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The Bell test, as an important method for detecting nonlocality, is widely used in
device-independent quantum information processing tasks. The security of these
tasks is based on an assumption called measurement independence. Since this
assumption is difficult to be guaranteed in practical Bell tests, it is meaningful to
consider the effect of reduced measurement independence (i.e., measurement
dependence) on Bell tests. Some research studies have shown that nonlocality
can be detected even if measurement dependence exists. However, the relevant
results are all based on bipartite Bell tests, and the results for multipartite Bell tests
are still missing. In this paper, we explore this problem in the tripartite Svetlichny
test. By considering flexible lower and upper bounds on the degree of
measurement dependence, we obtain the relation among measurement
dependence, guessing probability, and the maximal value of Svetlichny
inequality. Our results reveal the case in which genuine nonlocality is
nonexistent; at this point, the outcomes of the Bell test cannot be applied in
device-independent quantum information processing tasks.
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1 Introduction

Quantum nonlocality is a critical resource in device-independent quantum information
processing tasks such as quantum key distribution [1–3], random number generation [4–7],
self-testing [8,9], and private query [10,11]. The phenomenon of quantum nonlocality, first
brought to light in the famous debate between Einstein, Podolsky, and Rosen in 1935 [12],
was later given a testable framework by Bell through his inequality theorem formulated
in 1964 [13].

A bipartite Bell test involves two distant parties: Alice and Bob. Each party randomly
selects measurement settingsAx(x ∈ {0, 1}) and By(y ∈ {0, 1}) and obtains outcomes a ∈ {0, 1}
and b ∈ {0, 1}, respectively. After many rounds of experiments, the statistical correlations are
characterized by the joint probability distribution p(a, b|Ax, By). Bell inequality can be
defined by a linear combination of p(a, b|Ax, By):

〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉≤ 2, (1)
where 〈AxBy〉 = ∑a,b(−1)

a+bp(a, b|Ax, By). This inequality is known as the CHSH inequality
[14]. The statistical correlations produced by the classical system can reach the local upper
bound of CHSH inequality of 2. In quantum mechanics, measurements acting on quantum
entanglement states can violate the CHSH inequality and result in a bound value of up
to 2
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Since the 1980s, Bell test experiments have been realized
[15–18], but it has been found that these experiments suffer a
loophole called randomness loophole. The Bell test requires that
the selection of measurements is completely random. This is a basic
assumption for the Bell test, called measurement independence. If
measurement independence cannot be guaranteed in the
experiment, the randomness loophole will be opened up. The
adversary Eve is able to simulate quantum nonlocality with
classical systems by possessing a priori knowledge of
measurement settings, which threatens the security of device-
independent quantum information processing tasks. Nevertheless,
measurement independence is difficult to be guaranteed in practical
Bell tests. Many researchers have attempted to explore how relaxing
the measurement independence assumption (i.e., measurement
dependence) would affect the Bell test [19–30].

In 2010, Hall [19] proposed the quantification of measurement
dependence and constructed a local deterministic model to simulate
singlet state correlations. In 2012, Koh et al. [21] explored the effects
of measurement dependence on the CHSH–Bell test. By considering
the relation among measurement dependence, guessing probability,
and the maximal value of CHSH inequality, they bounded the
capabilities of the adversary. It is worth mentioning that in
[23,24], Pütz et al. improved the quantification of measurement
dependence and developed a framework for measurement
dependence locality. This notable approach was used by Yuan
et al. [31] to consider the effects of measurement dependence on
the CHSH–Bell test.

With the development of quantum information and quantum
computing, more complex Bell test models deserve to be considered.
Many research studies have been devoted to measurement dependence
based on the Bell test with multiple measurements, multiple outcomes,
or asymmetric Bell inequality [31–35]. While previous discussions on
measurement dependence mainly focus on the bipartite Bell test, the
multipartite Bell test still deserves to be explored. In this paper, we
explore how measurement dependence affects the tripartite Svetlichny
test. By introducing the quantification of measurement dependence in
the tripartite Svetlichny test, the relation among measurement
dependence, guessing probability, and the maximal value of
Svetlichny inequality is obtained. The result demonstrates the
capabilities of the adversary Eve to simulate quantum nonlocality
using classical systems, which is crucial in device-independent
quantum information processing tasks.

This paper is organized as follows: Section 2 provides a brief
introduction of Svetlichny inequality and the tripartite Bell test. The
main results are presented in Section 3. Section 4 analyzes the
capabilities of the adversary when considering random number
generation. The conclusion is presented in Section 5.

2 Preliminaries

In this section, some relevant preliminaries are given.

2.1 Local hidden variable model

Bell’s theorem states that the correlations produced by the
quantum system cannot be explained by the local hidden variable

(LHV) model. For the CHSH–Bell test, the statistical correlation p(a,
b|Ax, By) admits the following decomposition:

p a, b|Ax, By( ) � ∫ dλp a, b|Ax, By, λ( )p λ|Ax, By( ). (2)

Here, λ is the local hidden variable which denotes all the factors
that may affect the outcomes.

Additional assumptions may lead to restrictions on Eq. 2. The
first one is called local causality:

p a, b|Ax, By, λ( ) � p a|Ax, λ( )p b|By, λ( ). (3)

This assumption requires that the outcomes of each party are
only dependent on the inputs of that party and the local hidden
variable λ. In a practical Bell test, one guarantees the assumption by
ensuring that the two devices are spatially separated. Local causality
can also be viewed as the union of two assumptions: parameter
independence and outcome independence.

The second assumption is called measurement independence:

p Ax, By|λ( ) � p Ax, By( ). (4)

Measurement independence requires that the selection of inputs
of each party is independent of the local hidden variable λ.
According to the Bayes theorem, Eq. 4 can also be written as

p λ|Ax, By( ) � p λ( ). (5)

In a practical Bell test, one guarantees this assumption as much
as possible using ideal randomness. After considering these two
assumptions, the statistical correlation can be described as

p a, b|Ax, By( ) � ∫ dλp λ( )p a|Ax, λ( )p b|By, λ( ). (6)

If the statistical correlations can be written in the form of Eq. 6,
they satisfy the CHSH inequality.

As a natural extension of the bipartite Bell test, the multipartite
Bell test displays a more complex structure. We consider the
simplest tripartite Bell test, which contains three distinct parties:
Alice, Bob, and Charlie, whose devices are spatially separated from
each other. Each of them has two inputs and two outcomes. The
inputs are labeled as Aj, Bk, and Cl, where j, k, l ∈ {0, 1}, and the
outcomes are labeled as a, b, c ∈ {0, 1}, respectively. These devices can
be treated as black boxes, and an outcome will be given when an
input of the devices is selected. After repeating this process several
times, the statistical correlations p(a, b, c|Aj, Bk, Cl) are obtained.
According to Bell’s theorem, a local correlation p(a, b, c|Aj, Bk, Cl)
can be written as

p a, b, c|Aj, Bk, Cl( ) � ∫ dλ
p λ( )p Aj, Bk, Cl|λ( )p a|Aj, λ( )p b|Bk, λ( )p c|Cl, λ( )

p Aj, Bk, Cl( ) ,

(7)

where λ is the local hidden variable and ∫dλp(λ) = 1.
We know that if Eq. 7 does not hold, then the correlations are

nonlocal. However, several representations indicate that the
correlations are nonlocal in the multipartite Bell test. For
instance, if Alice is uncorrelated to Bob and Charlie in the
tripartite case, then the correlations can be written in the
following form:
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p a, b, c|Aj, Bk, Cl( ) � ∫ dλ
p λ( )p Aj, Bk, Cl|λ( )p a|Aj, λ( )p b, c|Bk, Cl, λ( )

p Aj, Bk, Cl( ) ,

(8)

where ∫dλp(λ) = 1 if p(b, c|Bk, Cl, λ) is nonlocal. It is easy to find that
if Eq. 8 violates the form of Eq. 7, the correlations are nonlocal.
However, such correlations are strictly bipartite nonlocal, which is
independent of the third party.

2.2 Svetlichny inequality

To distinguish the nonlocal correlations generated by all three
parties, Svetlichny constructed an inequality in 1987, also known as
Svetlichny inequality [36]. If the correlations produced by the
tripartite Svetlichny test can be written in the form

p a, b, c|Aj, Bk, Cl( ) � ∫ dλ
p λ( )p Aj, Bk, Cl|λ( )p a, b|Aj, Bk, λ( )p c|Cl, λ( )

p Aj, Bk, Cl( )
+∫ dμ

p μ( )p Aj, Bk, Cl|μ( )p a, c|Aj, Cl, μ( )p b|Bk, μ( )
p Aj, Bk, Cl( )

+∫ d]
p ]( )p Aj, Bk, Cl|]( )p b, c|Bk, Cl, ]( )p a|Aj, ]( )

p Aj, Bk, Cl( ) ,

(9)

where ∫dλp(λ) + ∫dμp(μ) + ∫d]p(]) = 1, then the correlations satisfy
the following Svetlichny inequality:

S3 � 〈A0B0C1〉 + 〈A0B1C0〉 + 〈A1B0C0〉 − 〈A1B1C1〉
+〈A1B1C0〉 + 〈A1B0C1〉 + 〈A0B1C1〉 − 〈A0B0C0〉≤ 4,

(10)

where 〈AxByCz〉 = ∑a,b,c(−1)
a+b+cp(a, b, c|Ax, By, Cz). In quantum

systems, the correlations produced by measurements that act on
genuine tripartite entanglement states may violate the Svetlichny
inequality, and the upper bound can be up to 4

�
2

√
. Furthermore, the

upper bound of Svetlichny inequality is up to 8 for the no-
signaling theory.

2.3 Measurement dependence and guessing
probability

As mentioned above, the assumption of local causality can be
guaranteed by spatial separation. However, measurement
independence is difficult to be realized in the practical Bell test.
If the devices are potentially prepared by Eve, she can use local
correlation to reproduce the quantum correlation by controlling the
local hidden variable λ. Eve’s control on inputs is described by p(Aj,
Bk, Cl|λ). If p(Aj, Bk, Cl|λ) = p(Aj, Bk, Cl), it means that the
information Eve learned does not affect the inputs, also known
as measurement independence. If p(Aj, Bk, Cl|λ) ≠ p(Aj, Bk, Cl), this is
called measurement dependence, which means that Eve can decide
the inputs by controlling λ. The quantification is defined by the
upper bound of conditional input probability distributions. In the
tripartite Svetlichny test, the degree of measurement dependence is
expressed as

Pup � max
j,k,l

p Aj, Bk, Cl|λ( ), (11)

where Pup ∈ [18, 1]. The case Pup � 1
8 corresponds to measurement

independence. The case Pup = 1 corresponds to complete
measurement dependence, i.e., Eve has full control over at least
one of the inputs via λ.

It has been shown that the lower bound of conditional input
probability distributions is also an important parameter for
quantifying measurement dependence [23]. This parameter
characterizes the minimum randomness requirement of the
inputs. A better quantification of measurement dependence can
be obtained by combining the upper and lower bounds of
conditional input probability distributions. In the tripartite
Svetlichny test, it is expressed as follows:

Plow � min
j,k,l

p Aj, Bk, Cl|λ( )
Pup � max

j,k,l
p Aj, Bk, Cl|λ( ), (12)

where Plow ∈ [0, 18] and Pup ∈ [18, 1].
The guessing probability reflects the randomness. The adversary

Eve tries to guess Alice’s outcomes: the more accurate Eve’s guess is,
the less random the outcome will be. G(λ) denotes the marginal
probability of Eve’s best guess for a given local hidden variable λ. In
the tripartite Svetlichny test,

G λ( ) � max
a,b,c,j,k,l

p a|Aj, λ( ), p b|Bk, λ( ), p c|Cl, λ( ){ }. (13)

The guessing probability will then be given by

G � ∫ dλp λ( )G λ( ). (14)

The maximal value G = 1 represents that Eve can guess all the
outputs, which means that the outputs are completely deterministic.
The minimal value G � 1

2 represents that Eve cannot get extra
information about the output via λ.

3 Results

In this section, the main results are given. According to the
definitions given above, we obtain the relation between the value of
the Svetlichny inequality with respect to the guessing probability and
the degree of measurement dependence. Before we obtain the main
result in this paper, we will first introduce the following lemma.

Lemma: The maximum possible value of Svetlichny inequality
for the tripartite case Smax

3 (G, Pup), for any no-signaling model with
p(x, y, z) � 1

8 (i.e., all inputs are equally likely), is

Smax
3 G, Pup( ) � 8 − 32 2G − 1( ) 1 − 7Pup( ), 1

8
≤Pup ≤

1
7

8, Pup ≥
1
7

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (15)

where G and Pup are the guessing probability and degree of
measurement dependence, respectively.

The degree of measurement dependence in this lemma is
described as the upper bound of conditional input probability
distributions p(Aj, Bk, Cl|λ). The proof of lemma is included in
the proof of the theorem. According to the lemma and the
definitions we introduced above, we obtain the relation with
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flexible lower and upper bounds of conditional input probability
distributions.

Theorem: The maximum possible value of Svetlichny inequality
for the tripartite case Smax

3 (G, Plow, Pup), for any no-signaling model
with p(x, y, z) � 1

8 (i.e., all inputs are equally likely), is

Smax
3 G, Plow, Pup( ) � 8 − 32 2G − 1( ) 1 − Pup( ) 1 − 8Plow( ), 7Pup + Plow < 1

8, 7Pup + Plow ≥ 1
{ .

(16)

In the following part, we will prove the theorem and the
lemma together.

Proof: We start by defining the marginal probability as

p 0|Aj, λ( ) � mj, p 0|Bk, λ( ) � nk, p 0|Cl, λ( ) � ol,

where j, k, l ∈ {0, 1}. Then, the remaining marginal probabilities
containing one variable can be expressed as

p 1|Aj, λ( ) � 1 −mj, p 1|Bk, λ( ) � 1 − nk, p 1|Cl, λ( ) � 1 − ol.

According to the definition of the guessing probability, we get

G λ( ) � max mj, nk, ol, 1 −mj, 1 − nk, 1 − ol{ }. (17)

Similarly, we define the marginal probability containing two
variables as

p 0, 0|Aj, Bk, λ( ) � xjk, p 0, 0|Aj, Cl, λ( ) � yjl,
p 0, 0|Bk, Cl, λ( ) � zkl,

where j, k, l ∈ {0, 1}. Then, the remaining marginal probabilities
containing two variables can be expressed as

p 0, 1|Aj, Bk, λ( ) � mj − xjk, p 1, 0|Aj, Bk, λ( ) � nk − xjk,

p 1, 1|Aj, Bk, λ( ) � 1 + xjk −mj − nk;

p 0, 1|Aj, Cl, λ( ) � mj − yjl, p 1, 0|Aj, Cl, λ( ) � ol − yjl,

p 1, 1|Aj, Cl, λ( ) � 1 + yjl −mj − ol;
p 0, 1|Bk, Cl, λ( ) � nk − zkl, p 1, 0|Bk, Cl, λ( ) � ol − zkl,
p 1, 1|Bk, Cl, λ( ) � 1 + zkl − nk − ol.

We also define the joint probability p(0, 0, 0|Aj, Bk, Cl, λ) = fjkl.
Then, all the remaining joint probabilities are expressed
as follows:

p 0, 0, 1|Aj, Bk, Cl, λ( ) � xjk − fjkl,

p 0, 1, 0|Aj, Bk, Cl, λ( ) � yjl − fjkl,

p 1, 0, 0|Aj, Bk, Cl, λ( ) � zkl − fjkl,

p 0, 1, 1|Aj, Bk, Cl, λ( ) � mj − xjk − yjl + fjkl,

p 1, 0, 1|Aj, Bk, Cl, λ( ) � nk − xjk − zkl + fjkl,

p 1, 1, 0|Aj, Bk, Cl, λ( ) � ol − yjl − zkl + fjkl,

p 1, 1, 1|Aj, Bk, Cl, λ( ) � 1 −mj − nk − ol + xjk + yjl + zkl − fjkl.

Because of the positivity of probability, we obtain the range
of fjkl:

fjkl ∈ max 0, xjk + yjl −mj, xjk + zkl − nk, yjl + zkl − ol{ },[
min xjk, yjl, zkl, djkl{ }], (18)

where djkl = 1 − mj − nk − ol + xjk + yjl + zkl. Since min {x, y} �
1
2 (x + y − |x − y|) and max {x, y} � 1

2 (x + y + |x − y|), it can be
extended to the general cases:

min w, x, y, z{ } � min min w, x{ }, min y, z{ }{ }
� 1
2
min w, x{ } + 1

2
min y, z{ } − 1

2
|min w, x{ } −min y, z{ }|

� 1
4

w+x+y+z( )− 1
4
|w−x|− 1

4
|y−z|

−1
4
|w+x−y−z−|w−x|−|y−z‖. (19)

max w, x, y, z{ } � max max w, x{ }, max y, z{ }{ }
� 1
2
max w, x{ } + 1

2
max y, z{ } + 1

2
|max w, x{ } −max y, z{ }|

� 1
4

w+x+y+z( )+ 1
4
|w−x|+ 1

4
|y−z|

+1
4
|w+x−y−z−|w−x|−|y−z‖. (20)

In order to simplify the representation, we will follow the
techniques in [20]. By the equation in Appendix B of [20], we obtain

min w, x, y, z{ }≥ 1
4

w+x+y+z( )− 1
4
|w−x|

−1
4
|y−z|− 1

2
|w−y|− 1

2
|x−z|. (21)

Similarly, the maximum case can also be extended to the
following case:

max w, x, y, z{ }≤ 1
4

w+x+y+z( )+ 1
4
|w−x|

+1
4
|y−z|+ 1

2
|w−y|+ 1

2
|x−z|. (22)

Thus, fjkl satisfies

fjkl ∈
1
4

2xjk+2yjl+2zkl−mj−nk−ol( )+ 1
4
|xjk+yjl−mj|[

+1
4
| xjk+zkl−nk( )− yjl+zkl−ol( )| + 1

2
|xjk+zkl−nk|

+ 1
2
| xjk+yjl−mj( )− yjl+zkl−ol( )|, 1

4
xjk+yjl+zkl+djkl( )

−1
4
|xjk−yjl| −1

4
|zkl−djkl|− 1

2
|xjk−zkl|− 1

2
|yjl−djkl|].

(23)
Based on the definition of 〈AjBkCl〉, we have

〈AjBkCl〉 � ∑ −1( )a+b+cp a, b, c|Aj, Bk, Cl( )
� ∑ −1( )a+b+c ∫ dλp a, b, c|Aj, Bk, Cl, λ( )p λ|Aj, Bk, Cl( ).

(24)
Let 〈AjBkCl〉λ denote the expectation of the measurement outcomes
for a fixed value of λ:

〈AjBkCl〉λ � ∑ −1( )a+b+cp a, b, c|Aj, Bk, Cl, λ( ). (25)

Substituting the joint probability into Eq. 25, 〈AjBkCl〉λ can be
reproduced as

〈AjBkCl〉λ � 8fjkl − 4 xjk + yjl + zkl( ) + 2 mj + nk + ol( ) − 1. (26)

Thus, 〈AjBkCl〉λ satisfies

〈AjBkCl〉λ ∈ 2|xjk+yjl−mj|+2| xjk+zkl−nk( )− yjl+zkl−ol( )[
|+4| xjk+yjl−mj( )− yjl+zkl−ol( )|−1, 1−2|xjk−yjl|
−2|zkl−djkl|−4|xjk−zkl|−4|yjl−djkl|]. (27)

The Svetlichny inequality for the tripartite case is described by

S3 � 〈A0B0C1〉+〈A0B1C0〉+〈A1B0C0〉−〈A1B1C1〉+〈A1B1C0〉
+〈A1B0C1〉+〈A0B1C1〉−〈A0B0C0〉.

(28)
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Combining the results obtained above, we can get

S3 ≤ 8 − 32 2G − 1( )∫dλp λ( ) min
j,k,l∈ 0,1{ }

p Aj, Bk, Cl|λ( ). (29)

The specific processes of simplification are listed in the
Supplementary Material.

In the following part, we consider the degree of measurement
dependence Pup. Based on the definition of Pup, in the case of Pup ≥ 1

7,
we can always find that minj,k,lp(Aj, Bk, Cl|λ) = 0. In the case of
1
8≤Pup ≤ 1

7, the minimum value is p(Aj, Bk, Cl|λ) = 1 − 7Pup. Then, we
can conclude that

Smax
3 G, Pup( ) � 8 − 32 2G − 1( ) 1 − 7Pup( ), 1

8
≤Pup ≤

1
7

8, Pup ≥
1
7

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (30)

Now that we have completed the proof of the lemma, we will
continue with the proof of the theorem.

According to the definition of the flexible upper bound and
lower bound of measurement dependence, we have

Plow ≤p′ Aj, Bk, Cl|λ( )≤Pup, (31)

where j, k, l ∈ {0, 1}.
Let

p Aj, Bk, Cl|λ( ) � p′ Aj, Bk, Cl|λ( ) − Plow

1 − 8Plow
. (32)

It is easy to obtain the range of p(Aj, Bk, Cl|λ):

0≤p Aj, Bk, Cl|λ( )≤ Pup − Plow

1 − 8Plow
. (33)

The normalization of p(Aj, Bk, Cl|λ) is proven as follows:

∑
j,k,l

p Aj, Bk, Cl|λ( ) � ∑
j,k,l

p′ Aj, Bk, Cl|λ( ) − Plow

1 − 8Plow

� ∑j,k,lp′ Aj, Bk, Cl|λ( ) − Plow

1 − 8Plow

� ∑j,k,lp′ Aj, Bk, Cl|λ( ) − 8Plow

1 − 8Plow� 1,

(34)

where the last equality holds according to the normalization of p′(Aj,
Bk, Cl|λ).

Thus, S3′ can be described by

S3′ � 〈A0B0C1〉+〈A0B1C0〉+〈A1B0C0〉−〈A1B1C1〉+〈A1B1C0〉
+〈A1B0C1〉+〈A0B1C1〉−〈A0B0C0〉≤ 8 − 32 2G − 1( )
∫dλp λ( ) min

j,k,l∈ 0,1{ }
p Aj, Bk, Cl|λ( ) � 8 − 32 2G − 1( )

∫dλp λ( ) min
j,k,l∈ 0,1{ }

p′ Aj, Bk, Cl|λ( ) − Plow

1 − 8Plow
.

(35)
According to Eq. 29 and Eq. 35, we obtain the relation between

S3 and S3′:

S3 � 1 − 8Plow( )S3′ + 64Plow. (36)
In the case of Pup−Plow

1−8Plow
≤ 1

7, i.e., 7Pup + Plow ≤ 1, we obtain

S3′ � 8 − 32 2G − 1( ) 1 − Pup( ) 1 − 8Plow( ). (37)

In the case of Pup−Plow

1−8Plow
≥ 1

7, i.e., 7Pup + Plow ≥ 1, we obtain

S3′ � S3 � 8. (38)
Consequently, based on the guessing probability G, the flexible

bound of measurement dependence Pup and Plow, the Svetlichny
inequality value can be described as

Smax
3 G, Plow, Pup( )

� 8 − 32 2G − 1( ) 1 − Pup( ) 1 − 8Plow( ), 7Pup + Plow < 1
8, 7Pup + Plow ≥ 1

{ .

(39)

4 Discussion

In this section, the analysis of the adversary’s capability is given.
Regarding the lemma, we describe it in Figure 1. For the case Pup = 1, the
inputs of the devices are completely deterministic for the adversary Eve.
She can construct a local strategy to preprogram the outcomes, and the
value of Svetlichny inequality can be up to 8. This makes the outcomes
seem random, but it is actually certain for Eve(G = 1). For the case
Pup � 1

8, the inputs of the devices are completely random, and Eve has no
a priori knowledge about the inputs. If she constructs a local strategy to
preprogram the outcomes, the value of Svetlichny inequality will
not exceed 4.

We also illustrate the theorem by presenting it in two cases. As
described in Figure 2, for the case of Pup � 1

8 or Plow � 1
8, the inputs are

completely random, and the adversary Eve has no a priori knowledge of
the inputs. In this case, if Eve constructs a deterministic strategy of
outcomes, the Svetlichny inequality cannot be violated. Thus, the
adversary Eve cannot fake true randomness. For the case of 7Pup +
Plow > 1 or 7Pup + Plow < 1, Eve can obtain part of the information of
inputs and then can construct a classical strategy to reach themaximum

FIGURE 1
The maximal values of Svetlichny inequality Smax

3 (G,Pup) that the
adversary can fake using the classical system (G = 1) when considering
measurement dependence Pup. The shaded region in the figure
indicates that no true randomness is generated.
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value of the Svetlichny inequality Smax
3 (1, Plow, Pup). In this case, we

conclude that there is true randomness generation when
Sobv3 > Smax

3 (1, Plow, Pup).

5 Conclusion

In this paper, we explored the effect of measurement dependence
on the tripartite Svetlichny test. Concretely, we showed the relation
among measurement dependence, guessing probability, and the
maximal violation of Svetlichny inequality that the adversary can
fake. Using the degree of measurement dependencewith flexible lower
and upper bounds, we analyze the case that genuine tripartite
nonlocality is nonexistent and give a security analysis of the
device-independent quantum information processing tasks. Taking
random number generation as an example, we considered the range
that the adversary Eve can fake using the classical system. Attempts to
the adversary with stronger ability merit further investigation. A
natural extension of this work is to explore more different
correlations, such as network nonlocality [37] and steering [38].
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