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This paper aims to investigate the dynamic and asymmetric linkage between
crude oil, oil uncertainty, and the United States (US) equity markets across various
horizons and tails using a combination of a time-frequency approach, Granger
causality, and quantile-on-quantile regression from January 2020 to December
2022. The empirical results indicate that causal relationships and the dynamic co-
movement between crude oil, oil implied volatility, and the Dow Jones industrial
and transportation indices are confirmed across various frequencies through
wavelet-based Granger causality and wavelet coherence. Then, the wavelet-
based quantile-on-quantile regression shows that the relationship between oil,
oil implied volatility, and both US equity markets is heterogeneous and
asymmetric across short- and long-run horizons, in particular. The findings
provide new insights into the sensitivity of US stock markets to oil shocks
across various time frequencies and tails, offering several portfolio
implications useful for heterogeneous investors and portfolio managers.
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1 Introduction

Crude oil plays a crucial role in economic progress and the development of nations,
being utilized in various economic activities. Consequently, oil price volatility has a
widespread impact on different sectors, with the effects varying across these sectors
[1–3]. Among the sectors, industrial and transportation sectors are particularly
vulnerable to oil price fluctuations [4,5], as instability in prices can significantly affect
firms’ activities, profits, and share prices [6,7]. The connection between oil prices and the
stock market has garnered increased interest due to numerous oil shocks in recent decades.
Previous research studies indicate a mixed impact of oil price shocks on stock markets (see
[8–12]). However, the influence of oil prices on the stock market depends on factors such as
whether the country is an importer or exporter of oil or the nature of oil shocks [13].

Over the last 2 decades, the dynamics of relationships between oil prices and various
financial assets have been influenced by turbulent periods such as the global financial crisis
and the oil crisis [14–16]. Similarly, oil market uncertainty, as measured by oil implied
volatility (OVX), has impacted financial markets during both calm and turbulent periods
[17–19]. On the other hand, the literature on the interconnectedness between oil and stocks
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presents empirical evidence confirming the contagion effect between
the oil market and stock markets [20–25]. It also suggests that oil can
serve as a risk management asset to mitigate risk within portfolio
construction (see [26–29]).

Moreover, the current decade is marked by two crises impacting
economic and financial systems. The global spread of the
coronavirus since the onset of 2020, coupled with the increasing
number of infection and death cases, prompted governments to
implement stringent measures to curb the rapid spread of the virus,
including general quarantine and travel restrictions. As a result of
these policies, economic and transportation activities experienced a
decline, leading to reduced energy demand worldwide.
Consequently, a demand shock in the oil market emerged due to
the global confinement policy [30]. However, firms’ performance
and the stock market also responded to the impact of the COVID-19
crisis. In light of this, numerous studies have revisited the
relationships between equity and oil prices, offering evidence of
the pandemic’s influence on the association between oil and stock
markets (see [31–37]). Furthermore, the war between Russia and
Ukraine influenced the interconnectedness between oil and various
financial assets (see [38–41]).

From a methodological standpoint, the examination of the
relationship between equity markets and the oil market involved
the application of diverse econometric models that account for
linear, non-linear relationships, and time-frequency domains,
drawing from related research. Notable examples include
multivariate GARCH models [28,42–45], VAR and SVAR models
[46,47], ARDL and NARDL models [48,49], quantile and quantile-
on-quantile regression [30,50,51], time-frequency approach [34,52],
various types of Diebold and Yilmaz connectedness approach
[20,53–56,57], among others. Furthermore, several studies have
adopted a combination of two or more models to enhance the
analytical framework. Some studies have employed a combination of
SVAR and M-GARCHmodels [58], the SVAR-NARDL model [59],
wavelet and Granger causality approaches [34,60], wavelet and
M-GARCH models [61,62], and the quantile-ARDL model [63],
among others. This methodological diversity reflects the complexity
of the relationship under investigation and underscores the
importance of considering various aspects, such as volatility,
causality, and time-frequency dynamics, in capturing the intricate
interplay between equity and oil markets.

In the present research, we contribute to the existing literature
on oil prices and equities by reexamining the connection between oil
and stock markets, incorporating both time-frequency domains and
the tail dependence structure. This approach aims to provide more
comprehensive insights into the complex nexus between oil prices
and equities. To achieve this, wavelet analysis and quantile
regression are the most recommended models for examining the
relationships between two time series data, considering both time-
frequencies and tail dependence. Concurrently, quantile-on-
quantile regression (QQR) delves into the tail dependence
structure between two assets. Indeed, QQR represents a fusion of
the standard quantile regression (QR) model with a non-parametric
approach, offering more intricate insights into the complex linkage
between time series compared to ordinary least squares (OLS) and
traditional QR. While standard quantile regression unveils the
impact of the dependent variable on the independent variable
across various quantiles [64], QQR goes further by examining

relationships across higher and lower quantiles of both
dependent and independent variables [65]. This nuanced
approach enhances our understanding of the dynamics within
the relationship, particularly in capturing extreme values and tail
behaviors. Nevertheless, prior studies have utilized both the wavelet
approach and the QQRmodel, collectively termed the wavelet-based
quantile approach, to explore the relationships between two time
series. These studies confirm that this technique provides more
detailed information about interdependence (see [66–70]).

The unique methodological approach that combines the wavelet
method with QQR provides a comprehensive framework for
investors to analyze and model financial time series data.
Specifically, the wavelet approach offers a way to decompose and
analyze data at multiple scales, while QQR regression helps in
understanding and managing the tail risk of financial returns.
Combining these techniques allows investors to gain deeper
insights into the underlying dynamics of financial markets and
make more informed investment decisions. Wavelet methods
have gained interest in finance because they provide a multi-
resolution analysis, meaning they can capture information at
different scales or frequencies. The decomposition of financial
time series into different frequency components helps investors
understand which time scales contribute significantly to the overall
variation in financial assets. Additionally, wavelets can be used to
analyze volatility at different time scales. This is crucial for risk
management, as investors can identify short-term and long-term
volatility patterns [71–74].

Meanwhile, understanding the conditional distribution of
returns is essential for risk management and portfolio
optimization. QQR allows investors to model and analyze the
tails of the distribution. This is particularly useful for assessing
extreme events or tail risks, crucial considerations for investors
concerned with downside protection. By modeling quantiles,
investors can make decisions that are robust to different levels of
risk. This is especially important in constructing portfolios that
consider not only the mean and variance but also the tail behavior of
asset returns.

Interestingly, based on the existing literature, we have observed
that no prior study has assessed the intricate correlation of both
crude oil and oil uncertainty with equity markets under the influence
of the COVID-19 crisis and the Ukrainian war, while considering
time scales and tail analysis using wavelet-based quantile-on-
quantile regression. Therefore, this study aims to bridge this gap
by integrating econometric models that consider frequencies and tail
dependence, reexamining the relationships between oil shocks and
US stock markets during recent crisis periods that significantly
impacted the oil market and resulted in the emergence of oil
shocks. Initially, we investigate the causal linkage between crude
oil, oil uncertainty, and two US equity markets across eight
frequencies using the wavelet-based Granger causality test.
Subsequently, considering the time-frequency domains, we
analyze the co-movement as well as the lead/lag linkage between
the aforementioned financial assets through another wavelet
approach known as wavelet coherence, based on the wavelet
continuous transform. Finally, to gain more insights into the
nature of the linkage between oil fluctuation and equity markets,
we integrate frequency and quantile dependence via wavelet-based
quantile-on-quantile regression. This approach enables us to
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examine the heterogeneous and asymmetric relationships across
various quantiles of independent and dependent assets at
different horizons.

The present paper introduces several contributions to the
literature concerning the relationships between oil shocks and
financial markets. Firstly, we reexamine the connection between
oil prices, oil uncertainty measured by the OVX index, and stock
markets. Our focus is on key stock indices that track the
performance of companies heavily reliant on crude oil as an
energy source, specifically the US industrial and transportation
indices. Secondly, we narrow our attention to recent periods
encompassing the COVID-19 crisis and the Ukrainian war,
during which the oil market witnessed heightened fluctuations
due to the repercussions of the pandemic and geopolitical risks.
Lastly, we adopt a unique approach by combining two econometric
methods that consider frequencies and tail dependence. Diverging
from traditional econometric models, we merge the wavelet
approach with the quantile-on-quantile regression model. The
wavelet approach enables us to decompose time series into
various frequencies, and subsequently, we employ these time
series in a quantile-on-quantile model to explore heterogeneous
and asymmetric linkages at different quantiles of both dependent
and independent variables and their respective horizons. This
combination proves valuable in addressing non-linear linkages
between two time series.

The results derived from the aforementioned empirical
methodologies regarding the relationships between oil price
fluctuation, its uncertainty, and both US stock markets offer
fresh insights into the sensitivity of equities to oil shocks across
diverse timeframes, frequencies, and quantiles. Furthermore, our
findings present various risk management options for
heterogeneous investors and portfolio managers seeking to
mitigate risk within portfolio construction.

The remaining sections of the present study are summarized as
follows: Section 2 outlines the methodologies employed, while
Section 3 provides a description of the data. Section 4 delves into
the analysis and discussion of the results. Finally, Section 5 presents
the conclusion, summarizing the key findings and their implications.

2 Methodologies

We aim to examine the relationship between the US stock
markets, the oil market, and oil uncertainty, considering time,
frequency domain, and tail dependence. To achieve this, we
initially utilize a wavelet-based Granger causality test to identify
any causal relationships across different horizons. Subsequently, we
employ wavelet coherence to analyze the co-movement at various
scales. Finally, we integrate wavelet decomposition and quantile-on-
quantile regression to investigate tail dependence across different
frequencies. The empirical methodologies are detailed in the
following subsections.

2.1 Wavelet approaches

We use wavelet approaches to explore the interconnectedness
among US equity markets, oil prices, and oil uncertainty indices

across various time frequencies. The primary advantage of the
wavelet approaches lies in their ability to decompose time series
into various frequencies. Specifically, we use the maximum overlap
discrete wavelet transform (MODWT) and continuous wavelet
transform (CWT) to decompose our time series. The MODWT
and CWT are distinct techniques employed in the processing and
analysis of time series, particularly within the realm of wavelet
analysis. MODWT functions as a discrete wavelet transform,
breaking down series into different resolution levels through the
use of overlapping windows. It excels in time localization and is
computationally efficient when dealing with discrete data. On the
other hand, CWT operates as a continuous wavelet transform,
scrutinizing series across both time and scale. It achieves
excellent time-frequency localization by continuously considering
wavelets of varying scales, making it well-suited for applications
where fine-scale details are critical. In summary, MODWT and
CWT differ in their approaches to time series analysis. MODWT is
discrete and computationally efficient, while CWT offers continuous
analysis with superior time-frequency localization.

Indeed, the decomposition of US equity markets, oil prices, and
oil uncertainty through the wavelet transform is outlined as follows:

F t( ) � ∑
k
Sj,kαj,k t( ) +∑

k
dj,kψj,k t( ) + . . .

+∑
k
d1,kψ1,k t( ), j, k ∈ Z( ) (1)

Where F(t) is the time-series function, j and k denote the
number of multi-resolution (horizon) levels and the range of the
coefficients in the levels, respectively. It is important to note that
both αj,k(t) and ψj,k(t) represent the wavelet functions, while Sj,k
and dj,k tod1,k illustrate the coefficients of the wavelet transform.

Actually, we employ the MODWT based on multi-resolution
analysis, which facilitates a multi-horizon analysis across different
time-frequencies. These frequency bands or scales can be
categorized into short-, medium-, and long-term. Let J � 1 . . . . j
represent the multi-resolution level, and the representation of F(t)
through wavelet approximation is defined as follows:

F t( ) � Sj t( ) +Dj t( ) + . . . +D3 t( ) +D2 t( ) +D1 t( ) (2)

Where Sj(t) represents the smooth signal, while Dj defines the
Jth level wavelet detail. Indeed, the maximal scale of the former is 2J,
while the detailed coefficients are computed from the mother
wavelets at all scales from 1 to J. The maximum of the scale (J)
is bound by the number of observations; thus, in our case, the
maximum of scale is J = 8.

In this study, the time series are decomposed using the
Daubechies (a family of compactly supported wavelets) least
asymmetric filter of length eight, LA(8). The LA(8) wavelet is
relatively smooth when compared with Haar wavelet filters [75].
As highlighted in [60], the LA = 8 wavelet mother’s filter is
commonly used in economic and financial applications of
wavelets. As this paper does not discuss the choice of wavelet
mothers, we apply this filter in the discrete case. More precise
discussions on these technical aspects are presented in [76-78].

However, by applying the MRA-MODWT with the least
asymmetric wavelet filter, LA (8), and J = 8 order, we enable to
decompose the data sample into eight frequency bands from D1 to
D8. The wavelet scales D1, D2, D3, D4 D5, D6, D7, and D8 are
associated with oscillations of periods of 2–4, 4–8, 8–16, 16–32,
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32–64, 64–128, 128–256, and more than 256 days, respectively1.
Where D1, D2, and D3 represent the short-term, D4 and
D5 represent the medium-term, and D6, D7, and D8 represent
the long-term.

Furthermore, in this study, we applied the continuous wavelet
transform (CWT) to decompose the time series into different scales.
We use the Morlet wavelet set to ω0 = 62, which provides the best
balance between time and frequency localization (for further details
on the Morlet wavelet, see [79]). The CWT NX1 (p, q) reveals the
projection of a wavelet ψ (.) in contrast to the time sequence X1 (t)
∈ K2(R ), i.e.,

NX1 p, q( ) � ∫∞

−∞
X1 t( ) 1

√q
ψ

t − P

M
( )dt. (3)

A crucial aspect of this technique lies in its ability to
systematically decompose and then reconstruct a time series
seamlessly, X1 (t) ∈ K2(R ):

X1 t( ) � 1
Cψ

∫∞

0
∫∞

−∞
NX1 p, q( )ψp,q t( )du[ ] dq

M2
,M> 0. (4)

Furthermore, this technique maintains the power of the
observed time sequence as follows:

X1‖ ‖2 � 1
Cψ

∫∞

0
∫∞

−∞
N| X1 p, q( )∣∣∣∣2 dp[ ] dq

M2
(5)

We utilized wavelet coherence, a method that enables the
analysis of co-movement and lead/lag relationships between two
time series across various time-frequencies [77,78,81]. [78]
explained that the cross-wavelet transform can be elucidated
through the analysis of two time sequences X1 (t) and X2 (t)
as follow:

NX1X2 p, q( ) � NX1 p, q( )NX2
* p, q( ) (6)

Where, NX1(p, q) and NX2(p, q) represent two continuous
transforms of X1 (t) and X2 (t), respectively. “p" represents the
location index, “q" denotes the measure, and the composite
conjugate is indicated by the symbol (*). The cross-wavelet
transform can be employed for computing wavelet power
through | NX1(p, q)|. The cross-wavelet power spectra delineate
the segment where pronounced energy concentration is evident
(cumulus of restrained variance) in the time-frequency domains in
comparison to the time series. The wavelet coherency technique
allows for the identification of specific regions within the time-
frequency domain where significant and unforeseen variations occur
in the co-movement patterns of the time series. The wavelet
coherence between two time-series sequences, X1(t) and X2(t),
is defined by [82] as:

WC2 p, q( ) � M| (M−1NX1X2 p, q( )∣∣∣∣2
M(M−1 N| X1 p, q( )∣∣∣∣2 M(M−1 N| X2 p, q( )∣∣∣∣2 (7)

Where, M is the smoothing mechanism. WC2(p, q) represents
the wavelet coherence coefficient, which varies between 0 and 1. A
coefficient close to 1 suggests a high degree of co-movement between
the two series. Moreover, the wavelet coherence approach address
the limitation of squared coherence, where this late fails to
differentiate between the positive and negative relationships in
such series. The phase difference is defined as:

ØX1,X2 � TAN−1Im NX1X2 p, q( )[ ]
Rp NX1X2 p, q( )[ ],ØX1,X2 ∈ −π, π{ } (8)

Where the parameters Im and Rp represent the imaginary and
real parts of the smooth power spectrum, respectively. The phase
difference circle, presented in Appendix A, succinctly summarizes
the interpretation of wavelet coherence phases. If the arrows turn
right or left, it suggests that both variables are co-moving in phase or
out of phase. Moreover, up-right and down-left arrows imply that
asset X1 leads X2, whereas right-down and up-left arrows indicate
that asset X2 leads X1.

2.2 Wavelet-based granger causality test

The wavelet-based Granger causality test is used in this study to
evaluate the causal relationship between the variables across various
scales. In a wavelet-based Granger causality test, multiple Vector
Autoregressive (VAR) models are estimated to assess Granger
causality across different decomposition levels (scales) of the wavelet
transformation. The number of VAR models estimated corresponds to
the number of decomposition levels chosen for the wavelet analysis.

Let’s denote the number of decomposition levels as J. For each
decomposition level j, where j = 1, 2, . . ., J, a VARmodel is estimated
to test Granger causality. Therefore, a total of J VAR models are
estimated. Each VAR model is estimated using the time series data
after applying the wavelet transformation at a specific
decomposition level. The VAR model for each scale typically
follows the standard form. The equations of the wavelet-based
Granger causality test are illustrated as follows:

Yt,j � α0 +∑pj
i�1
α1i,jYt−1,j +∑qj

i�1
α2i,jXt−1,j + εt,j (9)

Xt,j � β0 +∑
pj

i�1
β1i,jXt−1,j +∑

qj

i�1
β2i,jYt−1,j + ξt,j (10)

Where, Yt,j and Xt,j represent the wavelet-transformed time
series data at decomposition level d for variables Y and X
respectively. pj and qj represent the lag orders chosen for the
VAR model at scale j, and are typically chosen based on
information criteria, in our study the lag orders is 2. α1i,j, α2i,j,
β1i,d, β2i,j are coefficient matrices for the autoregressive terms. εt,j
and ξt,j are the error terms. The causality between Y and X at each
scale j is tested using the common approach of the Wald test, which
tests the joint significance of the coefficients associated with the
lagged values of X in predicting Y and vice versa in the VAR
model at scale j.

1 The range of the last scale D8 does not span from 256 to 512 days; it is just

slightly more than 256 days, based on the number of observations.

2 The Morlet wavelet stands out as an excellent option for wavelet-based

feature extraction, given its effective localization in both time and

frequency domains. Additionally, Morlet ω0 = 6 is commonly employed

in economic applications [91].
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2.3 Quantile-on-quantile regression

In the second step, we utilize the quantile-on-quantile approach
introduced by [65] to investigate the asymmetric and heterogeneous
linkage between the US stock markets and oil prices, as well as oil
uncertainty, across various scales obtained from the wavelet
approach. Unlike the ordinary least squares (OLS) model and
standard quantile regression, the quantile-on-quantile (QQR)
approach allows us to examine the linkage between two time
series across the left and right tails of the mean of both variables
at various frequencies. This approach provides more detailed
insights into the nature of the relationship. However, it is
important to note that QQR is based on the nonparametric
estimation and standard quantile regression methodology
proposed by [83]. The traditional quantile regression is presented
as follows:

US.EMt � αφ Ot( ) + εφt (11)

Where, US.EMt refers to both US equity markets, and Ot is
refers to oil prices and oil uncertainty; φ represents the φ th quantile
of the conditional distribution of US equity markets, and εφt is the
quantile error. αφ (•) is an unknown function. However, the
standard Quantile Regression (QR) may fail to detect the
asymmetric effect at the left and right tails of US stock and both
the oil market and oil uncertainty. The quantile-on-quantile
Regression (QQR) addresses this limitation, allowing for the
examination of quantile connectivity between each pair of
variables [65].

Therefore, the unknown function αφ (•) in the standard quantile
regression (QR) can be adapted to investigate the tail dependence
between the φ th and ρ th quantiles of US markets and both WTI
(West Texas intermediate crude oil) and OVX indices, respectively.
By employing the first-order Taylor expansion of αφ (•) around Ot,
we derive the following equation:

αφ Ot( ) ≈ αφ Oρ( ) + αφ′ Oρ( ) Ot − Oρ( ) (12)

Where, Oρ is the ρ th quantile of oil prices and oil implied
volatility indices. In accordance with [65], one interesting feature
about Equation 12 is the fact that its parameters αφ(Oρ) and αφ′(Oρ)
are doubly indexed in φ and ρ. To observe why, notice that Oρ, the
ρ-quantile of oil price and oil uncertainty shocks, is a function of ρ
alone. Since αφ(Oρ) and αφ′(Oρ) are functions of φ and Oρ, and
since Oρ is a function of ρ, this implies that αφ(Oρ) and αφ′(Oρ) are
both functions of φ and ρ. From this perspective, let us redefine
αφ(Oρ) and αφ′(Oρ) as α0(φ, γ) and α1(φ, ρ) respectively.
Consequently, Equation 10 can be rewritten as:

αφ Ut( ) ≈ α0 φ, γ( ) + α1 φ, ρ( ) Ot − Oρ( ) (13)

Then, we substitute Equation 13 into the standard quantile
regression (Eq. 11) to obtain the following equation:

US.EMt � α0 φ, ρ( ) + α1 φ, ρ( ) (Ot − Oρ︸�����������������︷︷�����������������︸+εφt
¤( )

(14)

Where, (¤) represents the conditional quantile (α th).
Additionally, equation. (14) needs to employ Ôt, and Ôρ, which
are the empirical counterparts of Ot andOρ, respectively.
Nevertheless, it should solve the minimization problem of the

local linear regression estimates of b0 and b1 terms (used to
replace α0 and α1) as follows:

MIN b0 ,b1∑n

i�1γφ US.EMt − b0−b1 Ôt − Ôρ( )[ ]K FnÔt − ρ/h( )
(15)

The term γφ(μ) in Equation 15 is the quantile loss function. K(•)
is the Gaussian kernel function, and h is the bandwidth parameter of
the kernel function.

Overall, the QQR approach can successfully capture quantile-
asymmetric and heterogeneous links without compromising the
properties of traditional QR. However, the selection of bandwidth
(h) for a nonparametric approach is crucial to avoid estimation
errors when dealing with QQR. A large h leads to high bias and a
decrease in the variance of the estimates; therefore, we opt for a small
bandwidth, h = 0.05 [83,84].

3 Data description and
preliminary analysis

This study investigates the relationship between oil instability
and US stock markets during the COVID-19 pandemic and the
Russia-Ukraine war. Notably, the US transportation and industrial
sectors are identified as the largest consumers of petroleum products
based on US energy information administration (EIA) statistics for
2022. Therefore, this study utilizes daily data on crude oil (WTI), the
oil implied volatility index (OVX), Dow Jones industrial, and Dow
Jones transportation indices. The dataset spans from January
2020 to December 2022, encompassing two significant crises: the
COVID-19 pandemic and the Ukrainian war. West Texas
Intermediate (WTI) crude oil, produced in the US and
considered a benchmark in the oil market, is a focal point in this
investigation. Following the same methodology as the Chicago
Board Options Exchange Volatility Index (VIX), the OVX index
represents the expected 30-day oil volatility. The Dow Jones
industrial Index (DJI) reflects the stock prices of 30 of the largest
industrial companies in the US, excluding transportation, while the
Dow Jones transportation Index (DJT) tracks the stock prices of
20 of the largest transportation industry companies in the US. Data
on US equity markets were collected from the S&P Global website
(https://www.spglobal.com). Crude oil prices and OVX data were
obtained from the Energy Information Administration (EIA)
website (https://www.eia.gov) and the Chicago Board Options
Exchange (CBOE) website (https://www.cboe.com), respectively.
The start date for the data sample was chosen based on the
objectives of the study.

Thereafter, we commence the preliminary analysis by presenting
time series prices and returns in Figures 1, 2, respectively. The return
series is calculated using the following equation:
Rt � ln (Pt/Pt−1)*100. We observe that time series prices exhibit
high variability, with prices experiencing fluctuations in both
upward and downward directions. Notably, crude oil and both
Dow Jones stock prices exhibited a sharp decline in March 2020,
coinciding with the rapid spread of the coronavirus and the
implementation of widespread quarantine measures to curb the
pandemic. This suggests a swift response of indices to the negative

Frontiers in Physics frontiersin.org05

Yousfi and Bouzgarrou 10.3389/fphy.2024.1357366

https://www.spglobal.com
https://www.eia.gov
https://www.cboe.com
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1357366


news associated with the COVID-19 pandemic. Concurrently, the
implied volatility of the oil market increased, indicating a rise in
uncertainty and fear within the oil market during the pandemic.
However, crude oil appears to be the most affected by the pandemic,
primarily due to the energy shock resulting from the global
confinement policies implemented by the US government, which
has substantial economic and financial ramifications. Subsequently,
stock markets exhibited a gradual increase since the end of April
2020, accompanied by a rapid decrease in oil uncertainty. However,
Dow Jones indices reached their highest prices at the end of 2021,
whereas WTI experienced a slight decline, and OVX is low
compared to other assets. Notably, the WTI index displayed a
rapid increase in March 2022 following the onset of the invasion
of Ukraine by Russia and the initiation of the energy crisis due to oil
supply shocks. Interestingly, the OVX index demonstrated a
relatively weak response to this geopolitical event compared to
the robust reaction observed during the COVID-19 crisis.
Furthermore, US stock markets also exhibited a subdued
sensitivity to the conflict, with both equities experiencing a slow
decrease in March 2022. Overall, we observe that the behavior of
prices is sensitive to unexpected events. WTI and US equities
decrease during the pandemic, while oil uncertainty increases.
However, after the announcement of the beginning of the
invasion, WTI and equity prices exhibit an opposite reaction,

with oil increasing and US stocks decreasing. Additionally, the
returns of all series (Figure 2) show higher fluctuations during
the COVID-19 pandemic than during the Russia-Ukraine
conflict, except for the US transportation index, indicating a
similarity in the range of return fluctuations during both events.

Furthermore, Table 1 presents the descriptive statistics of the
returns for each series. Oil implied volatility exhibits the highest
mean and standard deviation of returns, while the lowest mean
and standard deviation are observed in US industrial equity. The
Jarque-Bera test reveals that none of the series follows a normal
distribution.

Additionally, we investigate the linear correlation between all the
indices under study. Table 2 presents the Pearson correlation results.
WTI is significantly negatively correlated with the OVX index and
positively correlated with US stock returns. However, no significant
linkage exists between OVX and US equities.

4 Results and discussion

This study explores the relationship between crude oil, oil
implied volatility, and U.S. stock markets using a wavelet-based
Granger causality test, wavelet coherence, and wavelet-based
quantile-on-quantile regression.

FIGURE 1
Time series plots.
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4.1 Frequency-based causality and
coherence analysis

We initiate our analysis by conducting initial tests on the causal
relationship across eight investment horizons using wavelet-based
Granger causality tests. Based on the wavelet decomposition of the

series, Table 3 presents the results of the Granger causality test from
the D1 to D8 scales. Firstly, we observe a bidirectional causality
between crude oil and US industrial indices over D1, D5, and
D7 horizons. Conversely, at D3 and D8 frequencies, the DJI is
found to cause movements in the oil market. No identifiable linkage
is detected over the D2, D4, and D6 horizons. Furthermore, a
bidirectional causality relationship is revealed between oil and US
transportation indices over both short- (D1) and long-run
perspectives (D8), while in D2, the DJT index is causing
fluctuations in the oil market. D4, D6, and D7 indicate that oil
affects the DJI index. Furthermore, a bidirectional causality nexus is
observed between oil implied volatility and US industrial indices
across the short-term (D1–D2), the medium-term (D5), as well as

FIGURE 2
Returns plots.

TABLE 1 Sumary statistic.

WTI OVX DJI DJT

Mean 0.033463 0.047848 0.020223 0.027254

Median 0.257932 −0.439929 0.055076 0.099187

Maximum 31.96337 85.76998 10.76433 11.76836

Minimum −60.16758 −62.22508 −13.84181 −12.25903

Std. Dev 4.602705 8.239193 1.594944 1.935072

Skewness −2.908255 2.061866 −0.900014 −0.502522

Kurtosis 51.60541 30.15094 18.93928 10.57919

Jarque-Bera 75384.15*** 23725.21*** 8094.256*** 1838.872***

Sample size (obs) 755 755 755 755

Note: ***, **, and * indicate significance at 1%, 5%, and 10%.

TABLE 2 Pearson correlation.

WTI OVX DJI DJT

WTI -

OVX −0.079570** -

DJI 0.193325*** 0.012023 -

DJT 0.190084*** −0.026633 0.440079*** -

Note: ***, **, and * indicate significance at 1%, 5%, and 10%.
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the long-term (D7 and D8). In contrast, causality is found to run
from DJI to the OVX index for the D3, D4, and D6 frequencies.
Additionally, OVX and DJT also exhibit a bidirectional linkage for
the D1 and D4 horizons, with causality from DJT to the oil
uncertainty index over the D2, D3, and D5 frequencies.

These results underscore the complex and dynamic nature of the
relationship between crude oil prices and industrial indices,
highlighting the importance of considering multiple time scales
in analyzing their interactions. For instance, the findings indicate
bidirectional causality between crude oil and industrial index at
certain scales (D1, D5, and D7), while showing no identifiable
linkage at other scales (D2, D4, and D6). This diversity can be
explained as follows: bidirectional causality at the shortest scale (D1)
suggests that in the very short term, changes in crude oil prices can
affect the industrial indices and vice versa. This may reflect
immediate reactions to news, supply disruptions, or other short-
term shocks in either market. However, the presence of bidirectional
causality at D5 suggests that over a slightly longer time horizon, both
crude oil and industrial indices influence each other. This could
imply that factors such as changes in production, global demand, or
economic policies have a mutual impact on both oil prices and
industrial activity. Meanwhile, bidirectional causality at D7 indicates
that over a more extended period, there are persistent interactions
between crude oil and industrial indices. This might reflect deeper
structural relationships, such as energy consumption patterns in
industrial production or the influence of industrial output on oil
demand over longer economic cycles. In contrast, the lack of
identifiable linkage at D2, D4, and D6 scales suggests that at
certain intermediate and longer time horizons, there may be
other factors dominating the behavior of either crude oil or
industrial indices independently. This could be due to market-
specific factors, regulatory changes, or other external shocks that
temporarily decouple the two markets.

Indeed, understanding the causal relationships between crude
oil and industrial indices at different scales is crucial for investors
and portfolio managers, given their often heterogeneous investment
horizons. In summary, the results of the wavelet-based Granger
causality test affirm the existence of a causal linkage between oil
prices, oil uncertainty, and US equities across various investment
horizons. Consistent with prior research [34,85,87], our findings

shed light on the impact of oil instability on US equities. It is
noteworthy that, on certain scales, we fail to identify causal
relationships between the oil market, oil uncertainty, and both
US stocks, suggesting that equities may not be highly sensitive to
oil shocks, particularly in medium- and long-term horizons. The
results of the study reveal that the connectedness between oil and
equities depends on the frequency and varies across various
investment horizons. These findings could inform portfolio
diversification strategies and risk management practices.
Moreover, investors should consider frequently rebalancing the
portfolio structure rather than adopting a static method such as
buy and hold.

Indeed, through Granger causality analysis in frequency
domains, we substantiate the existence of a causal effect between
the oil market, oil uncertainty, and US industrial and transportation
equities. It is noteworthy, however, that this approach may not
precisely pinpoint when and over which horizons the pairs are
linked, as the causality is estimated based on the sample average. To
address this limitation, we employed wavelet coherence, a method
capable of exploring the co-movement lead/lag relationships
between two series across both time and frequency domains. To
assess the statistical significance of these relationships, we conducted
Monte Carlo simulations following the methodology outlined by
[77]. The wavelet coherence analysis enables us to discern the impact
of turbulent periods on the connectedness between the selected
variables, as illustrated in Figure 3. The direction of the arrows in the
coherence charts provides insight into whether the co-movement is
positive (in phase) or negative (out of phase), along with the
causality linkage direction (lead/lag), as outlined3 by [76].

In general, we observe a high degree of co-movement among all
pairs across various horizons, especially during turbulent periods.
Specifically, we identify a robust positive dependence between the oil
market and both US equities from the onset of the COVID-19
pandemic until the end of 2020, particularly over the long run (from
64 to more than 256 days’ frequency bands). Notably, the causality
between the oil market and equities is found to be bidirectional

TABLE 3 Wavelet-Based Granger causality tests.

D1 D2 D3 D4 D5 D6 D7 D8

WTI to DJI 7.0983*** 1.141 2.1431 1.6531 2.3685* 1.6342 9.4741*** 1.0873

DJI to WTI 4.2912*** 0.8922 12.945*** 0.2012 2.3718* 0.5388 2.3676* 5.9745***

WTI to DJT 10.755*** 0.1873 1.4164 3.305** 0.6947 3.8644** 9.2808*** 3.2997**

DJT to WTI 6.4324*** 3.0394** 2.687 0.7964 0.2725 1.1668 0.8993 12.292***

OVX to DJI 11.838*** 5.4337*** 0.1674 1.9318 3.9456** 0.3931 3.3609** 4.053**

DJI to OVX 27.516*** 4.9882*** 20.35*** 20.703*** 31.395*** 8.1315*** 2.9886* 4.1873**

OVX to DJT 5.324*** 0.938 0.5095 3.1606** 1.7483 0.4913 6.9008*** 6.9349***

DJT to OVX 27.086*** 2.7059* 20.476*** 10.705*** 5.4534*** 0.3522 1.1067 4.3492***

Note: ***, **, and * indicate significance at 1%, 5%, and 10%. This table presents the values relating to the test statistic. The lag orders for the wavelet-based Granger causality tests are 2 for each

scale and are typically chosen based on information criteria.

3 See the phase difference circle presented in Appendix A.
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during this period. In contrast, oil implied volatility demonstrates a
negative correlation with both equities throughout the year 2020.

Furthermore, in 2021, we identified small regions of strong
positive linkage for the WTI/DJI and WTI/DJT pairs, respectively,
occurring over short and medium frequencies. Notably, WTI leads
DJI, and DJT leads WTI in these pairs. For the OVX/DJI pair, we
observed both positive and negative connectedness during the first
half of 2021 over the medium horizon, indicating a bidirectional
causality. Conversely, the OVX/DJT pair demonstrates negative co-
movement between the 8 and 16 days’ frequency bands, with OVX
leading equities. Additionally, coinciding with the onset of the
Ukraine invasion in the first quarter of 2022, we observe a small
region of high inverse co-movement on short scales (four to eight

days’ frequencies). This can be attributed to the decline in US stock
prices juxtaposed with the rise in oil prices and oil uncertainty amid
the energy crisis triggered by Russia’s invasion of Ukraine. Notably,
since 2021 over the medium to long term, the prevalence of the blue
color in this region suggests an absence of co-movement and causal
linkage between oil and stock markets, aligning with the findings in
Table 3. Therefore, we can conclude that WTI holds potential as a
hedge and diversification asset. The time-frequency analysis reveals
that the co-movement between oil, as well as oil implied volatility
indices, and US equities is particularly sensitive to crises, with the
COVID-19 pandemic having a more pronounced impact than the
geopolitical conflict between Russia and Ukraine. As indicated in
recent literature, the heightened positive correlation, especially

FIGURE 3
Wavelet coherence. Note: The black contours have a significance level of 5%. Red and blue colors correspond to higher andweaker co-movements.
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during tumultuous periods, signifies contagion or risk transmission
between various financial markets due to the elevated systematic risk
during crisis situations, such as the COVID-19 crisis [22,34,88–90].
On the other hand, the negative or weak co-movement between oil

and equities suggests diversification benefits for investors between
both assets during calmer periods. Furthermore, the negative
connectedness between oil uncertainty and both equities indicates
that bad oil news can impact stock returns negatively. However, we

FIGURE 4
(Continued).
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note that the causality linkage varies depending on both the time and
frequency domains, as well as market circumstances influenced
by crises.

Overall, findings of wavelet coherence indicate that the
relationship is particularly sensitive to the risk of an extreme tail
event. Consequently, we are keen on conducting a thorough

FIGURE 4
(Continued).
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FIGURE 4
(Continued). Wavelet-based Quantile-on-quantile dependence. Note: The slope coefficient, β1 (φ, ρ) is represented on the z-axis, while the ρ th

quantile of WTI (OVX) on the y-axis, and the x-axis corresponding to the φ th quantile of US equities.
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examination of the linkage between the oil market and the implied
volatility index with US equity across various frequencies and tails.
This will be achieved through a wavelet-based quantile-on-
quantile approach.

4.2 Frequency-based quantile
dependence analysis

For a more in-depth analysis and robust results, we conducted
an examination of tail dependence across various investment
horizons using a wavelet-based quantile-on-quantile approach.
This method allows us to identify dependence within the
conditional distribution of crude oil, oil volatility, and US stock
markets across short, medium, and long-term frequency bands. In
Figure 4, tail-frequency plots are presented in panels A and B. Based
on the bar color on the right of each plot, representing the degree
and sign of the identified dependence4, we observed that tail
dependence is not uniform or symmetric across all horizons. In
fact, we noticed an asymmetry in the tail dependency structure
between each pair across the left and right tails.

We begin our examination with the tail-frequency
dependence between crude oil and US equities (Panel A). For
D1 and D8 horizons, a high positive dependence is observed
when DJI is in the high range (60%–95% quantiles) and WTI is in
the low range (20% quantile). The D8 plot shows another positive
interdependence over high quantiles of WTI and low/medium
quantiles of DJI. Conversely, a negative dependence emerges
across low quantiles for both assets. Additionally, we identify
another robust negative relationship when WTI is in the high
range (approximately 80% quantile) and across most quantiles of
DJI. Similar tail dependence patterns are observed for D2 and D3.
A pronounced negative linkage is found when WTI is high and
both US stock markets are low. Another strong inverse
relationship is observed when the oil market is bearish and
stocks are bullish. Positive dependence is noted across the
extreme tails of the oil and US stock markets. However, for
D4, D5, D6, and D7 scales, we observe that oil is positively
correlated with both US stock markets across various quantiles,
except in the case of the WTI/DJT pair for the D5, and
D7 horizons, which exhibits results similar to those observed
over D2 and D3 frequencies.

On the other side, panel B illustrates the tail-frequency
dependence of OVX/US stock pairs. On the high scale (D1),
the results reveal a predominantly negative nexus across most
quantiles. The strongest inverse linkage is observed across low
quantiles for both OVX and US stock markets, as well as when
OVX is bearish, regardless of the quantiles of DJI. Meanwhile,
the D2 horizon indicates a positive link between OVX and DJI
when both are bearish, as well as when OVX is bearish and across
various quantiles of DJI. However, negative linkage is observed
over the remaining quantiles. For the OVX/DJT pair, the
dominant linkage is negative, with a positive nexus observed
only when OVX is high and at the extreme tails of DJT. Indeed,

at the medium frequency (D3), OVX and both stock markets
exhibit positive dependence across low quantiles of OVX and
various quantiles of equities. Another positive linkage emerges
when OVX and stock markets are higher, while a negative
linkage is observed across the high quantiles of OVX and the
low quantiles of stock markets. Finally, an inverse relationship is
identified between oil implied volatility and DJI across all
quantiles for the D4, D5, D6, D7, and D8 investment
horizons. The same findings were observed for OVX/DJT for
D4, D5, and D6 frequencies. For D7 and D8 scales, we find that
the negative dependence appears when both OVX and DJI stock
market are low, as well as when OVX is bearish, regardless of the
quantiles of DJI.

From a portfolio management perspective, the wavelet-based
quantile-on-quantile analysis provides portfolio implications for
heterogeneous investors. The findings reveal that the oil index
serves as an effective risk management asset against risks in US
equities, as evidenced by the negative tails dependence across
various quantiles and horizons. However, when positive
interdependence is confirmed, suggesting high-risk
transmission between oil and US equities, oil becomes a less
favorable investment option. Additionally, the positive tail
dependence observed between OVX and US equity markets
suggests that equities can act as a hedge against oil
uncertainty across various investment horizons, while the
negative dependence indicates that oil uncertainty negatively
impacts US stock markets. These findings align with previous
wavelet coherence results.

The combination of the wavelet approach and the quantile-
on-quantile technique can provide new insights and more
detailed information about the complex interdependence
between oil shocks and equity markets. While wavelets
decompose our variables into several frequencies, the quantile-
on-quantile approach not only models the heterogeneous
relationship between oil (OVX) and equities at various points
of the conditional distribution of the former, similar to typical
quantile regression, but it also models the quantile of oil (OVX)
and its various frequencies as a function of the quantile of the
equity markets. As such, the quantile-on-quantile approach
allows the relationship between the two examined variables to
vary at each point of their respective distributions.

Our interesting results add more details and new insights to
prior studies that investigate the linkage between oil shocks and
equities, in particular those studies only applying time-frequency
analysis such as [31, 34, 52], among others, which indicate that the
connection between oil and financial markets varies across different
scales. However, other researchers like [30, 50, 51], among others,
employ quantile-based regressions and show that the tail
dependence structure between crude oil and various financial
asset classes changes from one quantile to another. What
distinguishes our research from previous studies is the
assessment of the linkage between crude oil, oil uncertainty, and
equity markets through the unique methodological approach that
combines the wavelet method with quantile-on-quantile regression,
called wavelet-based quantile-on-quantile regression. This approach
provides a comprehensive framework for investors to gain deeper
insights into the underlying dynamics of financial assets and make
more informed investment decisions.4 Appendix B explains how to correctly read the QQR plot.
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Considering both time-frequency and dependence structure
analysis, the results derived from the aforementioned empirical
methodologies regarding the relationships between oil price
fluctuation, its uncertainty, and stock markets offer fresh insights
into the sensitivity of equities to oil shocks across diverse
frequencies, and quantiles simultaneously. Our analysis indicate
that the linkage differ across investment horizons and conditional
distribution. Indeed, we identify a heterogeneous and asymmetric
linkage between each pair across various tail dependence structure
and investment horizons. Specifically, we demonstrate that the
relationships at the left and right tails of both assets in each pair
are asymmetric, particularly over the short and long term.Moreover,
we demonstrate that the degree and the sign of linkage between oil
(oil uncertainty) and equity pairs vary from one quantile to another
across various horizons, suggesting that the connectivity between
variables is dependent on both frequency and quantiles.
Nevertheless, in addition to the previous conclusions, we can add
that the frequency-quantile linkage offers several portfolio
implications useful for heterogeneous investors and portfolio
managers, suggesting that risk management options are also
frequency-quantile-dependent. Therefore, investors should opt for
frequent adjustments to the portfolio structure rather than adopting
a buy and hold strategy, based on market conditions and
investment horizons.

5 Conclusion

Recently, oil prices have exhibited significant fluctuations in
response to the COVID-19 crisis and geopolitical tensions,
impacting global economic activities and financial markets.
This study explores the relationship between crude oil prices,
oil uncertainty, and the US industrial and transportation stock
markets. The analysis spans from January 2020 to December
2022, encompassing the recent crises of the COVID-19 pandemic
and the Ukrainian war. Initially, each time series was
decomposed into eight horizons to examine causality
relationships across various frequencies using a wavelet-based
Granger causality test. Subsequently, we investigate the co-
movement between WTI, oil implied volatility, and both US
equities through wavelet coherence. Finally, we examine tail
dependence between financial assets across various quantiles
and frequencies using a wavelet-based quantile-on-quantile
approach. Through these econometric approaches, our aim is
to provide detailed insights into the nature of the nexus between
oil price fluctuations, oil uncertainty, and US equities,
considering diverse investment horizons and tail dependence.

Our findings can be summarized as follows: The wavelet-
based Granger causality analysis reveals a causal linkage between
oil prices, oil uncertainty, and both US equities across most
scales, with causality varying between unidirectional and
bidirectional relationships. These findings align with prior
research, such as [34, 86, 87]. Similarly, the wavelet coherence
analysis confirms a high level of co-movement between financial
assets over short- and long-term investment horizons.
Specifically, WTI is predominantly positively correlated with
both US stock markets, particularly during periods of turmoil,

indicating risk transmission between these asset pairs. Our
findings align with the studies of [23, 24, 37, 86]. Conversely,
the presence of weak, negative, or absent co-movement between
oil and equities suggests that investors may benefit from the
diversification option to reduce portfolio-specific risk, especially
during certain periods. This finding is in line with [28] and [29],
where they indicate that oil acts as a risk management asset to
mitigate portfolio risks. Furthermore, the coherence between
OVX and US stock markets is varied, with positive and
negative connectedness identified across different time-
frequency domains. Our findings add to previous research by
[17-19]. The negative correlation implies that the US stock
market is sensitive to adverse oil news, while the positive
nexus suggests that equities can serve as a hedge against oil
uncertainty.

Finally, considering both tail and frequency domains through
wavelet-based quantile-on-quantile regression, our analysis offers
new insights and details about the nature of the relationship between
oil shocks and equity markets compared to prior research, such as
[24, 28, 34, 86], among others. Overall, the results highlight a
heterogeneous and asymmetric linkage between each pair across
various market conditions and investment horizons. Specifically, we
demonstrate that the relationships at the left and right tails of both
assets in each pair are asymmetric, particularly over the short and
long term. Consistent with the wavelet coherence results, the
positive and negative tails-frequencies linkage further supports
the notion that WTI can function as a risk management asset
against US equity markets, as indicated by the negative
dependence. The confirmation of risk transmission between
assets is evident across quantiles with positive dependence. The
same conclusion extends to the relationship between OVX and stock
markets: the negative nexus suggests that US markets are influenced
by oil uncertainty, while the positive correlation implies that US
equity markets can withstand the impact of rising oil uncertainty.
This suggests that US markets have the potential to hedge against oil
implied volatility.

Our study has numerous implications for policymakers,
financial regulators, and diverse investors, emphasizing the need
to closely monitor oil shocks and their potential impact on financial
markets, particularly during turbulent periods. By examining and
confirming the persistent interdependence between oil prices, their
uncertainty, and industrial and transportation stock markets,
especially during recent crises, our research contributes to the
existing literature on the linkage between oil shocks and the
financial markets. We have employed a comprehensive set of
econometric approaches, considering time, frequency, and tail
analyses, to offer nuanced insights into the nature of these
relationships. However, it is important to acknowledge certain
limitations and potential areas for improvement. One such
limitation is the omission of economic factors and geopolitical
risks in our analysis of the linkage between oil shocks and US
stock markets. As a direction for future research, we aim to address
this gap by focusing on the role of geopolitical tensions and other
relevant factors in influencing the connectivity between oil and
equities. This expanded analysis could offer a more comprehensive
understanding of the complex relationship between oil shocks and
financial markets.
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Appendix A Phase difference circle [90] Appendix B Explanation of how to
correctly read the QQ 3D plot, as
outlined by [64]

• The color bar indicates the degree and sign of correlation, with
yellow and blue representing higher and weaker correlations,
respectively.

• The z-axis presents slope coefficient β1 (φ, ρ).
• The x-axis displays the φ th quantile of US equities.
• The y-axis corresponds to the ρ th quantile of WTI (OVX).
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