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The Bessel beams scattering of the fog particles were calculated by using the
plane beams angle spectrum expansion method, and the effects of the
topological charge and the half-conic angle of the Bessel beam on the
differential scattering cross-section were analyzed by numerical calculation.
Based on the scattering results of a single fog particle by a Bessel beam, by
Monte Carlo method, the propagation characteristics of the Bessel beam in fogs
with different visibility are simulated, and the effects of the wavelength,
topological charge and semi-conic angle of the Bessel beam on transmissivity
and reflectivity are analyzed. The studies show the self-healing ability of the
Bessel beams, and the propagation distance of the Bessel beam is longer than
that of the plane beams in fogs.
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1 Introduction

In 1987, Durnin [1] proposed an exact nonsingular solution to the scalar wave equation
of a non-diffractive beam, i.e., a zero-order Bessel beam, and pointed out that the intensity
pattern of the transverse plane of this beam does not change when it propagating in free
space. Durnin’s proposal and experiment on non-diffractive beams, i.e., zero-order Bessel
beams, have aroused the interest of many researchers in the study of Bessel beams. Gori et al.
[2] proposed a set of solutions to the paraxial wave equation, which modulates the Gaussian
beams to obtain an approximation of Bessel beams, which is called zero-order Bessel-
Gaussian beams, which makes experimental studies of almost diffraction-free beam
propagation possible. In 1991, Mishra [3] carried out a vector wave analysis of a zero-
order Bessel beam satisfying Maxwell’s equations by means of the Lorentz gauge, and
compared it with scalar wave theory, pointed out the limitations of scalar wave theory, and
introduced a modification of vector wave properties. In 2002, Garces-Chavez et al. [4]
demonstrated that higher-order Bessel beams have orbital angular momentum (OAM) and
demonstrated the transparent particles captured by OAM transferred from the beam to
optical tweezers, which showed that Bessel beams have good practical value in the field of
optical tweezers. In 2011, Mitri [5] proposed a full-vector wave analysis of the electric and
magnetic fields of higher-order Bessel beams based on Maxwell’s equations and Lorentz
gauges using a method similar to Mishra, and derived the expressions of the radial
components of each Cartesian coordinate system. In 2017, Gouesbet et al. [6] proposed
that within the framework of the generalized Lorenz-Mie theory (GLMT) and other light
scattering theories, electromagnetic beams can be described by beam factors, by which it is
possible to determine whether the beam intensity is zero on the axis. This theory predicts
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higher-order non-vortex Bessel beams. In 2021, Fuscaldo et al. [7]
compared the characteristics of Gaussian beams and Bessel beams in
terms of application environment, and concluded that for the ability
of beams transmitting over the longest distance, Bessel beams are
superior to Gaussian beams.

In recent years, due to the non-diffraction and special
intensity distribution of Bessel beams, the study of particle
scattering characteristics of Bessel beams has gradually
become the focus. In 2007, Marston [8] studied the scattering
of a sphere centered on the beam axis of a Bessel beam and
analyzed the results of the scattering geometrically. In 2009,
Taylor [9] derived the analytical expression used to calculate
the beam factor of the Bessel beam by GLMT, which greatly
improved the computational efficiency of the Bessel beam
scattering field. In 2011, Mitri [10] studied the scattering
characteristics of a homogeneous sphere for zero- and higher-
order Bessel beams, and analyzed the effect of the semi-conic
angle of the beam on the scattering. In 2012, Shoorian et al. [11]
studied the scattering of a linearly polarized Bessel beam by a
conductor sphere and proposed an exact analytical solution. In
2020, Valdivia [12] used GLMT to describe scalar Bessel
Gaussian beams, and calculated the beam factors using
orthogonal, finite series and local approximations, and
analyzed the effect of the semi-conic angle of Bessel beams on
the beam factors.

As a common climate phenomenon, fog has attracted many
scholars to carry out research because of its absorption and
attenuation on electromagnetic waves. In 1976, Kreid [13]
measured atmospheric visibility using continuous-wave lidar
technology and proposed a simple formula between the
attenuation coefficient and visibility of fog. In 1996, Vasseur [14]
experimentally proposed a method to infer the physical properties of
fog from the attenuation of millimeter, infrared, and visible
wavelengths in fog, including droplet size distribution and
average droplet diameter, and proposed an empirical formula
between the water content and attenuation rate of fog. In 1998,
Eloranta [15] proposed an equation for predicting the intensity of
multiple scattering lidar echoes, which is suitable for cases where
cloud particles are larger than the wavelength of lidar beams, and
was verified with the results of Monte Carlo simulations and the data
of lidar. In the same year, Hess [16] developed software to calculate
the optical properties of atmospheric particulate in the solar and
terrestrial spectra, including the microscopic physical and optical
properties of water mist, ice clouds, and different aerosol
components.

In the fields of laser communication and laser detection, laser
transmission is greatly affected by the cloud and fog, which
attenuate laser quickly. Bessel beams are self -healing and
non-diffractive lights [17–20]. In the cloud or fog, compare
with plane beams, Bessel beams have a longer detection and
communication distance. Therefore, studying the propagation of
Bessel beams in fogs is of great significance. To analyze the
propagation characteristics of Bessel beams in fogs, the
average scattering of fog particles is analyzed, based on the
droplet spectrum distribution function, by the Monte Carlo
algorithm, a model of Bessel beam propagation in fog is
established, and the propagation characteristics of Bessel beam
in fog with different visibility are discussed.

2 The size distribution of fog
droplet particles

The fogs contain a large amount of water droplets, and the sizes
of the water droplets particles have a certain size distribution. By a
large number of observational data, many scholars have proposed
different models to describe the spectral distribution of fog droplets,
among which the most commonly used is the generalized Gamma
distribution [21, 22]:

n r( ) � Ara exp −Brβ( ) m−3μm−1( ) (1)

where n(r) is the number of droplets per unit volume and unit
radius. In general, α � 2, β � 1. The calculation and analysis of the
model can make the relationship between the size distribution of fog
droplets and the macroscopic physical quantities more concise. The
expression of the size distribution function of the droplets in
advection fog is [23]

n r( ) � 1.059 · 107V1.15r2 exp −0.8359V0.43r( ) m−3μm−1( )
� 3.73 · 105W−0.804r2 exp −0.2392W−0.301r( ) m−3μm−1( ) (2)

Expression of the droplet size distribution function in radiation
fog is [23].

n r( ) � 3.104 · 1010V1.7r2 exp −4.122V0.54r( ) m−3μm−1( )
� 5.400 · 107W−1.104r2 exp (−0.5477W−0.351 m−3μm−1( ) (3)

In the above equation, V is the visibility and W is the
water content.

As shown in Figure 1, the particle number of the two fogs is
distributed with the particle radius at different visibility, and it
can be seen that the fog particle radius of advection fog is
distributed in the range of 1–100 μm, and the fog particle
radius of radiation fog is smaller than that of advection fog,
which is distributed in the range of 1–35 μm. The number of fog
particles with larger radius increases with the decrease of fog
visibility.

3 The scattering of Bessel beams by
fog particles

A Bessel beam is a vortex beam whose field distribution can be
expressed by the column Bessel function, whose electric field
expression is [24]:

E r,ϕ, z( ) � E0 exp ikzz( )Jl k · r( ) exp ± ilϕ( ) (4)
here E0 is the amplitude of the electric field, R and φ are the radial
coordinates and angular coordinates in the cylindrical coordinate
system, which Jl are the Bessel functions of order l. Transverse wave
number kr � k sin α, axial wave number kz � k cos α, where α is a
semi-conical angle.

According to the angular spectrum theory, a Bessel beam can be
seen as a coherent superposition of an infinite number of plane
beams whose wave vectors are located on the cone and have the
same angle between them and the z-axis, which is called the semi-
conical angle of the Bessel beam [25–27].

The Bessel beam can be expressed as a superposition of
plane beams
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Ev
i r( ) � E0∫2π

0
e α, β( ) exp ik · r0 + r( )[ ]dβ (5)

where E0 is the amplitude of the electric field of the beam, e(α, β)
represents the vector of the polarization direction; e(α, β) exp[ik ·
(r0 + r)] is a plane beams, r0(x0, y0, z0) is the position vector of
the scatter.

For Bessel beams polarized along the x-axis and polarized along
the y-axis, the polarization direction vector e(α, β) is
êx α, β( ) � sin α cos βêr α, β( ) + cos α cos βêθ α, β( ) − sin βêφ α, β( )

(6)
êy α, β( ) � sin α sin βêr α, β( ) + cos α sin βêθ α, β( ) + cos βêφ α, β( )

(7)
Firstly, the plane beams are expressed by the spherical vector

wave function series [28],

e α, β( ) exp ik · r( ) � ∑∞
n�1

∑n
m�−n

Dmn pmn
′ M1

mn kr( ) + qnn
′ N1

mn kr( )[ ] (8)

where Dmn is the normalization constant, Dmn � (2n+1)(n−m)!
2n(n+1)(n+m)!, and

the expansion coefficient that expands the plane beams into a
spherical vector wave function is

pmn
′ � −2in+1 exp −imβ( )e α, β( ) πmn cos α( )êθ α, β( ) − iτmn cos α( )êφ α, β( )[ ]

qmn
′ � −2in+1 exp −imβ( )e α, β( ) τmn cos α( )êθ α, β( ) − iπmn cos α( )êφ α, β( )[ ]⎧⎨⎩

(9a)

For a Bessel beam polarized along the x-axis, the x-direction
polarization vector (6) is Substituted into (9),

pmn
′ � −2in+1 exp −imβ( ) cos α cos βπmn cos α( ) + i sin βτmn cos α( )[ ]

qmn
′ � −2in+1 exp −imβ( ) cos α cos βτmn cos α( ) + i sin βπmn cos α( )[ ]{

(9b)
For a Bessel beam polarized along the y-axis, the y-direction

polarization vector (7) is Substituted into (9),

pmn
′ � −2in+1 exp −imβ( ) cos α sin βπmn cos α( ) − i cos βτnn cos α( )[ ]

qmn
′ � −2in+1 exp −imβ( ) cos α sin βτnn cos α( ) − i cos βπmn cos α( )[ ]{

(10)
Substituting the expansion equation of the plane beams (8) into

formula (5) of the Bessel vortex beam, the integral of the azimuth
angle β from 0 to 2π is calculated

∫2π

0
exp −imβ( ) cos β exp ik · r0( )dβ �

π exp ikz0 cos α( ) exp i 1 −m( )φ0[ ]J1−m ρ0( ) + exp −i m + 1( )φ0[ ]J−1−m ρ0( ){ }
(11)

∫2π

0
exp −imβ( ) sin β exp ik · r0( )dβ �

−πi exp ikz0 cos α( ) exp i 1 −m( )φ0[ ]J1−m ρ0( ) − exp −i m + 1( )φ0[ ]J−1−m ρ0( ){ }
(12)

here ρ0 � k
������
x2
0 + y2

0

√
sin α, φ0 � arctan(y0/x0) + π/2.

Finally, the expansion of the spherical vector wave function of
the vector Bessel beam is obtained

Ev
i r( ) � E0∑∞

n�1
∑n
m�−n

pv
mnM

1
mn kr( ) + qvmnN

1
mn kr( )[ ] (13)

Its expansion coefficient pv
mn and qvmn is as follows

pv
mn

qvmn
{ } � −2Dmni

n+1 exp ikz0 cos α( ) cos α
πmn

τmn
{ }Iv+ + τmn

πmn
{ }Iv−[ ]

(14)
For a Bessel beam polarized along the x-axis

Ix± � π exp i 1 −m( )φ0[ ]J1−m ρ0( ) ± π exp −i m + 1( )φ0[ ]J−1−m ρ0( )
(15)

And a Bessel beam polarized along the y-axis

Iy± � −πi exp i 1 −m( )φ0[ ]J1−m ρ0( ) ± πi exp −i m + 1( )φ0[ ]J−1−m ρ0( )
(16)

FIGURE 1
Distribution of fog particles with different radii versus visibility in fogs. (A) Advection fog. (B) Radiation fog.
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According to the relationship between the electric field and the
magnetic field H � (iωμ)−1∇× E, the expression of the Bessel beam
magnetic field vector of the corresponding polarization is

Hi r( ) � k

iωμ
E0∑∞

n�1
∑n
m�−n

qvmnM
1
mn kr( ) + pv

mnN
1
mn kr( )[ ] (17)

To solve the spherical scattering field of the beam, the scattering
field (Es,Hs) of the Bessel beam and the inner field of the sphere
scattering (E1, H1) are represented by the spherical vector
wave function.

Ev
s r( ) � E0∑∞

n�1
∑n
m�−n

avmnM
3
mn kr( ) + bvmnN

3
mn kr( )[ ]

Hv
s r( ) � k

iωμ
E0∑∞

n�1
∑n
m�−n

bvmnM
3
mn kr( ) + avmnN

3
mn kr( )[ ]

(18)

Ev
1 r( ) � E0∑∞

n�1
∑n
m�−n

cvmnM
1
mn k1r( ) + dv

mnN
1
mn k1r( )[ ]

H1 r( ) � k1
iωμ1

E0∑∞
n�1

∑n
m�−n

dv
mnM

1
mn k1r( ) + cvmnN

1
mn k1r( )[ ]

(19)

By applying the electromagnetic field boundary conditions to
each part of the electromagnetic field, the scattering coefficient avmn,
bvmn and internal field coefficient cvmn, dvmn can be solved. The
scattering coefficient and the internal field coefficient are related
to the coefficients an, bn, cn, dn calculated by the Mie theory

avmn � Anpv
mn

bvmn � Bnqvmn
{ (20)

cvmn � Cnpv
mn

dv
mn � Dnqvmn

{ (21)

According to the results of the scattering coefficient of the Bessel
beam, the expression of the scattering field can be further obtained.
Substituting the scattering field coefficient and the spherical vector
wave function into the expression of the scattering field, considering
the far-field approximation of the Hankel function, the far field
scattering can be represented by two transverse components

Es
φ � −e

ikR

kR
S1

Es
θ � i

eikR

kR
S2

(22)

The expression of the scattering amplitude function is as follows

Sv1 θ,φ( ) � ∑∞
n�1

∑n
m�−n

−i( )n exp imφ( ) avmnπ
m| |
n cos θ( ) + bvmnτ

m| |
n cos θ( )[ ]

Sv2 θ,φ( ) � ∑∞
n�1

∑n
m�−n

−i( )n exp imφ( ) avmnτ
m| |
n cos θ( ) + bvmnπ

m| |
n cos θ( )[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(23)

π m| |
n cos θ( ) � m

sin θ
Pm
n cos θ( )

τ m| |
n cos θ( ) � dPm

n cos θ( )
dθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (24)

Pm
n (cos θ) is nth ordermth degree associated Legendre polynomials,

which is defined as

Pm
n x( ) � −1( )m 1 − x2( )m/2 dm

dxm
Pn x( ) (25)

where Pn(x) denotes the Legendre function.
Figure 2 shows the curves of the differential scattering cross-

section (DSCS) of fog particles as a function of the angle when
incident with a Bessel beam at different half-conic angles. As can be
seen from Figure 2, the change of the half-conic angle of the Bessel
beam has a great influence on the micro-dispersed cross-section of
the particles. In most scattering angle directions, the micro-
dispersed cross-section decreases with the increase of the half-
conic angle.

Many researchers expressed a Bessel beam as superposition of
plane beams [25–27], used diffraction theories to explain the Bessel
self-healing mechanism. In our paper, similar with these researchers,
a Bessel beam is also considered as a set of plane beams propagating
on a cone, as shown in Figure 3.

The obstacle is a spherical water particle on z-axis, the
average intensity of the plane beams irradiating on the water
particle is same as that of the Bessel beam, then, by using the
scattering theories, we calculate the DSCS of a water particle with
a plane beam (PB) and a Bessel beam (BB) irradiating
respectively, as shown in Figure 4, comparing with a plane
beams, Bessel beams have less DSCS at most scattering angles.
That mean, the water particle on z-axis has less effect on the
superposition of plane beams propagating on a cone, comparing
with the effect on a plane beam propagating along z-axis. The
Bessel beam can reconstruct behind the water particle. The
scattering theories in our paper and the diffraction theories in
the literature [25–27] are descriptions of self-healing mechanism
of Bessel beams in different way.

4 Multiple scattering theory for Bessel
beams prorogation in fogs

In 2013, Shen [29] focused on the attenuation of 0.532 μm
wavelength laser in fog based on the Mie theory, and established an
attenuation model. In 2019, Ma [30] used the Mie theory and Monte
Carlo method to study the scattering and radiative transfer
characteristics of a dense optical soft particle system, and found
that particle agglomeration has a significant impact on the scattering
characteristics of particles, and the scattering coefficient and
asymmetry factor of particles increase significantly with the
increase of agglomeration. In the same year, Wang [31] extended
the theoretical framework of forward and backward Monte Carlo
radiative transfer modeling based on the newly derived forward and
backward vector scattering radiative transfer equations. In 2020,
Zhang [32] proposed an improved Monte Carlo simulation to track
the scattering of radiation in a multi-disperse sea fog layer, which
can more accurately calculate the reflection and transmission of
radiation through the propagation of sea fog with two different
refractive indices, and compare it with previous results.

As shown in Figure 5, the incident plane is the xz plane, and z =
0 and z = h are the boundaries of the medium. The incident plane of
the medium is z = 0, and the interface is z = h, without considering
boundary reflection.
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Assuming that the medium is passive and there is no interaction
between the particles, the reduction intensity rate Iri(z,Ω) satisfies
the equation,

cos θ
dIri z,Ω( )

dz
� −ρ< σt > Iri z,Ω( ) (26)

The diffusion strength rate Id(z,Ω) satisfies

cos θ
dId z,Ω( )

dz
+ ρ< σt > Id z,Ω( )

� ρ< σt >
4π

∫
4π
p Ω,Ω′( )I z,Ω′( )dΩ′ (27)

FIGURE 2
Differential scattering cross-section (DSCS) of Bessel beams. (A) l = 0, E-plane; (B) l = 0, H-plane; (C) l = 1, E-plane; (D) l = 1, H-plane; (E) l = 3, E-
plane; (F) l = 3, H-plane.
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Intensity rate (z,Ω) � Iri(z,Ω) + Id(z,Ω) , N(α) is a
droplet spectrum distribution function, where α � 2πa/λ
represents the scale parameter. The particle number density
� ∫∞

0
N(α)dα , which σt(α) is the attenuation cross-section of

the particle α and p(Ω,Ω′; α) is a phase function of the
size parameter.

The average attenuation cross section 〈σt〉 and the average
scattering cross section 〈σs〉 of the medium particle population are
calculated by the following formula,

〈σt〉 � 1
ρ
∫∞

0
N α( )σtdα

〈σs〉 � 1
ρ
∫∞

0
N α( )σsdα

(28)

By definition, the albedo of the average particle satisfies 〈W0〉 �
〈σs〉/〈σt〉.

The average phase function of the particle swarm is

〈p Ω,Ω′( )〉 � 1
ρ〈σt〉

∫∞

0
N α( )σt α( )p Ω,Ω′( )dα (29)

where 〈g〉 is the average asymmetry factor. For the convenience of
calculation, the phase function is approximated by the H-G
phase function,

p μ( ) � W0 1 − g2( ) 1 + g2 − 2gμ[ ]−3/2 (30)

The scattering angle cosine satisfies μ � cos γ � ŝ · ŝ′, and the
asymmetric factor g is normalized to obtain

g � 1
2
∫1

−1
p cos θ( ) cos θd cos θ (31)

Since the phase function is only affected by angles γ, it is
expanded by the Legendre series,

p cos γ( ) � p μ,ϕ; μ′,ϕ′( ) � ∑∞
n�0

WnPn cos γ( ) (32)

integral

p0 μ, μ′( ) � 1
2π

∫2π

0
dϕ

1
2π

∫2π

0
dϕ′p μ, ϕ; μ′, ϕ′( ) (33)

Substituting (32) into the above Eq. 33 yields

FIGURE 3
(A) A plane beam irradiates a water particle of fog. (B) A Bessel beam irradiates a water particle of fog.

FIGURE 4
(A)DSCS (E-plane) for plane beam (PB) and Bessel beams (BB), for Bessel beams, l=0,α= 5o, 10 o, 15 o respectively. (B)DSCS (E-plane) for planewave
beam (PB) and Bessel beams (BB), for Bessel beams, l = 1,α = 5o, 10 o, 15 o respectively.
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p0 μ, μ′( ) � ∑∞
n�0

WnPn μ( )Pn μ′( ) (34)

where W0 is the albedo of the particle, and p0(μ, μ′) � p0(μ′, μ) �
p0(−μ,−μ′) � p0(−μ′,−μ) . Then the expression of the average
asymmetry factor is

<g> � 1
ρ< σs >

∫∞

0
N α( )σs α( )g α( )dα (35)

here μ � cos θ, optical thickness τ � ∫z

0
ρ〈σt〉dz,

p(s,Ω′) � p(μ,ϕ; μ′,ϕ′), I(z,Ω) � I(τ, μ)。
The reduction intensity rate Iri and the diffusion intensity rate Id are

Iri τ, μ( ) � F0e
−τ/μ (36)

μ
dId τ, μ( )

dτ
+ Id τ, μ( )

� 1
4π

∫1

−1
dμ′∫2π

0
dϕ′p μ,ϕ; μ′,ϕ′( )Id τ, μ′( ) + p μ,ϕ; μ′,ϕ′( )

4π
F0e

−τ/μ

(37)
Integrating Eq. 37 yields

μ
dId τ, μ( )

dτ
+ Id τ, μ( ) � 1

2
∫1

−1
dμ′p0 μ, μ′( )Id τ, μ′( )

+ 1
4π

p0 μ, μ′( )F0e
−τ (38)

The corresponding boundary conditions are

Id 0, μ( ) � 0 0≤ μ≤ 1
Id τ0, μ( ) � 0 − 1≤ μ≤ 0

(39)

Equation 38 describes the multiple scattering of electromagnetic
waves in a random medium.

5 Simulations of Bessel beams
propagation in fogs

A Bessel beam is a non-diffraction beam. We set the direction of
the photon exit perpendicular to the incident interface, as shown in
Figure 6.

The Bessel beams propagation in the fog are calculated byMonte
Carlo method, The Bessel beam is sampled by 106 photons, and the
light intensity distribution is expressed by the number of photons.
The number of photons sampled meets the Bessel function
distribution. and the energy weight of each photon is equal to 1.
From the previous theoretical section, the average extinction cross-
sections of fog droplets corresponding to different visibility were
calculated in Table 1, these were used for photon transfer calculation
byMonte Carlo method. The incident wavelength is 1.55μm, and the
corresponding complex refractive index of the fog particles is 1.318
+ i9.86 × 10−5. The imaginary part of the complex refractive index is
very small, indicating that the absorption of fog particles is very
weak, so 〈σs〉 ≈ 〈σt〉, and 〈W0〉 � 〈σs〉/〈σt〉 ≈1。

Then, the attenuation and scattering of Bessel beam in fog is
analyzed by simulating the transmitted light intensity distribution
after a certain distance of transmission in advection fog and radiant
fog with different visibility.

Figure 7 shows the intensity distribution of the a first-order Bessel
beam with a wavelength of 1.55 μm and a half-cone angle of 5o

transmitting 1 km in advection fog with different visibility. As shown
in the figure, the Bessel beam retains its lateral intensity distribution at a
visibility of 0.3 km, and the fog attenuates the Bessel beammore strongly
as the visibility decreases, and the beam attenuates to the point of losing
its original intensity distribution at a visibility of 0.05 km.

Figure 8 calculates the intensity distribution of a first-order
Bessel beam with a wavelength of 1.55 μm and a half-cone angle of
the transmitted light transmitting 1 km in the radiation fog of
different visibility. As shown in the figure, the attenuation of the

FIGURE 6
(A) A Bessel beam propagation in the fog. (B) Intensity of Bessel beam at z = 0.

FIGURE 5
Parallel planar medium with incident thickness d of plane beams.
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Bessel beam by the radiation fog becomes stronger as visibility
decreases. Comparing Figure 7 with Figure 8, it can be intuitively
seen that under the same visibility, the attenuation of the Bessel
beam by the radiation fog is stronger, especially when the visibility

V = 0.05 km, the Bessel beam is almost completely scattered after
1 km of transmission in the radiation fog.

Figure 7 and Figure 8 show that when the visibilities are
relatively high (V = 0.3km, 0.2 km), the Bessel beam can maintain

TABLE 1 Average extinction cross-section of fog droplets for different visibility.

Visibility 0.3 km 0.2 km 0.1 km 0.05 km

〈σt〉 (Advection fog) 14 μm2 21 μm2 38 μm2 67 μm2

〈σt〉 (Radiation fog) 11 μm2 15 μm2 29 μm2 53 μm2

FIGURE 7
Intensity distribution of Bessel beam in advection fog for different visibility. (A) V = 0.3 km. (B) V = 0.2 km. (C) V = 0.1 km. (D) V = 0.05 km.

FIGURE 8
Intensity distribution of Bessel beam in radiation fog for different visibility. (A) V = 0.3 km. (B) V = 0.2 km. (C) V = 0.1 km. (D) V = 0.05 km.
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the original optical field structure well. As the visibilities are
very low (V = 0.1km, 0.05 km), the optical field structure is
destroyed, resulting in irregular optical field fluctuations.
However, the central main lobe can still maintain
high intensity, and the surrounding ring can still be
distinguished, demonstrating the strong self-healing ability of
the Bessel beam.

Figure 9 shows the intensity distribution of transmitted light at
different distances H from a first-order Bessel beam with a
wavelength of 1.55 μm and a half-conic angle of 1.55 μm in
advection fog with visibility V = 0.05 km. As can be seen from
the figure, the farther the Bessel beam travels in the fog, the stronger
the attenuation effect of the fog on the Bessel beam.

Figure 10 shows the transmitted light intensity distribution of a
first-order Bessel beamwith a wavelength of 1.55 μmand a half-cone
angle of 5o transmitted at different distances H in the radiation fog
with visibility V = 0.05 km. As shown in the figure, the intensity of
the Bessel beam is weaker the longer the propagation distance, and
compared with Figure 9, the attenuation of the Bessel beam by
radiation fog is stronger than that of advection fog at different
propagation distances H.

From Figure 9 and Figure 10, it can be seen for the low visibility,
as the transmission distance increases, the Bessel beam optical field
structure gradually breaks down, but its central main lobe and
surrounding ring can still be distinguished, showing the strong
self-reconstruction ability of Bessel beams.

FIGURE 9
Intensity of Bessel beams at different distances in the advection fog (V = 0.05 km). (A) H = 0.3 km. (B) H = 0.5 km. (C) H = 0.7 km. (D) H = 1.0 km.

FIGURE 10
Intensity of Bessel beams at different distances in the radiation fog (V = 0.05 km). (A) H = 0.3 km. (B) H = 0.5 km. (C) H = 0.7 km. (D) H = 1.0 km.
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Figure 11 shows the transmissivity and reflectivity of Bessel
beam propagation in advection fog at a wavelength of 1.55 μmwith a
half-conic angle of 5o. As can be seen from the figure, the
transmissivity of the Bessel beam increases with increasing
visibility, while the reflectivity decreases. And when the visibility
is high, the sum of transmissivity and reflectivity is to 1, which
means that the lower the visibility, the more photons are thoroughly
absorbed in the advection fog.

Figure 12 shows the transmissivity and reflectivity of a first-
order Bessel beam with a wavelength of 1.55 μm and a semi-conic
angle of 5o in the radiation fog with different visibility. As can be
seen from the figure, similar to that in advection fog, with the
increase of visibility, the transmissivity increases and the reflectivity
decreases. And when the visibility is high, the sum of transmissivity

and reflectivity is closer to 1. According to the above transmitted
light intensity distribution diagram, when the transmissivity drops
to about 0.5, the Bessel beam will lose its original light intensity
distribution. Compared to Figure 11, it can be seen that the
attenuation effect of radiation fog on the Bessel beam is stronger
at the same visibility.

Figure 13 shows the transmissivity and reflectivity of Bessel
beams of different orders with a wavelength of 1.55 μm and a half-
cone angle of 5o transmitting in advection fog with visibility. As can
be seen from the figure, when the visibility is the same, the larger the
topological charge, the greater the transmissivity in the fog. When
the visibility is the same, the larger the topological charge, the
smaller the average extinction coefficient, and the less the
transmissivity is attenuated.

FIGURE 11
Transmissivity and reflectivity of Bessel beam in advection fog with different visibilities. (A) Transmissivity. (B) Reflectivity.

FIGURE 12
Transmissivity and reflectivity of Bessel beams in radiation fog with different visibilities. (A) Transmissivity. (B) Reflectivity.
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Figure 14 shows the transmissivity and reflectivity curves of
Bessel beams of different orders with a wavelength of 1.55 μm and a
semi-conic angle of 5o in the radiation fog of visibility. Consistent
with advection fog, it can be seen from the figure that the greater the
topological charge and the greater the transmissivity in the radiation
fog when the visibility is the same. Moreover, the transmissivity in
radiation fog is much more affected by the change of topological
charge than in advection fog. This indicates that the transmissivity
and reflectivity in fog are mainly affected by the average extinction
coefficient.

In order to compare the transmission performance of the two
beams in fog, the reflectivity of the Bessel beam and the plane beams
is compared, and the ability of the two beams to penetrate the fog is
analyzed. In order to facilitate comparison, one wavelength of the

visible (0.63 μm), the near-infrared (1.55 μm) and the mid-infrared
(10.6 μm) were selected for comparative analysis.

Figure 15 shows the transmissivity and reflectivity of a first-
order Bessel beam with a plane beams in advection fog with a
visibility of 0.1 km. As can be seen from the figure, the transmissivity
of the Bessel beam in advection fog is greater than that of the plane
beams at the same wavelength, and the reflectivity is lower than that
of the plane beams, these are because the strong self-healing and
non-diffraction character of Bessel beams in fogs. From the
definition of the complex refractive index, the imaginary part of
the complex refractive index corresponds to the absorption capacity
of light. From Table 2, it can be seen that the imaginary part of the
complex refractive index of visible (wavelength is 0.63 μm) and
near-infrared (wavelength is1.55 μm) light is very small, indicating

FIGURE 13
Transmissivity and reflectivity of different orders Bessel beams in advection fog. (A) Transmissivity. (B) Reflectivity.

FIGURE 14
Transmissivity and reflectivity of different orders Bessel beams in radiation fog. (A) Transmissivity. (B) Reflectivity.

Frontiers in Physics frontiersin.org11

Chen et al. 10.3389/fphy.2024.1356528

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1356528


that the absorption of fog particles is very weak, while the imaginary
part of the complex refractive index of the mid-infrared light
(wavelength is 10.6 μm) is larger, resulting in stronger absorption
and attenuation as shown in Figure 15.

Figure 16 shows the transmissivity and reflectivity of a first-
order Bessel beam with a plane beams in a radiation fog with a
visibility of 0.1 km. The transmissivity of Bessel beams of the same

wavelength in the radiation fog is greater than that of plane beams. It
can be observed in the figure that the transmissivity of plane beams
in radiation fog is different from that in advection fog, mainly when
the wavelength of 10.6 μm is transmitted in radiation fog, the
scattering effect of fog particles on this wavelength is mainly
Rayleigh scattering, so that the transmissivity of plane beams at
this wavelength is very close to that of Bessel beams. It can be

FIGURE 15
Comparison of Bessel beams (BB) and plane beams (PB) in advection fog. (A) Transmissivity. (B) Reflectivity.

TABLE 2 Complex refractive index of fog for different light wavelengths.

wavelength (μm) 0.63 1.55 10.6

complex refractive index 1.332 + i1.44 × 10−8 1.318 + i 9.86 × 10−5 1.179 + i 0.0723

FIGURE 16
Comparison of Bessel beams (BB) and plane beams (PB) in radiation fog. (A) Transmissivity. (B) Reflectivity.
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concluded that in most cases, compare with plane beams, because of
self-healing and non-diffraction, Bessel beams can propagate longer
distance in fogs.

6 Conclusion

Based on the calculation of the scattering characteristics of a single
fog particle by the Bessel beam, the Monte Carlo model of the
transmission of Bessel beams in fog is established. The transmissivity
of the Bessel beam in fog with different visibility is calculated, and the
intensity distribution of transmitted light at different distances in fog
with different visibility is gotten. It can be found that when the visibility
is the same, the attenuation effect of radiation fog on the Bessel beam is
stronger than that in advection fog. The influences of Bessel beam
parameters (topological charge, semi-conic angle and wavelength) on
the transmissivity were studied. The analysis shows that the larger the
topological charge number, the larger the semi-conic angle, and the
greater the transmissivity of the Bessel beam. the transmissivity of the
visible band (0.63 μm) and the near-infrared band (1.55 μm) is similar,
while the Bessel beam in the mid-infrared band (10.6 μm) has a strong
absorption attenuation effect on the wavelength and low transmissivity
due to the larger imaginary part of the complex refractive index at this
wavelength. Finally, the propagation characteristics of the Bessel beam
in the fog are compared with the plane beams, and the simulation
results show the self-healing ability of the Bessel beams propagation in
the fogs, and comparing with the plane beams, the longer propagation
distance of Bessel beams in the fogs.
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