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Topoisomerase 2-alpha (TOP2A) is a nuclear protein that is responsible for the
maintenance of the topological state of DNA. TOP2A is highly upregulated in
ovarian cancer, and its copy number is an important prognosis factor. A large
number of single-nucleotide polymorphism (SNP), insertion, and deletion
mutations have been reported in TOP2A. Thus, a structural and functional
study of missense SNPs was carried out to screen potentially damaging
mutations. The 193 non-synonymous SNPs in the coding region of TOP2A in
the dbSNP database were selected for in silico analysis. The deleterious SNPs
were screened using sorting intolerant from tolerant (SIFT), PolyPhen-2, SNAP2,
and SNPs&Go, and we obtained four possibly damaging SNPs at the end (Y481C,
N7741, E922K, and R1514W). Mutants Y481C and E922K were predicted to be
highly deleterious and showed decreased protein stability compared with native
proteins, as predicted by I-Mutant 3. We used the SWISS-MODEL to model the
structure of these two mutants, and the structural attributes of modeled mutants
were studied using Hope Project, solvent accessibility-based protein–protein
interface identification and recognition (SPPIDER), SRide, and HBAT, which
predicted small variations from the native protein. Molecular dynamics
simulation demonstrated a decrease in root mean square deviation (RMSD)
and the radius of gyration of two mutants, which is relative to the native
protein. The molecular docking of TOP2A with etoposide suggests that
mutations may lead to resistance to TOP2A-targeted chemotherapy. In
addition, the relative expression analysis performed by qRT-PCR also reveals
that there is a three-fold increase in the expression levels of the TOP2A protein in
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ovarian adenoma cancer cell lines. Our analysis reveals that Y481C and E922K are
highly damaging variants of TOP2A, which alter the protein dynamics and may be
implicated in causing ovarian cancer.

KEYWORDS

mutations, molecular dynamics simulation, non-synonymous single-nucleotide
polymorphism, principle component analysis, topoisomerase 2-alpha

1 Introduction

Ovarian cancer ranks eighth in deaths due to cancer, accounting
for more deaths than any other cancers of the female reproductive
system, with 238,700 new cases being reported in 2012 [1]. Ovarian
cancer is associated with the worst prognosis and has the highest
mortality rates among all gynecological cancers [2]. Ovarian cancer
is highly aggressive, is often asymptomatic, presents itself at
advanced stages, and has a poor prognosis. The aggressiveness of
ovarian cancer can be measured by several factors, including the
response to treatment, the rate of recurrence, and the overall survival
rates. The survival rates of patients diagnosed with ovarian cancer
vary greatly, depending on the stage of the disease at the time of
diagnosis. Patients diagnosed at early stages (I and II) have a better
chance of survival than those diagnosed at later stages (III and IV).
Unfortunately, most women are diagnosed with advanced-stage
disease, which has a poor prognosis and a low 5-year survival
rate. A study conducted in 2018 by Torre et al. suggested that at
stages III and IV of serous carcinomas, the survival rate was 42% and
26%, respectively [3]. The American Cancer Society uses the
National Cancer Institute’s (NCI) Surveillance, Epidemiology,
and End Results (SEER) database, which reported that a 31% 5-
year survival rate was seen for distant invasive epithelial
ovarian cancer [4].

The current standard treatment for ovarian cancer includes
surgery and chemotherapy to remove as much of the tumor as
possible and eliminate any remaining cancer cells. However, there
are several obstacles to successful ovarian cancer therapy, including
the development of drug resistance, the high rate of relapse, and the
toxic side effects of chemotherapy. Additionally, ovarian cancer can
be difficult to be diagnosed in its early stages due to the absence of
specific symptoms, leading to delayed diagnosis and treatment.
Newer therapies, such as targeted therapy and immunotherapy,
are being investigated to address these challenges and improve the
prognosis for ovarian cancer patients. Early detection and
personalized treatment approaches are critical to improving the
survival rates and quality of life for individuals with ovarian cancer.

Many genes are differentially expressed in ovarian cancer, and
topoisomerase 2-alpha (TOP2A) is one of the genes that have been
upregulated in ovarian cancer [5, 6]. The concrete variants of
TOP2A and the effect of its upregulation is observed in different
histological subtypes of ovarian cancer (mainly, the sub types of
serous ovarian cancer, mucinous ovarian cancer, endometrioid and
clear cell ovarian cancer [7]).

The TOP2A copy number in ovarian cancer is an important
prognosis factor and cause of drug resistance [8, 9]. The high
TOP2A mRNA levels in ovarian cancer are associated with the
overall poor survival of the patient [10, 11]. The TOP2A protein is a
nuclear enzyme encoded by the TOP2A gene located on

chromosome 17 in the regions q21–22 and is 1,531 amino acids
long [10]. The C-terminal domain is considered to mediate the
catalytic activity and also interacts with the substrate DNA [11, 12,
13]. TOP2A controls the topological states of DNA during
transcription and replication by ATP-dependent transient
breakage and the subsequent rejoining of DNA strands [14–16].
Topoisomerase II makes double-strand breaks, which are essential
during mitosis and meiosis for the proper segregation of daughter
chromosomes and the release of torsional stress produced due to the
negative and positive supercoiling of DNA [17–20].

The balance of the topoisomerase network is critical for proper
cell functioning. An increase or decrease in the enzyme level will
cause topological stress on chromosomes. The expression level of
TOP2A in rapidly proliferating cells is very high compared to that in
quiescent cells [21]. TOP2A-mediated cell proliferation has been
targeted for cancer therapy. The FDA has approved many TOP2A
inhibitors, including epirubicin, teniposide, doxorubicin, and
etoposide. These drugs are used for a variety of testicular cancers,
neuroblastoma, leukemia, lymphomas, breast cancer, and sarcoma.
The TOP2A enzyme activity is closely related to the sensitivity of
cells to TOP2A-targeting chemotherapy. The tumor cells with a
defect in enzyme activity are resistant to TOP2A inhibitors.

Multiple single-nucleotide point mutations in TOP2A are
associated with multiple cancer types and chemotherapy
resistance [22–26]. SNPs are single-nucleotide variations that
exist with more than 1% frequency in the population. SNPs can
be found anywhere in the genome, including introns, exons,
promoters, and repetitive elements [27]. They can be neutral or
lead to a disease-causing phenotype. Non-synonymous single-
nucleotide polymorphisms (nsSNPs) present in the coding region
lead to a change in amino acid sequence and have an impact on the
structure and function of the protein [28, 29]. Interestingly, the non-
synonymous variations have the potential to alter the protein
structure and function, making them of particular interest in the
study of genetic variability. Although missense mutations have the
potential to disrupt protein folding and function, the specific
outcome depends on various factors, including the position of
the mutation, the conservation of the affected amino acid
residue, and the protein structure. A single-nucleotide change can
alter crucial bonds for protein stability, folding, and activity, and
may impact the dynamics of the protein. Thus, the study of SNP is
important for early detection and better treatment of cancer.

More than 1,000 SNPs of TOP2A are present in the dbSNP
database alone. An SNP present in a crucial protein can bring about
large-scale phenotypic changes in a person. Identifying the
phenotype and correlating it with the genotype is laborious work.
The detection of deleterious variants will help organize genome-level
studies and develop biomarkers for the diagnosis of a disease. SNP
studies have the potential to treat multiple disorders and also drug
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resistance. Multiple computational approaches will significantly
help in screening deleterious SNPs and predicting the functional
impact of a protein. Therefore, keeping the importance of TOP2A
and SNPs in mind, this in silico study was undertaken using various
bioinformatics tools.

2 Materials and methods

2.1 Data retrieval

The dbSNP database of the National Center of Biotechnology
Information (NCBI) was used to retrieve information on SNPs
(https://www.ncbi.nlm.nih.gov/snp/). Various search filters were
used to obtain validated missense SNPs in the TOP2A gene in
humans [30]. Additional information about TOP2A was collected
from UniProt, Protein Data Bank (PDB), and NCBI.

2.2 Structure and sequence-based
investigation of SNPs

Before beginning the detailed structural analysis of SNP
mutants, it is important to screen potentially damaging SNPs.
Multiple tools are available to predict damaging SNPs. All these
tools rely on different properties of a protein, use different
algorithms, and work with varying accuracies. To improve the
overall accuracy of deleterious SNP prediction and reduce the
number of false negatives from our result, we used a
combination of tools.

Sorting intolerant from tolerant (SIFT) (http://siftdna.org/www/
SIFT_dbSNP.html) [31–34] is a tool that uses a sequence homology-
based approach to classify amino acid substitutions in a protein as
tolerated or tolerated. SIFT calculates the probability for all
20 amino acid substitutions at a given position. These
probabilities are normalized by the probability of the most
frequent amino acid and are called the SIFT score or tolerance
index, which ranges from 0.0 to 1.0. If the SIFT score is less than 0.
05 for an amino acid substitution, it is predicted as deleterious
(intolerant); otherwise, it is predicted as tolerant. The accession IDs
of SNPs collected from dbSNPs were used as query, and the analysis
was performed with default settings.

Polymorphism Phenotyping v2 (PolyPhen-2) (http://genetics.
bwh.harvard.edu/pph2/) [35, 36] predicts the impact of amino acid
substitution on protein function and provides the prediction score
using information derived from sequence annotation, multiple
sequence alignment, and 3D structure (if available). The amino
acid substitution is predicted as follows: possibly damaging if the
score is > 0.85, probably damaging if the score is > 0.15, and benign
for the remaining. PolyPhen also displays the sensitivity and
specificity of the prediction. The TOP2A protein sequence
accession ID (AAI40792.1) of GenBank and amino acid
substitutions that are predicted deleterious by SIFT were used
as inputs.

SNAP2 (https://www.rostlab.org/services/SNAP/) [37] is a
neural network-based classifier that predicts the impact of all
20 amino acid substitutions on protein and represents it in the
form of a heatmap with the prediction score (100 to −100). The

prediction is based on predicted structural attributes (secondary
structure and solvent accessibility) and evolutionary information
obtained from multiple sequence alignments. The substitutions are
classified as neutral if the score is < 0; otherwise, it is classified as
affect. Possibly and probably damaging substitutions as predicted by
PolyPhen2 were validated using SNAP2.

SNPs&GO (http://snps.biofold.org/snps-and-go/snps-and-go.
html) [38] is a highly accurate tool that predicts whether a
mutation is disease related or not by using evolutionary
information, protein sequence, and functional annotation, as
extracted from Gene Ontology terms. TOP2A (UniProtKB:
P11388) was considered as input as GO terms used for the
prediction are automatically retrieved only if the input sequence
is a SWISS-PROT code. If not, the user has to manually provide the
GO terms. The mutation is predicted as disease-causing if it has
probability >0.5.

2.3 Protein stability prediction

An amino acid residue change may alter protein-folding
dynamics and may impact its stability. Thus, I-Mutant 3 (http://
gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi)
[39, 40] was used to predict the change in protein stability due to a
single-amino acid substitution. It calculates delta delta G (DDG)
(Kcal/mol), which is the change in Gibbs free energy due to the
mutation in proteins. A negative DDG value represents that the
mutation decreases the stability of the protein, whereas a positive
DDG value represents an increase in stability. DDGwas calculated at
pH 7°C and 37°C.

2.4 Modelling of the mutant
protein structure

The protein structure is crucial for its function and stability in a
given environment. SNP can significantly alter and affect the 3D
structure of protein, and thus to fully understand the impact of a
mutation 3D structure, prediction and analysis are crucial steps. The
native TOP2A protein structure was used as a template (Protein
Data Bank) (https://www.rcsb.org/pdb/home/home.do), with
accession ID 5GWK and a resolution of 3.15 A°. The protein
structure was validated using PROCHECK (http://www.ebi.ac.uk/
thornton- srv/software/PROCHECK/) [41, 42]. The PROCHECK
analysis provides an idea of the stereo-chemical quality of all protein
chains in a given PDB structure. They highlight regions of the
proteins which appear to have unusual geometry and provide an
overall assessment of the structure as a whole. The protein structures
of mutants were modeled using SWISS-MODEL (https://
swissmodel.expasy.org/), which uses the GROMACS algorithm
for energy minimization to bring the protein to the most
favorable conformation [43, 44].

2.5 Investigation of structural attributes

An SNP can cause major changes in the overall structure of a
protein. The structural attributes of a protein, such as solvent
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accessibility, stabilizing residues, and intra-molecular hydrogen
bonds, were investigated to study the structural impact of a
substitution on a protein.

The Hope Project (http://www.cmbi.ru.nl/hope/) [45] is an
online web service which analyzes the effect of a mutation on the
protein 3D structure and function. It collects information about the
protein structure from a series of resources and provides a detailed
and simple analysis of the mutation. It also provides the 3D structure
visualization of the mutated protein. The UniProtKB P11388 of
TOP2A and mutations Y481C and E922K were selected for input.

Solvent accessibility-based protein–protein interface
identification and recognition (SPPIDER) (http://sppider.cchmc.
org/) [46] was used to predict the 3D structure of the protein.
The server used POLYVIEW 3D–dictionary of secondary structure
protein (DSSP) for the prediction of the secondary structure. Solvent
accessibility (SABLE) was used to predict the solvent accessibility of
the protein.

SRide (http://sride.enzim.hu/) [47] is a server used to predict
stabilizing residues. Stabilizing residues are believed to play a key
role in protein 3D-structure stabilization and are highly conserved.
SRide uses various interactions between spatial residues. A residue is
selected as a stabilizing residue if it has high surrounding
hydrophobicity, high long-range order, high conservation score,
and if it belongs to a stabilization center. The conservation score,
long-range order, and surrounding hydrophobicity threshold were
set at 7, 0.010, and 18.0, respectively.

Hydrogen-bond analysis tool (HBAT) [48] automates the
analysis of potential hydrogen bonds and a similar type of weak
interactions like halogen bonds and non-canonical interactions in
the macromolecular structure.

2.6 Molecular dynamics simulation

Molecular dynamics simulation was used to understand the
variations in conformational changes with time between the native
and the mutants. GROMACS version 2023.1 [49] was used for
molecular simulation. The trajectory files were generated for native
and mutant protein modals, and OPLS-AA/L all-atom force field
[50] was used for energy minimization. The system was solvated
using the TIP3P water model in a cubic box with a 1-nm marginal
radius. The systems were equilibrated for 100 ps at a constant
temperature of 300 K and 1 atm pressure. The simulation was
run for 50 ns. The trajectory files of native and mutant proteins
were analyzed for the comparative analysis of structural deviations.
We used root mean square deviation (RMSD), root mean square
fluctuation (RMSF), and radius of gyration (Rg). All the graphs were
generated using the Xmgrace tool.

Essential dynamics (ED) is an important tool utilized to study the
correlatedmotion in a protein.We used ED to calculate the eigenvectors
and their eigenvalues as well as their projections along the first two
principal components. In the process of calculation, a covariancematrix
was generated using covar command after the translational and
rotational movements were eliminated from the trajectories. The
values of eigenvector and corresponding eigenvalues were generated
by diagonalizing the covariance matrix. The eigenvectors represent the
direction in the conformational space and indicate the collectivemotion
of the group of atoms in these directions. The eigenvalues represent the

mean square fluctuation of the atoms along their corresponding
eigenvectors. The anaeig command was used for the projection of
trajectories onto the eigenvectors. ED is a very power tool utilized to
reduce the high-dimensional data into a low-dimensional data to reduce
its complexity. It extracts the motions which are presumed to be crucial
for the protein biological function [51, 52].

2.7 Molecular docking

We performed the molecular docking study of etoposide with the
native and mutant proteins to check any changes in drug protein-
binding energy, as decreased affinity with protein may be a cause of
drug resistance in TOP2A. The AutoDock1.5.6r-c2 suite was used for
docking studies [53, 54]. All the hetero atoms and water molecules were
removed. Next, we added polar hydrogens and Kollman charges to the
protein and saved the PDBQT files. The SDF files of 3D drug
conformers of the etoposide structure with accession ID 36,462 were
retrieved from PubChem (http://pubchem.ncbi.nlm.nih.gov/). Open-
Babel 2.4.0 was used to convert the drug structures into the PDB format.
The grid box of 80 Å × 80 Å × 80 Å with a 0.375-Å spacing centered at
the site of the DNA cleavage of the topo–DNA complex was created.
Lamarckian genetic search algorithm with an initial population of
150 randomly placed individuals, a maximum number of
27,000 energy evaluations, 0.02 as the gene mutation rate, and 0.8 as
the gene crossover rate was used. Grid maps were obtained using
AutoGrid. A total of 60 binding conformations were generated for each
molecule using the genetic algorithm search.

AutoDock calculates the inhibition constant for a drug–receptor
complex. The inhibition constant is a measure of the potency of an
inhibitor. It is the concentration of inhibitors required to produce
50% of the maximum inhibition. A lower value implies the high
potency of the inhibitor. After docking, conformation with the
lowest binding energy was used to prepare the PDBQT file of the
protein–ligand complex. The structures were analyzed for
interaction with residues using Discovery Studio 4.1 Visualizer.

2.8 Cell culture and RNA extraction

The Pa-1 ovarian adenocarcinoma cell line procured from NCCS,
Pune, India, was cultured in high-glucose DMEM with 10% FBS and
1% antibiotics in 5% CO2, 18%–20% O2, and 37°C incubator, and sub-
cultured every 3 days at passage 40. For RNA extraction, 0.5 × 106 cells
were plated in a 6-well plate, incubated overnight, lysed with TRIzol,
and centrifuged. The aqueous phase was separated, mixed with
isopropanol, pelleted, and washed with ethanol. The RNA pellet was
air-dried and re-suspended in RNase-free water. RNA quality and
concentration were assessed at 260 nm and 280 nm using a NanoDrop
spectrophotometer, respectively (Thermo Fisher Scientific).

2.9 Reverse transcription and primer
validation

Reverse transcription reactions must be conducted in an RNase-
free environment using dedicated PCR pipettes and aerosol-resistant
barrier tips. RNA templates were thawed, and reagents were kept on
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ice and gently vortexed. cDNA was synthesized with the iScript
cDNA synthesis kit (Bio-Rad) using random hexamer + oligo dT
primers. The reaction included 5X iScript mix, nuclease-free water,
2 ug of RNA, and reverse transcriptase enzyme. Tubes were
incubated in a PCR cycler with specific temperature and time
settings. The resulting first-strand cDNA was stored at −20°C.
Primers for gene expression studies were designed and
synthesized by Eurofins, Bangalore, based on the literature
(Table 1). A gradient PCR was conducted using 50 ng of
synthesized cDNA to optimize primer annealing temperature,
which was set at 59°C for all primers. TOP2A gene-specific and
housekeeping gene primers were validated by PCR with a mixed
cDNA pool. Subsequently, primers were further validated via SYBR
reactions, showing expected product sizes and no self-annealing or
self-dimerization issues.

2.9.1 Gene expression quantification by qRT-PCR
Gene expression quantification was performed on a QuantStudio

3 system (Thermo Fisher) using SYBR Green chemistry (SensiFASTt
SYBRHi-ROXKit, Bioline, USA). The 25-µL reactionmixture included
first-strand cDNA, SYBR Green Master Mix (2X), 10 µM forward and
reverse primers, and nuclease-free water. qRT-PCR comprised
40 cycles, with a primer concentration at 200 nM and a temperature
range of 80–90°. Data were collected over 40 cycles, and the ΔΔCt
method calculated fold changes, where values > 1 indicated
upregulation and <1 indicated downregulation.

3 Results

3.1 Data retrieval

The dbSNP database comprises 3,753 validated and non-
validated human SNPs for the TOP2A gene. There were
1,471 validated SNPs; out of them, 193 were missense, 31 in
3′UTR, 10 in 5′UTR, 1,047 in introns, 90 were coding
synonymous, and the rest were other kinds of SNPs. The
193 missense mutations were selected for further analysis.

3.2 Structure- and sequence-based
investigation of SNP

The 193 entries collected from dbSNP were first analyzed using
SIFT. Out of 193 entries, SIFT’s 130 entries were not predicted. In

the remaining entries, only 19 SNP IDs were found to be deleterious,
and 2 of these were predicted with low confidence. The remaining
17 SNPs were used for analysis by PolyPhen-2. The SIFT results are
shown in Table 2.

PolyPhen-2 was used to filter SNPs found deleterious by SIFT
analysis. A total of four IDs were predicted to be probably damaging,
seven as possibly damaging, and four as benign. The PolyPhen
results are shown in Table 3.

SNPs predicted probably and possibly damaging were further
validated by SNAP2. Out of the total 11 SNPs, 7 were predicted as
neutral and four with negative effects on the protein, which included
N774I (rs61756342), E922K (rs367852231), Y481C (rs372886888), and
R1514W (rs375623549). The results are shown in Table 4. The four
SNPs obtained from SNAP2 analysis were analyzed by SNPs&GO. All
four mutations were predicted to have probability for disease with a
reliability index of 1–8. The results are shown in Table 4.

3.3 Protein stability prediction

I-Mutant 3 predicts the change in the stability of mutant protein
compared to the native protein. Three of the SNPs, namely, E922K,
Y481C, and R1514W, had decreased stability and N774I had
increased stability. SNPs with decreased stability had a reliability
index of 3–7. SNPs E922K and Y481C were selected for further
studies as they had a high negative DDG value (−0.47 Kcal/mol
and −1.14 Kcal/mol, respectively) as compared to R1514W
(−0.24 Kcal/mol). The results are presented in Table 5.

3.4 Modelling of the mutant
protein structure

The PROCHECK analysis of the 5GWK TOP2A structure
revealed that most of the residues were in the most favored
regions (89.7%) and, additionally, allowed the regions (10.1%) of
the Ramachandran plot to show the presence of a higher number of
residues in the most favored region. The mutant structure of Y481C
and E922K were modeled using SWISS-MODEL. The NOMAD-Ref
server was used for energy minimization. The energy-minimized
structure was used for structural attribute investigation. The
structure of native and mutant protein structures was visualized
using PyMOL, and the results are represented in Figure 1 [55].

3.5 Investigation of structural attributes

Hope Project analysis revealed the physiochemical properties of
protein mutations. In the Y481C mutant, the tyrosine residue is
mutated into cysteine. The wild-type residue, tyrosine, is much
conserved in homologous proteins. Cysteine being smaller than
tyrosine will lead to an empty space in the core of the protein.
Furthermore, the mutated residue is more hydrophobic than the
native residue, which may result in reduction in the number of
hydrogen bonds in the protein and prevent its proper folding. In
order to check if SNPs are lying in the domain region, we subjected
the protein to PROSITE analysis. Accordingly, there are two major
domains predicted, which are TPORIM domain between residues

TABLE 1 Primers of human DNA topoisomerase II alpha (hTOP2A) and
human beta-actin (hACTIN) genes for accurate gene expression
quantification via RT-qPCR.

hTOP2A

Forward sequence 5′-GTGGCAAGGATTCTGCTAGTCC-3′

Reverse sequence 5′-ACCATTCAGGCTCAACACGCTG-3′

hACTIN

Forward sequence 5′- TCACCATGGATGATGATATCGC-3′

Reverse sequence 5′- ATAGGAATCCTTCTGACCCATGC-3′
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455 and 572 and Top-II a-type catalytic domain between residues
715 and 1,171. Both domains possess a deleterious mutation, each at
481 and 922, respectively. It is well understood that SNPs falling on
the domain region are always linked with complex diseases or
genetic disorders, and hence, the SNPs Y481C and E922K are
explored more in this study.

The native residue, glutamic acid, at position 922 is mutated into
lysine in the mutation E922K. Glutamic acid is also predicted to be
highly conserved at position 922. Mutant residue lysine is larger than
the wild-type residue glutamic acid, which is buried in the core of the
protein. The larger residue may not fit in and disturb the geometry of
the protein. In the native protein, negatively charged glutamic acid

TABLE 2 SIFT analysis results for variants obtained from the NCBI’s dbSNP database.

SNP AA change Score Prediction SNP AA change Score Prediction

rs202201081 P1194R 0.487 Tolerated rs377483360 I844V 0.261 Tolerated

rs11540720 A1515S 0.14 Tolerated rs367852231 E922K 0.018 Deleterious

rs11540720 A11S 0.191 Tolerated rs368076464 D881D 1 Tolerated

rs1141364 K1233K 1 Tolerated rs368354356 T1014M 0.003 Deleterious

rs11656816 S654I 0 Deleterious rs368673822 M1L 0.138 Tolerated

rs28969502 T1324K 1 Tolerated rs369116933 I1481V 0.522 Tolerated

rs34300454 G1386D 0.803 Tolerated rs369242449 M273I 0.018 Deleterious

rs61732513 K893R 0.496 Tolerated rs369852373 K20Q 0.116 Tolerated

rs61732514 V1097A 0.969 Tolerated rs369925563 E1226A 0.609 Tolerated

rs61756257 R1160S 0.258 Tolerated rs370574626 K7N 0 Deleterious

rs61756342 N774I 0.001 Deleterious rs370574626 K1511N 0.397 Tolerated

rs111733098 H1499Y 0.077 Tolerated rs372581162 T1324A 0.777 Tolerated

rs111733098 H1499D 0.73 Tolerated rs372742697 H1005H 0.653 Tolerated

rs142503988 I658V 1 Tolerated rs372886888 Y481C 0 Deleterious

rs180671657 T1419I 0.222 Tolerated rs372917040 N258D 0.063 Tolerated

rs183766786 G1197R 0.533 Tolerated rs373052063 T76I 0.007 Deleterious

rs186830718 P904S 0.636 Tolerated rs373290799 M847V 0.03 Deleterious

rs187674496 M61T 0.018 Deleterious rs374189262 K1289E 0.437 Tolerated

rs189054152 S1452F 0.02 Deleterious rs374632990 I1078S 0.737 Tolerated

rs190217688 R1222P 0.192 Tolerated rs374750083 D1251G 0.248 Tolerated

rs191959305 R1148K 0.326 Tolerated rs374861292 A903S 0.347 Tolerated

rs192926120 R870H 0.025 Deleterious rs375032248 V1376M 0.26 Tolerated

rs199558974 L783F 0.035 Deleterious rs375158687 T955A 0.368 Tolerated

rs199816029 E1305K 0.472 Tolerated rs375189858 P1389S 0.678 Tolerated

rs199941801 K1110E 1 Tolerated rs375484270 A1229P 0.134 Tolerated

rs200144448 G1440R 0.42 Tolerated rs375583386 M888I 0.035 Deleterious

rs200471658 M303I 0.458 Tolerated rs375612751 L1016M 0.1 Tolerated

rs200739247 G1198R 0.103 Tolerated rs375623549 R10W 0 Deleterious

rs200849233 K1267R 0.179 Tolerated rs375623549 R1514W 0.002 Deleterious

rs201054615 E1494V 0.226 Tolerated rs375995857 D1496E 0.144 Tolerated

rs201279322 V848L 0.036 Deleterious rs376965819 L383S 0.002 Deleterious

rs201787875 V742L 0.043 Deleterious rs377111582 T1124A 0.365 Tolerated

rs202041615 M1328T 0.439 Tolerated rs377172251 A1208G 0.371 Tolerated

rs202231304 V928I 1 Tolerated — — — —
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forms a salt bridge with lysine at positions 896 and 967. However,
the positively charged lysine will not form salt bridges with lysine at
positions 896 and 967, and will be repelled by these residues. This
may contribute to the extra energy of the protein and may decrease

its stability. The result obtained from the Hope Project is shown
in Figure 2.

The SRide analysis predicted 18 stabilizing residues in the native
protein, 17 in E922K, and 15 in the Y481C mutant. In the E922K
mutant, residues VAL744 and ILE806 were not stabilizing residues,
and residue GLU572 was predicted to be a new stabilizing residue
compared to the native. In the mutant Y481C, LYS743, ILE850, and
ASN866 were not stabilizing residues. The predicted stabilizing
residues are shown in Tables 6, 7.

According to the HBAT prediction, both mutants had fewer
hydrogen bonds than the native protein. The native protein had a
total of 4,395 hydrogen bonds, whereas mutant E922K had
4,259 and mutant Y481C had a total of 4,315 hydrogen bonds.
The native had a total of 1,902 strong hydrogen bonds, that is,
N −H.. O,O −H..O,N −H..N, andO −H..N, whereas mutant

TABLE 3 Prediction of the functional and structural impacts on the human protein: PolyPhen-2 analysis.

SNP ID AA change Prediction Score Sensitivity Specificity

rs11656816 S654I Probably 0.992 0.7 0.97

rs61756342 N774I Possibly 0.847 0.83 0.93

rs187674496 M61T Benign 0.424 0.89 0.9

rs189054152 S1452F Possibly 0.771 0.85 0.92

rs192926120 R870H Possibly 0.945 0.8 0.95

rs199558974 L783F Possibly 0.871 0.83 0.93

rs201279322 V848L Possibly 0.774 0.85 0.92

rs201787875 V742L Benign 0.338 0.9 0.89

rs367852231 E922K Possibly 0.616 0.87 0.91

rs368354356 T1014M Probably 0.999 0.14 0.99

rs369242449 M273I Benign 0.001 0.99 0.15

rs370574626 K7N Error — — —

rs372886888 Y481C Probably 1 0 1

rs373052063 T76I Possibly 0.839 0.84 0.93

rs373290799 M847V Benign 0.215 0.92 0.88

rs375583386 M888I Benign 0.256 0.91 0.88

rs375623549 R10W Error — — —

rs375623549 R1514W Probably 1 0 1

rs376965819 L383S Benign 0.174 0.92 0.87

TABLE 4 Sequence variant analysis: unraveling functional effects with SNAP2 and disease associations using SNPs&GO analysis.

SNAP2 SNPs&GO

SNP Predicted effect Score Accuracy Predicted effect RI Probability

N774I Effect 57 75 Disease 8 0.889

E922K Effect 19 59 Disease 1 0.573

Y481C Effect 34 66 Disease 6 0.821

R1514W Effect 59 75 Disease 6 0.798

TABLE 5 Predicting protein stability changes: a comprehensive analysis
with I-Mutant3.0.

NP Stability RI DDG (Kcal/mol)

N774I Increase 2 0.6

E922K Decrease 7 −0.47

Y481C Decrease 3 −1.14

R1514W Decrease 4 −0.24
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E922K had 1,855 and mutant Y481C had 1,835 strong hydrogen
bonds. The results are summarized in Table 8.

3.6 Molecular dynamics simulation

We performed molecular dynamics simulation to gain better
understanding of the conformational changes of the 3D structure.
We carried out the simulation of mutants E922K, Y481C, and the
native protein for 50 nanoseconds (ns). We analyzed the RMSD of the
backbone of all the three protein models. Overall, mutant protein
E922K had higher RMSD than the native and mutant Y481C. The
RMSD of mutant Y481C fluctuated between 0.07 and 0.65 and that of
mutant E922K fluctuated between 0.07 and 0.76, whereas the RMSD of
the native showed fluctuations in the range of 0.07 and 0.64. There is a
decrease in the dynamic motion of native as compared to the mutant
E922K model. The graph of RMSD is shown in Figure 3.

Next, the RMSF of all residues was analyzed. The residues of mutant
E922K in the range of 400–600 have a higher RMSF than those of the
native protein. In addition, residues in the range from1,000 to 1,150were
observed to showmore fluctuation. Although the native residues have an
RMSF of approximately 0.6 nm, Y481C residues have an RMSF closer to

1 nm and the E922K residues have an RMSF closer to 0.7 nm. For the
native and mutant Y481C, the residues up to 600 fluctuate less than the
mutant E922K. Mutant Y481C shows the residues of approximately
1,060 to 1,100 have an RMSF of 0.7 nm–0.6 nm, respectively, which is
higher than 0.6–0.5 of the corresponding residues of the native protein.
Thus, RMSF analysis reveals that mutations change fluctuations at the
residual level. The result is shown in Figure 4.

Rg represents the compactness of a protein and is an important
parameter to describe the dynamic nature of the protein. Overall, mutant
protein Y481C has a higher Rg value than the native and mutant E922K
protein. The Rg value of mutant Y481C is higher than that of the other
two proteins in the last 30 ns It fluctuates between 3.3 and 3.5 from 10 to
30 ns and stabilizes at approximately 3.3 in 15 ns–40 ns For the E922K
mutant, Rg fluctuated for the first 10 ns and then remained the same at
approximately 3.35 for the rest of the simulation. The native protein has
an Rg of 3.4 from 0 to 10 ns and then decreases to 3.3. The mutant
protein Y481C structure has the highest Rg value, which fluctuates
between 3.4 and 3.5 from 30 to 50 ns, respectively. Overall, E922K
mutant structures have a more compactly folded structure than the
native protein. Rg results are shown in Figure 5.

Protein flexibility was measured by the trace of the diagonalized
covariance matrix of protein backbone positional fluctuations. The

FIGURE 1
Wild and mutant structures of TOP2A visualized by PyMOL. The wild and mutant residues have been highlighted in green and red, respectively. (A)
Native TOP2A with tyrosine at position 481. (B) Mutant TOP2A with cysteine at position 481. (C) Native TOP2A with glutamic acid at position 922. (D)
Mutant TOP2A with lysine at position 922.
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FIGURE 2
Superimposed structure of wild- andmutant-type residues at positions 481 and 922, respectively, obtained using theHope Project. The protein core
is represented in gray and the wild and mutant residues are represented in green and red, respectively. (A) Tyrosine residue is mutated into cysteine at
position 481. (B) Glutamic acid is mutated into lysine at position 922.

TABLE 6 Enhancing protein–protein interaction studies: SPPIDER analysis for predictive site recognition.

Position Predicted secondary structure Predicted solvent accessibility)

Native Mutant Native Mutant

E922K Beta-strand Beta-strand Buried (1) Buried (1)

Y481C Beta-strand Beta-strand Buried (1) Buried (1)

TABLE 7 Identification of stabilizing residues in the TOP2A protein via the SRide server. *Residue in bold denotes newly formed residue and that with an
underscore represents a missing residue in the mutant as compared to the native protein.

Protein model Predicted stabilizing

Native THR456, LEU457, ILE458, LEU459, GLY482, VAL483, PHE484, LYS535, MET537, PHE638, VAL719, LYS743, VAL744, ILE806, THR808,
ILE850, ASN851, and ASN866

E922K THR456, LEU457, ILE458, LEU459, GLY482, VAL483, PHE484, LYS535, MET537, GLU572, PHE638, VAL719, LYS743, THR808, ILE850,
ASN851, and ASN866

Y481C THR456, LEU457, ILE458, LEU459, GLY482, VAL483, PHE484, LYS535, MET537, PHE638, VAL719, VAL744, ILE806, THR808, and
ASN851

TABLE 8 Prediction of potential hydrogen bonds using HBAT.

Protein model Total N −H..O O −H..O N −H..N O − H..N C −H..O C −H..N N −H..S O − H..S C −H..

Native 4,395 1,254 82 552 14 1963 507 4 2 17

E922K 4,259 1,232 91 522 10 1900 473 8 1 22

Y481C 4,315 1,198 87 543 7 1909 542 6 1 22
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native protein had the highest value of 148.95 nm2, followed bymutants
E922K and Y481C, with 211.356 nm2 and 183.332 nm2, respectively.
The two-dimensional landscape of protein dynamics was projected on
the conformational space spanned by the first and second eigenvectors.
Protein Y481C and native protein occupy less space on the
conformational landscape and have well-defined clusters, whereas
E922K protein explores a larger subspace. Both methods indicate
larger structural flexibility in the native structure and relatively
restricted motion in the mutants. The mutations thus disrupt
mutants. Thus, the mutations disrupt the correlated motion of the
proteins and may limit its functional dynamics. PCA results are shown
in Figure 6.

Gibbs free-energy landscape plays a vital role in understanding
the thermodynamic stability of the protein and was calculated using
the first and second eigenvectors as coordinates. There are no large-
scale differences between the mutants and native structures in the

free-energy landscape. The mutants have a slightly larger region
with blue color, indicating higher thermodynamic stability than the
native protein. The free-energy landscape is shown in Figure 7.

3.7 Molecular docking

The native protein had the highest binding affinity with etoposide,
with a binding energy of −7.99 Kcal/mol. Mutant E922K had a slightly
lower binding energy of −7.94 Kcal/mol and mutant Y481C had the
least binding affinity with −7.25 as the binding energy. Residues
SER763, HIS759, LYS723, and GLN726 of the native protein formed
four conventional hydrogen bonds with ligands. In mutant E922K,
residues TYR684, LYS728, HIS758, andGLN544 formed four hydrogen
bonds with the ligand.Mutant Y481C formed themaximumnumber of
hydrogen bonds with the ligand, that is, eight. Residues HIS759 and
GLU712 formed one hydrogen bond each, residue HIS758 formed two
hydrogen bonds, and residue LYS614 formed a total of four hydrogen
bonds and pi-cation bond. However, apart from this, only two
carbon–hydrogen bonds were observed between the ligand and
protein. There were no van der Waals interaction, and large steric
hindrances were observed, which might be the reason for the lowest
binding affinity of the drug. The residue interaction is shown in
Figure 8. The native protein had a minimum inhibition constant of
1.38 μM, followed by E922K and Y481C with 1.51 μM and 4.81 μM,
respectively. The results are summarized in Table 9.

3.8 Gene expression analysis

To determine gene expression values accurately and reliably, raw
fluorescence data (Ct values) obtained from the real-time PCR
instrument (QuantStudio 3) were processed using QuantStudio
3 software. The purpose of this analysis was to scale the raw data
to an endogenous control gene (beta-actin), enabling the generation
of relative quantities.

FIGURE 3
RMSD of the backbone of native (black), mutant Y481C (red), and
mutant E922K (green).

FIGURE 4
RMSF of the residues of native (black), mutant Y481C (red), and
mutant E922K (green).

FIGURE 5
Radius of gyration (Rg) of native (black), mutant Y481C (red), and
mutant E922K (green).
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Calculation of ΔCt
ΔCt, representing the difference in threshold cycle values

between the target gene and the endogenous control, was
calculated using the following formula:

ΔCt � Average Ct of test sample − Average Ct of calibrator.

Conversion to a linear form
To facilitate further analysis, ΔCt values were converted to a

linear form using the formula:

E − ΔCt,

where E represents the amplification efficiency of the reaction.
Calculation of ΔΔCt
The comparative Ct (ΔΔCt) method was used to determine the

expression of the target gene (TG) relative to the endogenous control

(EC). This method, performed using StepOne software v2.2.2,
involves the following equation:

ΔΔCt � CtTarget gene( ) − Ct EC( ) – Ct Target gene( ) − Ct EC( ).

Conversion to a linear form
To simplify the interpretation, ΔΔCt values were converted to a

linear form using the following formula:

E − ΔΔCt.

3.9 Relative expression analysis

Relative expression measures the variation in gene expression
between two samples. The relative quantification (RQ) value is used

FIGURE 6
Projection of the motion of proteins in the phase space formed by PC1 and PC2. (A) Native (black) and mutant E922K (red); (B) native (black) and
mutant Y481C (red).
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to determine the fold-change compared to the calibrator, which
often represents an untreated sample or time zero. In this context,
the calibrator has an RQ value of 1. Genes with RQ values exceeding
1 are considered upregulated, whereas those with values below 1 are
considered downregulated. All samples were compared to the
calibrator.

Figure 9 illustrates the results of the RT-qPCR analysis,
depicting the relative mRNA expression of the TOP2A gene in
Pa-1 cells. In this analysis, the untreated culture served as the
reference or calibrator, displaying a normalized data value of
1 for beta-actin and 3.91 for TOP2A. These values are based on
the average of triplicate experiments, with standard deviation (SD)
included for reference. The figure provides a visual representation of
the gene expression changes, offering insights into the regulation of
the TOP2A gene in the experimental context.

4 Discussion

Topoisomerase 2A is an important marker for cell
proliferation and plays a vital role in malignant tumors. The
TOP2A mRNA and protein expression level, enzyme activity,
and genetic alterations have been studied in many types of
malignancies (mainly DNA replication, transcription, and
chromosome segregation) [6, 18, 56–58]. In high-grade and
advanced invasive primary ovarian carcinoma, the expression
levels of both mRNA and protein were increased. Several SNP
mutations in the TOP2A protein have been found to be
associated with lung cancer, breast cancer, colorectal cancer,
and ovarian cancer [59–62]. FDA-approved drugs targeting
TOP2A, such as etoposide and doxorubicin, are widely used
to treat different malignancies. Although promising, targeting
TOP2A for chemotherapy has its own challenges. First, the point
mutations in TOP2A are associated with multi-drug resistance
in cancer treatment [63, 64]. These point mutations alter the
structure and catalytic properties of the enzyme, making
cancerous cells resistant to TOP2A-targeted chemotherapy.
Second, the use of TOP2A inhibitors is associated with the

development of secondary cancers [65]. Drugs such as
etoposide often cause DNA rearrangement involving mixed
lineage leukemia genes. It is associated with the development
of secondary leukemia. Identifying TOP2A drug-resistant SNP
before initiating chemotherapy is essential to avoid unwanted
side effects. Therefore, the SNP study is important to identify
and characterize TOP2A genotype for the development of novel
diagnostic and more potent therapeutic techniques. The process
of pointing out SNPs associated with major protein structural
and functional changes by using molecular techniques is time
consuming and expensive [66]. This gives rise to limitations in
studying the genotype–phenotype correlation and their status of
association with diseases [67]. Thus, the aim of our study was to
use computational tools to predict deleterious SNP, which can be
used for further molecular studies for better understanding of
the damaging impact of SNP on the structural and functional
aspects of TOP2A.

We used multiple tools to sequentially screen SNPs with
deleterious mutations as a number of research studies have
shown that using multiple bioinformatics tools and
algorithms improves the prediction of the result [68–70].
Research in the field of in silico analysis has shown that SIFT
and PolyPhen have high performance in identifying damaging
SNPs [71, 72]. Two SNPs, namely, E922K and Y481C, are
considered highly deleterious as they had a high negative
DDG values. The protein structure is essential for its
properties, and thus its function and stability. Change in
even a single nucleotide can alter the structure to a
significant extent. Therefore, to obtain a better idea on the
impact of SNP on protein function, we carried out the 3D
structure prediction and analysis of mutant proteins. The
residue at positions 481 and 922 were predicted to be highly
conserved by the Hope Project. During protein folding, the non-
covalent interactions and long-range interactions between
residues oppose the tendencies of the protein to unfold and
provide stability. Some of these residues are part of the crucial
interactions for protein stabilization and are known as
stabilizing residues. The stabilizing residue prediction using

FIGURE 7
Gibbs free energy calculated for PC1 and PC2. (A) Native, (B) mutant E922K, and (C) mutant Y481C.
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SRide predicted 18 stabilizing residues in native, 17 in E922K,
and 15 in Y481C. The decrease in the number of stabilizing
residues can be directly related to a decrease in the stability of
the protein. The hydrogen bond studied by HBAT revealed a
decrease in the number of total and strong hydrogen bonds in
mutants. Hydrogen bonds in proteins are important for their
secondary and tertiary structures. They help in protein folding

and stabilization of the protein. Hydrogen bonds also play a role
in a protein’s interaction with its environment, binding to
protein, ligand, and its function. The decrease in hydrogen
bonds can severely reduce stability and alter the structure
and catalytic function of the protein. The decrease in the
number of stabilizing residues and hydrogen bonds clearly
indicates a decrease in protein stability and will impact its

TABLE 9 Molecular docking studies on etoposide with native and mutant proteins.

Protein model Binding energy
(kcal/mol)

Inhibition
constant (μM)

No. of hydrogen
bonds

Electrostatic energy
(kcal/mol)

Native −7.99 1.38 4 −0.54

E922K −7.94 1.51 4 −0.34

Y481C −7.25 4.81 8 −0.033

FIGURE 8
The interactions of etoposide with different amino acid residues are visualized using Discovery Studio. (A) Etoposide–native complex, (B)
etoposide–mutant E922K complex, and (C) etoposide–mutant Y481C complex.
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functional activity. These predictions are consistent with
I-mutant’s prediction of the reduced stability of mutants. A
combination of RMSD and radius of gyration reveals reduced
fluctuations in the mutant protein. The slight increase in the
number of hydrogen bonds in mutants plays a role in the
increased inter-molecular interactions and reduced flexibility.
The dynamic motion of a protein is essential for its biological
function, and any perturbation in it can significantly alter the
activity of the protein. The reduced conformational space
explored by the mutants, when compared to the native, also
signifies a more rigid geometry of the mutant structures. These
results are also supported by Gibbs free-energy landscape,
which shows an increased thermodynamic stability in
the mutants.

SNP can affect the kinetics of interactions or alter binding
specificity. Furthermore, an SNP can alter the binding site of the
protein, which can in turn affect interactions with partners like
proteins, DNA, and ligands [73]. TOP2A-targeting agents
comprise a class of the most active clinical molecules for
cancer therapy. They block the catalytic cycle of TOP2A after
DNA is cleaved but before it is ligated to form double-stranded
DNA breaks [74]. Therefore, they cause cellular DNA damage
and inhibit DNA metabolism including replication and
transcription, and ultimately kill the cell [75]. Etoposide is a
podophyllotoxin derivative and one of the most prescribed
TOP2A inhibitors [76]. It is approved by the FDA for the
treatment of malignancies, including testicular cancer, small
lung cancer, and ovarian cancer in combination with other
drugs. It is suggested that the protein–drug interaction plays a
crucial role in trapping TOP2A in the enzyme: DNA complex [77,
78]. The altered forms of topoisomerase are found in cancer cell
lines resistant to TOP2A-targeting drugs [21, 79]. Therefore, to
predict the effects of mutation on drugs and TOP2A binding, we
carried out protein–drug docking using AutoDock. The native
protein–drug complex had the lowest binding energy
of −7.99 kcal/mol and the lowest inhibition constant of
1.38 μM. This indicates that etoposide has the highest binding
affinity for the native protein and inhibits it more than the
mutants. The decrease in binding affinity with TOP2A has

been shown to be a cause of drug resistance [80]. Etoposide
may show reduced cytotoxicity toward cancer cell with TOP2A
mutants E922K and Y481C. However, the marginal decrease in
drug-binding affinity with the mutants using in silico docking
cannot be concluded as drug resistance in mutants. Further
studies need to be done in this regard to say anything
conclusively.

Proteins are dynamic in nature and change their
conformations continuously; this dynamics of the protein is
essential for its function [81, 82]. At a particular time,
proteins take up a conformation that lies on the minimum
energy value on its free-energy landscape. The energy
fluctuation from one minimum to another in the protein leads
to changes in its structural conformations and functional
characteristics. The amino acid sequence and intra-molecular
and inter-molecule interaction of protein determine these
fluctuations. Thus, SNPs can alter the protein dynamics
significantly. To study these alterations, molecular dynamics
simulation is a widely used and reliable approach [83, 84].
MD simulations provide a detailed insight into protein
dynamics at spatial and temporal scales that are otherwise
difficult to be accessed. Overall, the molecular dynamics
analysis reveals a reduced motion, increased flexibility, and
stability in the mutated variants of the protein. qRT-PCR is
considered one of the most efficient techniques to quantify
gene expression. Our study result shows the variation in gene
expression between TOP2A and normalized beta-actin. The
relative higher mRNA expression level of TOP2A is 3.91, and
this confirms that TOP2A is upregulated. Furthermore, the
relative expression and fold-change analysis performed in the
ovarian adenocarcinoma cell reveal that in biological systems,
even small variations can severely impact a genes’ expression and
protein function. In addition, the relative expression and fold-
change analysis performed in the ovarian adenocarcinoma cell
reveal that there is three-fold increase in the expression of the
TOP2A gene, which reveals that in biological systems, even small
variations can severely impact genes’ expression and protein
function [85]. This analysis strengthens our results and
predicts that mutants Y481C and E922K are deleterious SNPs.
Therefore, to summarize our studies, SNPs Y481C and E922K of
the TOP2A protein have a structural and functional impact on
the protein. These mutations may lead to a pathogenic phenotype
and may also be a cause of the development of cancer.

5 Conclusion

Our study aimed at screening the most deleterious SNP using
bioinformatics tools. By using an array of different tools, we predicted
mutants Y481C and E922K to be highly damaging variants of TOP2A.
Although mutants Y481C and E922K were predicted to have small
variations from the native protein using structural attribute studies, they
were predicted to be highly deleterious using the structure- and
sequence-based tools and molecular dynamics simulation using
GROMACS. This study sets the basis of mutational analysis in
TOP2A and paves way for further studies, development of
personalized medicine, and overcoming resistance to cancer therapy.

FIGURE 9
Relative mRNA expression levels of the TOP2A gene in Pa-1
ovarian adenocarcinoma cells determined through the RT-
qPCR method.
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