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Background: Developmental dislocation of the hip joint (DDH) is a condition that
severely threatens children’s healthy growth. Without timely and correct
treatment, it will lead to osteoarthritis and hip dysfunction in the evolution
of children.

Objective: It is essential to develop an intelligent model for diagnosing hip
dislocation and performing accurate quantitative analysis.

Methods: In this paper, 46 cases of computed tomography (CT) images were
retrospectively collected, including 19 cases of hip dislocation and 27 cases of
healthy people. The experiment first uses ITK-SNAP to sketch the ilium and
femoral head in the original image. Then, it uses 3D U-Net to send the label of the
background, ilium, and femoral head into three channels, respectively, to realize
the three-dimensional segmentation of the ilium and femoral head. Next, the
extraction of the surface of the acetabulum and femoral head is performed.
Subsequently, the erroneous points are eliminated, and the spherical surfaces of
the acetabulum and femoral head are fitted using the least squares method.
Ultimately, the spherical center distance is calculated quantitatively to predict
whether the hip joint is dislocated.

Results: Under the independent test set, the segmentation average dice
coefficients of the ilium and femoral head are 89% and 93%, respectively. The
spherical center distance between the acetabulum and femoral head is
calculated quantitatively. If the value exceeds 10 mm, it is considered a hip
dislocation. Compared with the doctor’s diagnosis, the accuracy result is 94.4%.

Conclusion: This paper successfully implements a precise and automated
intelligent diagnostic system for the identification of hip dislocation.
Commencing with the development of a 3D segmentation algorithm for the
ilium and femoral head, we further introduce a novel method that computes the
spherical distance for the prediction of hip dislocation. This approach provides
robust quantitative analysis, thereby facilitating more informed clinical decision-
making.
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1 Introduction

The developmental dislocation of the hip joint (DDH) is the most
common hip condition in pediatric orthopedics [1, 2]. It refers to the
position abnormality of the femoral head and acetabulum or the shape
abnormality at birth or in the child’s later growth [3, 4]. It is generally
divided into three manifestations of dislocation: internal, external, and
central [5, 6]. The diagnosis method mainly involves imaging
examinations, including X-ray and 3D-computed tomography (CT)
[7, 8]. In clinical diagnosis, doctors mostly use subjective judgment and
clinical experience to diagnose the lesion severity. Using multiple 2D
sectional images in the CT image lacks an objective quantitative basis
for a 3D geometric relationship, and the diagnostic accuracy is limited
[9, 10]. After the advent of 3D CT reconstruction technology, doctors
can more intuitively observe the patient’s hip joint and measure and
analyze the data on different planes. Although 3D CT has provided
many new ideas and methods for diagnosing and treating DDH, only
some studies have focused on 3D quantitative analysis [11–13].
Nonetheless, it is necessary to use quantitative values to reflect the
severity of hip dislocation to assist doctors in diagnosis.

There have been few research results in recent years related to
hip dislocation. Most studies described hip joint segmentation
[14–17]. [15] employed a method that automatically segments
the femoral head and acetabular cartilage by marking the region
of interest. This method can better extract the desired information.
The disadvantage is that the user needs more experience in labeling
the region of interest. At the same time, there is no effective
treatment method for cases where the hip joint has not yet fully
developed. [18] developed an automated method for 3D quantitative
evaluation and measurement of the α-angle of the head and neck
joint of the femoral head using the bone model from the magnetic
resonance image (MRI) of the hip joint.

Recently, radiomics and machine learning have made great
progress in the diagnosis of DDH. [19] established a model that
can automatically generate parameters of the hip joint based on the
radiographic image using the encoder–decoder convolutional neural
network and obtained good results. [20] proposed an automatic
segmentation algorithm based on edge detection and Hough
transform. The results show that the segmentation accuracy of
the acetabular angle is good. However, when calculating the
central edge angle, segmentation accuracy is low, which may be
due to the incomplete development of the femoral head of infants
under 6 months, which makes it possible for the automatic
algorithm to miscalculate the angle. [21] incorporated clinical
knowledge into the random walk formula in the form of
intensity prior and proposed a semi-automatic method to
segment the acetabular surface model from MRI. This method
reduces the impact of signal loss at the boundary by using pixel
information from adjacent slices. However, the proposed method
does not consider the changes caused by signal nonuniformity and
geometric distortion. Moreover, the segmentation technology is
semi-automatic, requiring the user to select an initial seed point,
which is relatively cumbersome.

This study proposes a 3D self-starting segmentation method of
the ilium and femoral head based on CT images. At the same time, it
produces a computer-aided diagnosis algorithm to distinguish hip
dislocation and calculate the distance the hip joint needs to move for
restoration.

2 Materials and methods

2.1 Patients and CT parameters

The research data are provided by the Shengjing Hospital of
China Medical University. The CT images used in this experiment
have a size of 512 × 512, with a spatial resolution of 0.41–0.74 mm
and a layer spacing of 1–1.5 mm, in DICOM format. In total, data on
46 cases, including 19 patients (17 girls and 2 boys) with dislocation
of the hip joint (14 patients with unilateral dislocation and 5 patients
with bilateral dislocation) were collected from 2013 to 2019. Because
the incidence rate of this disease is low, about one thousandth, and
most patients have no awareness of being ill, there are limited data
for collection, so the period is extensive. Patients are between
13 months and 7 years old (DDH’s regulated range is 0–14 years
old), and about 68% of patients are between 15 months and
23 months old. The data on 27 healthy people were collected
from 2019 to 2020, all of which were retrospective. Among them,
there are 20 women and 7 men. The age range is from 13 to 62 years
old. The distribution of each age group is relatively uniform. Because
CT radiation significantly impacts infants and young children, data
collection on healthy people is not limited to 0–14 years old.
Regardless of age, the structure of the hip joint is almost the
same, and moreover, the difference in bone size does not affect
the training of the deep learning network model. The images in this
study are mainly cross-sectional images. Figure 1 shows the images
of patients and healthy people. Table 1 provides the clinical
characteristics of the data.

Figure 1 shows that the hip joint appearance of patients is
significantly different from that of healthy people. Comparing the
shape of the femoral head, healthy individuals have a regular, round
shape, while some patients undergo significant changes. The ilium
and femoral head of healthy people are closely positioned, with the
ilium wrapping around the femoral head. In contrast, in patients, the
ilium and femoral head are farther apart.

2.2 Methods

The research content of this paper is mainly divided into two
parts. The first part focuses on the realization of 3D automatic
segmentation of the ilium and femoral head [22–24], which lays the
foundation for the subsequent quantitative analysis of hip
dislocation. The second part involves extracting the boundary of
the ilium and femoral head using the least squares method to fit the
sphere, finding the spherical centers, calculating the distance
between these two spherical centers, and quantifying the
quantitative degree of hip dislocation. The overall process is
shown in Figure 2.

2.2.1 3D segmentation method
2.2.1.1 Label making

In this study, ITK-SNAP is used to produce labels for deep
learning segmentation. The specific drawing process of the hip joint
label is to mark the femoral head (green) and the ilium (red), as
shown in Figure 3. The 3D display of the labeled regions is shown in
Figure 4, in which we can more clearly observe whether the marked
area is correct. The label production process was conducted under
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FIGURE 1
Cross-sectional images: the first row displays the hip joints of some patients, and the second row displays normal persons’ hip joints.

TABLE 1 Clinical characteristics of the data.

Data Number Eligibility
criteria

Age/years
(mean ± SD)

Sex
Female/
male

Onset of
symptoms

Outcomes/fitting ball center
distance between the
femoral head and
acetabulum (mm)

DDH Unilateral
dislocation

14 Undergone CT
examination

1.08–7
(2.78 ± 1.90)

17/2 Hip pain, change in posture,
or shortening deformity of

the lower limbs

Less than 10

Bilateral
dislocation

5

Healthy people 27 13–62 (43.20 ±
14.62)

20/7 None Greater than 10

FIGURE 2
Workflow chart of this paper.
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the guidance and confirmation of Professor S. Pan, who has been
engaged in clinical work for over 30 years.

2.2.1.2 Dataset allocation
The image selections containing the regions of interest were used as

the input of network training. Preliminarily, we converted the collected
46 groups of DICOMdata into PNG format. The images containing the
target area were chosen, and those without the target area were
eliminated. A total of 282 images were collected. In the experiment,
the data were randomly divided into training, verification, and test data
sets according to the ratio of 6:2:2 to ensure that all images in each case
were collected into the same group. Therefore, 222 images and the
corresponding labels were randomly selected from 37 groups, including
177 images for training and 45 images for verification, and 60 images
were taken from the remaining 9 groups for testing.

Due to the small amount of data, this experiment utilized a
mirror image data augmentation method. Through this approach,
37 groups of training and validation images (177 images and
45 images) were increased to 74 groups of the learning set
(354 images and 90 images). The segmentation model was
obtained using the three-fold cross-validation method. The
background pixels were marked as 0, the ilium pixels were
marked as 1, and the femoral head pixels were marked as 2.

2.2.1.3 Segmentation model construction
This paper uses the 3D U-Net image segmentation network [25,

26]. In this experiment, the Keras library with TensorFlow was used as
the backend. All calculations were performed on a 64-bit Windows
10 computer with an Intel (R) Core (TM) i7-8700 K CPU (3.70 GHz)
processor and an NVIDIA GEFORCE GTX 1080Ti.

This experiment employs the classic 3D U-Net network architecture.
The encoding part consists of a downsamplingmodule, which includes two
convolutional layers with 3 × 3 × 3 kernels and a stride of 1, followed by a
max pooling layer with a 2 × 2 × 2 kernel and a stride of 2. The decoding
part is composed of an upsampling convolutional layer (deconvolutional
layer), a feature concatenation operationwith a 2 × 2× 2 kernel and a stride
of 2, and two convolutional layers with 3 × 3 × 3 kernels and a stride of 1.
The ReLU activation function is used throughout the process. In the final
layer, a 1 × 1 × 1 convolutional layer reduces the number of output
channels to the number of classes to be segmented in the labels.

The input data were changed to three-channel type data, with
channel 1 as the background, channel 2 as the ilium, and channel
3 as the femoral head, so that different labeling information could be
put into training at the same time. In this experiment, one-hot
encoding was used for image three-channel processing [27]. Figure 5
shows the tag images of the background, ilium, and femoral head in
the second to fourth columns sent into the three-channel network.

FIGURE 3
The first row is the annotation of the patient’s hip joint, and the second row is the annotation of the healthy person’s hip joint.

FIGURE 4
3D label display diagram.
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2.2.2 Quantitative analysis of hip dislocation
The segmented images of the ilium and femoral head are used for

quantitatively calculating hip dislocation. This method can provide
accurate 3D spatial information to assist doctors in diagnosis.

2.2.2.1 Spherical center calculation
First, the Sobel operator is used to extract the edge of the femoral

head and acetabulum [28]. Then, the data containing the boundary
information on the femoral head can be extracted to form a spatial
coordinate sampling point set. However, the meniscus of the
acetabulum is incomplete, and there are depressions or protrusions.
Therefore, the equidistant grid sampling method [29, 30] is selected to
sample the spatial information on the acetabulum. The intersection of
the equidistant grid lines and the target contour is the sampling point.
Then, the least squares method is used to fit the sphere. In this process,
the erroneous points need to be eliminated as follows:

Step 1: The previously extracted femoral head and hip joint
data are processed, and the results obtained by fitting
the data points with the once-received spherical
surface are substituted into Formula 1. The femoral
head and acetabular data are input separately, and the
fitting residual vi of each collected data point is
calculated:

vi � xi − x0( )2 + yi − y0( )2 + zi − z0( )2 − R2. (1)

Step 2: The Bessel formula is used to calculate the standard
deviation valuation:

σ �
�����������∑n
i�1
vi/ n − 1( )

√
. (2)

FIGURE 5
Labels: (A) original, (B) background, (C) iliac, and (D) femoral head.
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FIGURE 7
Segmentation results: (A) original, (B) label, (C) femoral head, and (D) iliac.

FIGURE 6
Network model training indicators:(A) first-fold,(B) second-fold, (C) third-fold, and (D) final network model.
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FIGURE 8
The first line shows the extraction results of the femoral head edge, and the second line shows the extraction results of the iliac edge.

FIGURE 9
Extraction results of femoral head data points.

TABLE 2 Evaluation of ilium segmentation results.

Number ACC Dice REC PRE IoU SPE

1 0.9977 0.9209 0.8856 0.9592 0.8534 0.9994

2 0.9939 0.7972 0.8331 0.7643 0.6628 0.9962

3 0.9972 0.8941 0.8629 0.9276 0.8084 0.9991

4 0.9963 0.8670 0.9228 0.8177 0.7653 0.9973

5 0.9950 0.9120 0.9084 0.9156 0.8382 0.9975

6 0.9960 0.9074 0.9284 0.8873 0.8305 0.9975

7 0.9967 0.8908 0.8760 0.9061 0.8031 0.9986

8 0.9966 0.9083 0.9176 0.8992 0.8320 0.9981

9 0.9959 0.9114 0.8933 0.8724 0.8438 0.9974

Average 0.9962 0.8899 0.8920 0.8833 0.8042 0.9979

Standard deviation 0.0011 0.0360 0.0295 0.0559 0.0559 0.0009

TABLE 3 Evaluation of femoral head segmentation results.

Number ACC Dice REC PRE IoU SPE

1 0.9992 0.9659 0.9628 0.9691 0.9341 0.9996

2 0.9965 0.8189 0.9259 0.7341 0.6933 0.9971

3 0.9993 0.9638 0.9526 0.9753 0.9302 0.9998

4 0.9989 0.8993 0.8701 0.9305 0.8170 0.9996

5 0.9974 0.9389 0.9003 0.9810 0.8848 0.9996

6 0.9983 0.9437 0.9268 0.9612 0.8933 0.9994

7 0.9990 0.9573 0.9749 0.9403 0.9181 0.9993

8 0.9986 0.9435 0.9547 0.9325 0.8930 0.9991

9 0.9987 0.9276 0.9473 0.9519 0.9043 0.9995

Average value 0.9984 0.9288 0.9350 0.9307 0.8742 0.9992

Standard deviation 0.0009 0.0433 0.0312 0.0716 0.0718 0.0008
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Step 3: The Laiyite criterion is used to eliminate erroneous
points: when vi of a sampling point is greater than
three times σ (Formula 2), the sampling point is
considered a gross erroneous point, which belongs to
abnormal data and can be eliminated. The reason for
using triple σ is that, according to the normal
distribution of random variables, the measured value
falls within ± 3σ of the average value in many tests, and
the probability of occurrence is 99.73%. The likelihood
of occurrence outside this range is only 0.27%,
indicating that only one out of nearly
400 experiments would be expected to fall outside
this range. This represents a small probability event,
which is almost impossible.

Step 4: The sampling point set is updated, the previously calculated
culling points are deleted, steps 1 to 3 are repeated, and the
process is stopped when the new spatial sampling point set
does not contain gross error points.

2.2.2.2 DDH measurement
The coordinates and radius of the left and right spherical centers

of the femoral head and acetabulum can be calculated using the
above spherical fitting method to calculate the distance between the
left and right spherical centers. After statistical analysis of all
distance values, the optimal threshold was selected as the critical
value of hip dislocation and compared with the diagnosis of doctors
to evaluate the effectiveness of this method.

3 Results

3.1 3D segmentation of the ilium and
femoral head

This experiment introduces three-fold cross-validation in the
training set, and the initial learning rate is [1 × 10]̂(-3). During
training, the learning rate will automatically decline. Affected by

FIGURE 10
Extraction results of acetabular data points.

FIGURE 11
Fitting results of the spherical surface of the femoral head: (A) left and (B) right.
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TABLE 4 Ball center and radius of the femoral head.

Number Coordinate-left Coordinate-right

x y z Radius x y z Radius

1 108.152 72.424 36.769 15.319 106.462 55.954 34.602 14.857

2 96.358 63.031 42.101 15.116 99.296 71.342 25.495 15.779

3 120.487 69.809 27.101 11.573 100.355 73.972 36.452 17.352

4 59.241 74.834 34.176 13.386 56.459 71.121 32.297 12.561

5 118.000 65.165 35.227 18.981 127.188 70.137 35.010 18.412

6 110.395 67.832 31.644 15.834 117.232 63.201 35.365 17.111

7 88.691 71.953 35.228 14.812 92.999 52.270 35.016 14.377

8 113.129 69.039 32.719 14.869 114.277 62.960 35.944 15.607

9 101.807 69.261 34.371 14.986 101.783 65.120 33.772 15.757

TABLE 5 Acetabular center and radius.

Number Coordinate-left Coordinate-right

x y z Radius x y z Radius

1 107.800 70.950 35.709 15.460 105.692 57.081 32.603 14.990

2 96.263 66.743 39.528 17.677 92.370 69.838 35.094 19.683

3 113.127 71.730 35.319 17.817 110.168 58.480 30.964 25.629

4 59.639 55.956 29.140 24.366 64.860 58.831 33.927 23.465

5 118.239 63.198 34.495 20.897 126.756 70.872 33.831 18.479

6 111.916 67.122 34.545 17.032 116.684 64.836 34.875 18.255

7 87.774 69.246 35.424 16.424 92.995 55.838 35.339 15.966

8 112.917 70.158 36.382 15.961 113.690 64.766 35.009 15.718

9 100.959 66.888 35.068 18.204 102.902 62.568 33.955 19.023

FIGURE 12
Fitting results of the acetabular spherical surface: (A) left and (B) right.
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GPUmemory, the batch size is 2, and the number of training epochs
is 200. The loss function curve is shown in Figure 6. The abscissa in
the figure represents the number of iterations, and the ordinate
represents the value of the loss, IoU (intersection and combination
ratio), loss_val, and IoU_val. Loss and IoU are calculated in the
network’s training process, indicating the network’s fitting degree on
the training set. Loss_val and IoU_val are the evaluation indicators
of the verification set after each round of network training, which
shows the degree of network fitting in the test set. In Figures 6A–C,
the second fold is the best, so it is selected for training again.
Figure 6D shows the final index change chart of the training
network model.

The loss value of the training and verification sets gradually
flattens after a rapid decline shown in Figure 6D and finally

converges to 0.0263. The change in the intersection ratio of the
training set joins at 0.9626, which is opposite to the loss function.
The results are shown in Figure 7.

In the experiment, the accuracy (ACC), dice coefficient, IoU,
precision (PRE), and specificity (SPE) of nine independent test sets
were calculated as evaluation parameters. Table 2 provides the
evaluation of the segmentation results of the ilium, and Table 3
provides the evaluation of the segmentation results of the
femoral head.

The result of multi-class hip joint segmentation using the 3D
U-Net is good, and the average dice coefficient of the ilium
reaches 88.99%. Although the ilium contour is over-
segmented, it is due to the low definition of the edge. The
average dice coefficient of the femoral head segmentation

FIGURE 14
2D U-Net segmentation results: (A) original, (B) label, and (C) hip joint.

FIGURE 13
Fitting ball center distance between the femoral head and acetabulum.
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result reaches 92.88%, which indicates that this method
is quite good.

3.2 DDH intelligent diagnosis

The edge extraction and data point extraction results are shown
in Figures 8–10. Figure 8 shows the edge extraction results of the
femoral head and ilium, Figure 9 shows the femoral head point

extraction results, and Figure 10 shows the acetabular point
extraction results.

The results of spherical fitting are shown in Figures 11, 12. They
are the fitting results of the femoral head and acetabulum,
respectively, (a) left side and (b) right side. The calculated
spherical center results are shown in the table. Tables 4, 5 are the
spherical center and radius calculation results of the femoral head
and acetabulum, respectively.

Figure 13 shows the spherical center distance between the femoral
head and the acetabulum’s meniscus. The abscissa is the serial number
of the hip joint. A case is sorted by dividing it into two hip joints. The
ordinate is the distance between the spherical centers in millimeters.
Blue represents the normal hip joint, and orange represents the hip
dislocation. A hip joint less than 10 mm is considered normal, while a
hip joint greater than 10 mm is considered hip dislocation. Compared
to the doctor’s diagnosis, only the No.8 hip joint differed from the
doctor’s assessment. Because the patient is younger, the shape of the
femoral head is not fully grown, and there is a difference in the shape of
the sphere. The accuracy rate is 94.4%.

TABLE 6 Evaluation results of 2D and 3D U-Net segmentation.

ACC Dice REC PRE IoU

2D 3D 2D 3D 2D 3D 2D 3D 2D 3D

Average value 0.992 0.995 0.870 0.879 0.889 0.8852 0.876 0.876 0.783 0.785

Standard deviation 0.006 0.002 0.109 0.022 0.175 0.0525 0.046 0.036 0.146 0.036

TABLE 7 Comparison with other methods.

Method Femoral head Ilium Time

[18] Bilateral, 0.95

[21] Left, 0.84; right, 0.86 4 s/slice

[22] Left, 0.973; right, 0.974 Bilateral, 0.957 7.9 min/case

Proposed Bilateral, 0.9288 Bilateral, 0.89 10 s/case

FIGURE 15
3D U-Net segmentation results: (A) original, (B) label, and (C) hip joint.
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4 Discussion

We compared the 2D and 3D U-Net segmentation results. The
2D segmentation results are shown in Figure 14. The average value
of the dice coefficient reaches 87.9%. There is an over-segmentation
phenomenon because of the low definition. In addition, 2D data do
not have layer position information, and the structure is different,
significantly impacting the training. The edge information on the
femoral head and ilium cannot be well-extracted, which cannot meet
the needs of subsequent experiments.

Unlike 2D U-Net, 3D U-Net has better results in segmentation and
can better learn and train 3D information to obtain a better model.
Figure 15 shows the result of the 3D segmentation of the hip joint. There
is almost no difference compared to the marked image, and the
accuracy is high. However, some images are not segmented
accurately at the narrow gap between the ilium and femoral head,
resulting in over-segmentation.

Comparing the evaluation parameters of 2D and 3D
segmentation in Table 6, the average dice coefficient of 3D
U-Net reached 87.9%. However, the narrow gap between the
femoral head and the ilium caused over-segmentation. Marking
labels separately in the experiment solved the problem. Tables 2 and
3 provide the evaluation results.

Regarding time efficiency, the 2D segmentationmethod took 2 h to
complete the network training process, and it took less than 20 s to
segment approximately 60−ΔΔCT slices. The 3D segmentation method
took 10 h to complete the training process of the network. It took less
than 30 s to segment approximately 300−ΔΔCT slices.

Due to the low incidence of hip dislocation in children, our study
was based on only 46 cases. Despite the limited data, the research
outcomes are promising. In subsequent studies, we aim to continue
collecting more data to improve the robustness of our method.

Table 7 presents a comparison of our paper’s results with those from
other studies.When compared to the results of Xia et al., who utilized an
active shape model-based algorithm for automated 3D bone
reconstructions of the proximal femur, the femoral head
segmentation in our paper is slightly inferior. However, our method
performs better when only healthy individuals are considered. In
contrast to Hareendranathan et al., who integrated clinical knowledge
through intensity priors into a randomWalker formulation, ourmethod
outperforms theirs in ilium segmentation. In comparison to themethods
of Chu et al., which combine fast random forest regression-based
landmark detection, multi-atlas-based segmentation, and articulated
statistical shape model-based fitting, our study extends the scope to
include both normal and dislocated hip joints. For normal individuals,
our paper achieves a segmentation accuracy of 95%. Additionally, our
method’s execution time is significantly longer than theirs.

5 Conclusion

This paper presents the quantitative and intelligent diagnosis of hip
dislocation based on CT images. First, a 3D automatic segmentation
method of the ilium and femoral head is proposed. Then, the boundary
information is extracted from the segmentation results, and spherical
fitting is performed. Finally, the distance between the two spherical
centers is calculated and a quantitative intelligent diagnosis model
is obtained.

In terms of treatment, for most infants under 6 months with DDH,
after diagnosis, good treatment outcomes can be achieved through
external hip abduction devices such as Pavlik harnesses and Von Rosen
splints. For children who fail to respond to Pavlik treatment, treatment
options include closed reduction or open reduction. The experimental
results show that the method proposed in this study has good
performance on independent testing sets, which can provide
quantitative analysis support for clinical decision-making.
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