ≤ i ≤
132 and 1 ≤ j ≤ Nt, we define the set of all the slices containing a
certain time j as

Ij � Ik|aij ∈ Ik{ }, (6)

where k is the time of the right edge of the overlapping time window.
For a certain time j, we have j ≤ k ≤ j + 101. Finally, we define the
saliency map as

Gαβ � 〈gαβ〉Ij. (7)

We averaged the single-frame saliency maps for all possible saliency
maps that involve the pixel (i, j). The output of the saliency map is a
heatmap 18 × Nt. An example is provided in Figure 6. Specifically,
the channels at the bottom are related to the bolometer (0–3), then
the temperature (4–10), and then the density (11–16), while at the
top, there is the gradient with respect to the monodimensional

FIGURE 5
Occlusion analysis for the JPN 96745. The heatmap as a result of the occlusion technique for the 1-D signals (top) and the 0-D signals (middle). The
red line refers to the fluctuation as a consequence of the occlusion of the internal inductance, while the green line is for the ML signal. The third plot
(bottom) represents the output of the neural network (black line), the signal of the internal inductance (red line), and the ML signal (green line).
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signals (17–18). Figure 7 shows the function g of the saliency map for
different phases of the pulse: a stable, a transient, and an unstable
phase. The value of the function g in the different regimes is
noteworthy: when the output of the neural network changes,
passing from stable to unstable, the sensitivity of the output
becomes larger by approximately three orders of magnitude. The
saliency map shows that the most sensitive parts of the input are the
radiation and the central part of the temperature, while the density
seems to be of secondary importance and the monodimensional
signals are only relevant close to the trigger of the alarm.

4 Results

The sensitivity map and occlusion provide consistent results:
there is a strong indication that the neural network relies mainly on
the bolometer signal to make its predictions. The central part of the
temperature profile is the second most important feature for the
neural network, while 0-D signals play a role in the classification
only near the alarm. The density seems to be of secondary
importance for the disruption prediction. The saliency map tends
to show a significant gradient in the bolometer even when there is no
relevant signal in that area of the input. A comparison between
different methods is shown in Figures 6, 8. The heatmaps turn on at
the same moment, but in the saliency map, the area of the bolometer
is much more important than the occlusion. The temperature is
relevant for the occlusion, even though a peak in the inner part of the
temperature profile can also be seen in the saliency map. In both
heatmaps, there is an increase in sensitivity in the part connected to
the density near the alarm, which anyway remains less relevant than
the temperature and the radiation. The network does not recognize

the change in the temperature profile that characterizes the EC/TH
as the first event in the chain of phenomena that leads to disruption
as the alarm is often triggered before the EC/TH event. This is the
reason why the network is usually able to predict the disruption
before the EC/TH event. However, it is interesting to understand
whether the NN is sensitive to the change in the temperature that is
physically responsible for triggering the instability, as described in
Section 2.1. Since the occlusion technique includes several free
parameters, it is suitable for analyzing individual discharges, but
there is the risk of not being able to obtain a uniform procedure
when comparing different discharges. For this reason, a local
systematic analysis has been carried out using only the saliency
map approach near the time of the EC/TH event, measured as
reported in Section 2.1. Saliency maps are calculated close to the
events of edge cooling and temperature hollowing. The maps are
superimposed, and the gradient is averaged for every pixel. The
result is shown in Figure 9. The plots show the aggregated heatmap
for the EC (left) and TH (right) events. The two plots exhibit
different behaviors: edge cooling highlights multiple areas (in the
red circles) in the outer part of the profile where there are peaks in
the gradient. On the other hand, temperature hollowing exhibits
multiple peaks at the center of the profile, with a reduced value of the
gradient at the edge. In addition, the plot for the EC event shows an
important gradient at the center of the profile, but it has a more
continuous behavior and lights up close to the peaks at the edge.
Figure 9 shows that the gradient increase occurs in an interval of
200 ms before the EC/TH event. This is also confirmed in Figure 10,
where the distribution of the temporal differences between the
closest peak of the gradient and the time of EC/TH for all the
analyzed pulses is plotted. The distribution peaks around t − tEC/TH =
0, confirming the strong correlation between the EC/TH event and

FIGURE 6
Saliencymap for JPN 94966. The plot shows thematrixG, as defined in Eq. 7. Larger values ofG are connected to larger values of the gradient of the
output with respect to the output of the neuron in the second convolutional layer.
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FIGURE 7
Example of the matrix g, as defined in Equation 5, for different times. The plot in the middle represents the output of the neural network. The images
show saliency maps at different times.

FIGURE 8
Occlusion analysis for the JPN 94966. The color bar represents the fluctuation δ, as defined in Eq. 4. The blue region corresponds to a stronger
fluctuation as a consequence of the occlusion of that part of the input, which is interpreted asmore importance given to that part of the input. White areas
do not produce any fluctuation of the output. The colors are in a logarithmic scale.
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the gradient increase. Furthermore, the distribution is strongly
asymmetric, reflecting the tendency of the neural network to
anticipate the EC/TH event. Figure 11 shows the position of
every pulse of the database in the space composed by the
average of the gradient in the inner and outer halves of the
profile. The average gradient is calculated as the arithmetic
mean of the elements of the matrix G around the time of the
edge cooling/temperature hollowing event. The inner region refers
to the temperature profile with r/a ∈ (0, 0.5), and the outer region
refers to r ∈ (0.5, 1). Figure 11 shows that when analyzing edge
cooling, the neural network tends to produce a heatmap with a
non-zero gradient in the outer region, indicating that it maintains
its focus on the edge in the presence of a physical phenomenon that

affects that portion of the profile. On the other hand, temperature
hollowing produces a heatmap with a zero average gradient on the
edge, indicating that the neural network does not consider the
outer region of the temperature profile to be important for
classifying the disruption. Finally, we analyzed the safe pulses.
Figure 12 shows the average of the sensitivity maps of all safe pulses
around a reference time in the stable phase of discharge. The plot
does not show any peaks in the gradient but rather a continuous
area in the radiation and the 0-D signals. This indicates that the
neural network does not focus on any particular phenomenon but
maintains its attention on the radiation and the one-dimensional
signals, waiting for some event that could represent a precursor to
the disruption.

FIGURE 9
Plots of the average of the saliency maps of every pulse of the database for the edge cooling (left) and temperature hollowing (right) events.

FIGURE 10
The temporal distance between the TH (red)/EC (blue) event and the closest peak in the gradient in the inner/outer part of the temperature profile.
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5 Discussion of results

The XAI analyses provide insights about what the neural
network considers important in the classification of a
disruption, given a certain input. One of the objectives of
this work is to understand if the neural network assigns
importance to a class of phenomena (edge cooling and

temperature hollowing) that involve multiple areas of the
input and not only single points. For this reason, we decided
to perform the analysis using sensitivity approaches that tend to
produce results that highlight extensive areas rather than single
pixels. Other approaches, such as decomposition, can, in
principle, be used (an example is the layer-wise relevance
propagation [23]). These methods assign a “relevance score”

FIGURE 11
Plot of the points of the database in the space composed by the average of the gradient as defined in Eq. 7 in the inner and outer parts of the
temperature profile.

FIGURE 12
Plot of the average saliency map for the safe pulses around a reference time during the stable phase.
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to every pixel of the input by decomposing the output of the
network in series, generating heatmaps that pinpoint the most
critical pixels, offering a granular view of the input’s impact on
the final result. Between the algorithms following the sensitivity
approach, we developed the saliency map and the occlusion.
More complicated algorithms are available, although they are
more suitable for larger CNNs. For example, the GRAD-CAM
algorithm [24] involves summing the output of every feature
map in a convolutional layer, weighted on an average pooling
of the gradient of the final output with respect to the output of
the feature map. However, this is thought to be applied on a
CNN composed of one convolutional layer with many feature
maps. The CNN we used is relatively simple, containing two
convolutional layers with only one feature map, so GRAD-CAM
would not provide any additional insights. The occlusion
method is an agnostic method, easy to develop and interpret,
but it intrinsically depends on different free parameters, such as
the size of the occluded region. An in-depth analysis of the effect
of occlusion parameters is beyond the scope of this work. The
primary goal of using the two methods was to compare them

and find a set of parameters, for which the results obtained are
consistent with each other.

5.1 General results and comparison

As explained in Section 2, the CNN is fed with inputs
composed of physical data measured by the diagnostics. At first,
the analysis is performed over the entire input, taking into
consideration all the quantities in the input. The comparison
between the two methods (Figures 6, 8) allows us to identify
the radiation as the most relevant part of the input for the
classification. The central part of the temperature profile is also
found to be particularly crucial. The monodimensional signals are
important only close to the alarm time, and the density does not
seem to be important in the classification. The comparison
produces consistent results, even though some differences
should be discussed. The occlusion method seems to produce
maps that are more sensitive to the right part of an input
image, as shown in Figure 5. Since the neural network is

FIGURE 13
Plot shows an explanation for the behavior of the points in Figure 11. The vertical red line represents the time of the edge cooling. The top left plot
represents the input image of the neural network. On the top right, there is the saliency map that corresponds to that input. At the bottom, there is the
output of the neural network.
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trained on temporally ordered input images, when a disruption
occurs, its lines of evidence appear at first in the right part of the
input. As a result, in the training phase, the CNN learns to be more
sensitive to the right side of the input. This right-side bias is
particularly evident in the occlusion technique because, in the
saliency map approach, the final heatmap is the average of multiple
heatmaps produced with the sliding window, so the effect
eventually averages out. The saliency map can be applied
systematically to the data but often produces biased results. In
particular, the saliency map tends to have a strong gradient on the
radiation, even when there is no significant signal. This could be
because the CNN, in the training phase, adjusts its weights to give
more importance to the radiation since it has learned that it is an
important feature. This implies that the gradient of the radiation,
when backpropagated, is stronger with respect to the gradient
coming from other diagnostics. It also reflects in the XAI analysis
as the gradient in the radiation part of the input is highlighted with
respect to the gradient of the other diagnostics, even if no relevant
signals are present in the input. So the second part of the analysis
focuses specifically on the temperature profile.

5.2 Analysis of the temperature

The main result of this paper is that there is strong evidence
that the neural network is able to identify edge cooling and
temperature hollowing. This is shown in Figure 9, where the
average of the gradient matrix G (as defined in Section 3.2), close
to the EC/TH event, is shown for all the disruptions. This is also
confirmed in Figure 10 and Figure 11. In the latter, it is also
evident that the gradient’s average is greater in the inner region of
the profile than in the outer. This confirms that, in general, the
neural network places more emphasis on the temperature profile
on the axis than on the edge. Furthermore, in Figure 11, there are
five points that represent edge cooling, but the gradient in the
outer region is zero. Figure 13 shows that the network gives the
alarm close to the edge cooling (~ 100ms before). In this phase,
there is a strong gradient on the radiation, meaning that NN is
keeping its attention on that part of the profile. So the reason why
the outer average gradient of edge cooling in Figure 11 is zero is
that edge cooling happens when the NN is focusing on the
radiation. When edge cooling starts, the output is already 1,
and the neural network has already triggered the alarm. This is
consistent with the fact that the neural network does not consider
the temperature profile to be the most relevant feature to identify
the disruption, and it gives more importance to the radiation.
When not close to a significant event connected to the radiation,
the neural network shows an increment of the gradient in the area
interested in edge cooling/temperature hollowing. This is a strong
and interesting indication that the CNN learns to consider the
pattern linked to the EC/TH event as relevant for the classification
of the disruption.

6 Conclusion

This work shows the potential of XAI analysis in explaining
the output of a CNN trained for disruption prediction.

Regarding disruptions having edge cooling and temperature
hollowing as precursors, the CNN behaves consistently with
what we know from physics, without providing any hint in
the training phase. This could contribute to enhance the
reliability of the neural network and promote its use in
a disruption avoidance system. Furthermore, in principle,
this could indicate that it is possible to investigate the
physics by interpreting the way a neural network produces
its output.
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