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Night pedestrian detection with visible image only suffers from the dilemma of
high miss rate due to poor illumination conditions. Cross-modality fusion can
ameliorate this dilemma by providing complementary information to each other
through infrared and visible images. In this paper, we propose a cross-modal
fusion framework based on YOLOv5, which is aimed at addressing the challenges
of night pedestrian detection under low-light conditions. The framework
employs a dual-stream architecture that processes visible images and infrared
images separately. Through the Cross-Modal Feature Rectification Module
(CMFRM), visible and infrared features are finely tuned on a granular level,
leveraging their spatial correlations to focus on complementary information
and substantially reduce uncertainty and noise from different modalities.
Additionally, we have introduced a two-stage Feature Fusion Module (FFM),
with the first stage introducing a cross-attention mechanism for cross-modal
global reasoning, and the second stage using a mixed channel embedding to
produce enhanced feature outputs. Moreover, our method involves multi-
dimensional interaction, not only correcting feature maps in terms of channel
and spatial dimensions but also applying cross-attention at the sequence
processing level, which is critical for the effective generalization of cross-
modal feature combinations. In summary, our research significantly enhances
the accuracy and robustness of nighttime pedestrian detection, offering new
perspectives and technical pathways for visual information processing in low-
light environments.
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1 Introduction

Pedestrians are a vital element in traffic scenarios, and the ability to detect pedestrians
quickly and accurately has increasingly become a critical research topic in the field of
computer vision. Pedestrian detection plays an essential role in various practical
applications, such as autonomous driving perception systems [1–3] and intelligent
security monitoring systems [4–6]. Additionally, pedestrian detection serves as the
foundational task for downstream tasks like pedestrian tracking [7–9], action
recognition and prediction [10–12], with its accuracy directly impacting the
performance of these tasks. With the significant advancements in convolutional neural
networks (CNNs), pedestrian detection models [13–16] have been continually updated and
iterated, bringing forth models with outstanding performance. However, most pedestrian
detection models are trained on single-modality, well-illuminated visible light datasets
[17–19]. When faced with low-light conditions such as at night, their performance
significantly declines due to excessive noise and decreased discriminability [4, 20].
Pedestrian detection using only nighttime visible light images is particularly challenging
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because the data modality itself lacks a valid target area. Therefore,
an increasing amount of research is focusing on cross-modality
fusion learning, such as the fusion detection of visible and infrared
images [21–26].

Infrared vision sensors operate on the principle of thermal
imaging, distinguishing pedestrians from the background by
differences in thermal radiation. Infrared imagery is robust
against interference and is not easily affected by adverse
environmental conditions [27, 28]. Even at night, infrared images
can reveal the shape of pedestrians, effectively compensating for the
vulnerability of visible light images to lighting conditions. However,
infrared images also have drawbacks, such as lower resolution and a
lack of texture information. On the other hand, visible light images
provide rich detail and texture information [22]. Therefore, cross-
modal fusion aims to extract complementary information between
these two modalities, enhancing the flow of information between
them and improving the perceptibility and robustness of detection
algorithms. In the field of image fusion, a lot of work [29] has been
carried out on the effective fusion of infrared images and visible
light images.

In the field of pedestrian detection that fuses visible and infrared
imaging, many approaches rely solely on Convolutional Neural
Networks (CNN) to extract deep features [21, 23, 25, 26], with
artificially designed complex fusion mechanisms to integrate
features from different modalities. Extensive research has
demonstrated the powerful representational capabilities of CNNs
for expressing visual features in single-modality scenarios [30–32].
However, due to the limited receptive field, CNNs, while adept at
capturing local information, exhibit weaker capabilities in capturing
global texture information across modalities in fusion tasks.
Transformer [33, 34] is equipped with self-attention mechanisms,
possess a global receptive field and excel at learning long-range
dependencies. Therefore, combining CNNs with transformers for
cross-modality nighttime pedestrian detection can leverage the
strengths of both, resulting in complementary advantages and
enhanced detection performance.

Recently, vision transformers [33, 35–37] have been processing
inputs as sequences and have demonstrated the capability to capture
long-range correlations, offering a promising avenue towards a
unified framework for multi-modal tasks. However, it remains to
be clarified whether vision transformers can bring potential
improvements to vis-inf pedestrian detection compared to
existing multi-modal fusion modules [38–40] based on
Convolutional Neural Networks (CNNs). Crucially, while some
earlier studies have employed a simplistic global multi-modal
interaction strategy, such an approach has not been universally
applicable across various sensing data combinations [41–43]. We
posit that in vis-inf pedestrian detection, which involves a variety of
supplementary information and uncertainties, a comprehensive
cross-modal interaction should be implemented to fully leverage
the potential of cross-modal complementary features.

To address the challenges in vis-inf nighttime pedestrian detection,
we propose an interactive cross-modal fusion framework based on
yolov5, named FRFPD. This framework aims to enhance the
performance of detection algorithms through efficient information
fusion. FRFPD is constructed as a dual-stream architecture,
specifically handling visible light (VIS) and infrared (Inf) data
streams. On this foundation, we have designed feature interaction

and fusion modules to optimize model performance: The Cross-
Modal Feature Rectification Module (CMFRM) fine-tunes VIS and
Inf features at a granular level, utilizing their spatial correlations to
enhance the model’s focus on complementary information and
effectively reduce the uncertainty and noise from different
modalities. This process precisely handles the complexity of multi-
source data, paving the way for more effective feature extraction and
interaction. Moreover, the Feature Fusion Module (FFM) [41] is
structured in two stages, ensuring ample information exchange
before feature fusion on a global scale. In the first stage, we
introduce a cross-attention mechanism for cross-modal global
reasoning, propelled by a wide receptive field facilitated by the self-
attention mechanism. In the second stage, a mixed channel embedding
is employed to generate enhanced feature outputs. In essence, the
interaction strategy we introduce is multidimensional: within the
CMFRM module, we correct feature maps on a spatial dimension;
while in the FFM module, it apply a cross-modal attention mechanism
for feature fusion across the global channel dimension. These
approaches are vital for the effective generalization of cross-modal
feature combinations, enhancing the model’s capability to process
information from diverse sensory modalities. Our contributions are
summarized as follows:

(1) A dual-stream architecture is proposed in the FRFPD framework,
leveraging YOLOv5, to handle visible light (VIS) and infrared
(INF) data streams separately, tailored for addressing low-light
challenges in nighttime pedestrian detection.

(2) The Cross-Modal Feature Rectification Module (CMFRM) is
introduced to fine-tune visible and infrared features,
exploiting their spatial correlations to enhance focus on
complementary information, significantly reducing
uncertainty and noise from different modalities. NF.

(3) An advanced Feature FusionModule (FFM) developed in [41]
is introduced, in two stages to promote ample information
exchange and utilize a mixed channel embedding for
generating enhanced feature outputs, improving detection
capabilities.

2 Related works

The widespread application of Transformers in the field of
Natural Language Processing (NLP) has proven their excellence
and convenience in handling sequential data, which has also made
them popular for visual tasks.

2.1 Vision transformer

The widespread application of Transformers in the field of
Natural Language Processing (NLP) has proven their excellence
and convenience in handling sequential data, which has also made
them popular for visual tasks [35, 36, 44]; [45, 46]. ViT [35]
addresses the high computational cost issue of Transformers in
traditional visual tasks by flattening images into a series of pixel
blocks (patches), transforming image processing tasks into a form
similar to the word sequence processing in NLP. DeiT [47] further
proposes a convolution-free Transformer structure, introducing a

Frontiers in Physics frontiersin.org02

Feng et al. 10.3389/fphy.2024.1356248

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1356248


teacher-student strategy through distillation tokens, with training
conducted solely on ImageNet. Moreover, the positional encoding
feature of Transformers is used to capture the order information of
sequence data, which can be either fixed or learnable [48].

In the field of computer vision, Visual Transformer (VT) have
demonstrated significant capabilities across various tasks such as
image Fusion [49, 50]), pedestrian detection [51], particularly
excelling in multispectral detection tasks [52–55] where they can
focus on important features scattered across different spectral bands.
Their self-attention mechanism’s ability to model long-range
dependencies and capture global context is especially valuable.
Unlike convolutional neural networks [26, 56–58], VT operate on
sequences of image patches (tokens) and are adept at learning to
concentrate on themost informative parts of the input, making them
inherently suited for multispectral detection where significant
features may be sparsely distributed across spectral bands.
However, the application of VT in multispectral detection,
especially under challenging lighting conditions, remains a
developing field. Our work is inspired by the intrinsic advantages
of VT to tackle unique challenges in low-light multispectral
scenarios. We have introduced a novel VT-based framework,
specifically designed for this purpose, that incorporates modules
sensitive to the nuances of multispectral data. Our proposed Cross-
Modal Feature RectificationModule (CMFRM) expands the concept
of VT by integrating cross-modal learning directly into the
transformer architecture, serializing tokens along the spatial
dimension, thereby enhancing the model’s ability to perform
fine-grained feature adjustment. This is critical for aligning
features across different modalities, particularly when contending
with varying levels of illumination and noise inherent in low-light
conditions.

2.2 Multispectral pedestrian detection

The field of pedestrian detection has seen the emergence of
numerous outstanding studies, including early traditional detection
methods [59, 60] and the surge of CNN-based detection
technologies [61–64] that came with the rapid development of
Convolutional Neural Networks (CNN). However, the majority
of research is still focused on single-modality visible light images.
In nocturnal environments, relying solely on visible light images for
pedestrian detection often fails to achieve satisfactory results, mainly
because conventional visible light cameras perform poorly in night-
time imaging, with target areas not being distinct and substantial
noise interference. For this reason, it becomes extremely difficult for
models like CNNs to extract effective features from nighttime visible
light images. As research has deepened, infrared imagery, with its
unique advantages in night-time settings, has started to be used to
complement the shortcomings of visible light images. This has
attracted increasing attention from researchers and has spurred
the advancement and exploration of multispectral pedestrian
detection technologies, especially those based on CNN approaches.

In the field of multispectral detection, fusion algorithms play a
crucial role. The AR-CNN [65] model introduces an end-to-end
region alignment algorithm, which addresses the subtle
misalignments caused by positional offsets between
multimodalities. This fusion approach reweights features to

prioritize more reliable characteristics and suppress ineffective
ones. Meanwhile, the CIAN [26] model leverages the interactive
properties of multispectral input sources, proposing a cross-channel
interactive attention network. This network extracts global features
from each channel of the twomodalities and recalibrates the channel
responses of intermediate feature maps using an attention
mechanism by computing the inter-channel correlation. In
existing multispectral detection research, models like AR-CNN
and CIAN offer solutions for minor misalignments between
modalities and feature recalibration; however, these methods still
show limitations in complex scenarios under low-light conditions,
such as night-time pedestrian detection. These limitations manifest
in two aspects: firstly, feature information loss due to insufficient
lighting under low-light conditions cannot be compensated for by
simply reweighting features; secondly, despite the CIAN model
employing an interactive attention mechanism, more efficient
strategies for information exchange and fusion are needed to
handle the complex interactions between different modalities.
CFT [66] proposed a fusion algorithm that combines transformer
and CNN, which can learn remote dependencies and extract global
context information. Self-attention can fuse features within and
between modes. It is a relatively novel method recently, but this
model uses traditional transformer, which has the problems of
positional encoding and multi-head attention mismatch cross-
modality fusion. ProbEn [67] research primarily focuses on the
issue of multimodal object detection, with a particular emphasis on
addressing the challenges of object detection in low-light conditions.
It introduces the ProbEn probabilistic ensemble technique to
effectively fuse object detection results from different sensors,
thereby significantly enhancing the performance of multimodal
object detection. UGC [68] is dedicated to addressing crucial
challenges in multispectral pedestrian detection, encompassing
issues such as image calibration and disparities between different
modalities. The authors introduce a novel approach that aims to
enhance pedestrian detection performance by incorporating Region
of Interest (RoI) uncertainty and predictive uncertainty into the
feature fusion and modality alignment processes.

To overcome these limitations, we propose the FRFPD
framework, central to which are the Cross-Modal Feature
Rectification Module (CMFRM) and the Feature Fusion Module
(FFM). The CMFRM is motivated by the need to serialize tokens in
the spatial dimension for fine-grained feature adjustment, aligning
features within the visible and infrared modalities. Its design aims to
finely tune features across modalities by exploiting their spatial
correlations to amplify complementary information, thereby
significantly reducing uncertainty and noise in low-light
conditions. This approach is crucial for enhancing the accuracy
and robustness of detection under varied lighting conditions.
Concurrently, the FFM addresses the challenge of integrating
diverse modalities effectively. It serializes tokens globally in the
channel dimension, first performing global reasoning between
modalities through a cross-attention mechanism, then refining
the feature output with hybrid channel embedding. This strategy
is driven by the need to provide not only an in-depth exchange of
information but also a more nuanced enhancement of channel
responses than the CIAN model. The motivation behind FFM is
to improve the overall quality of feature fusion, enhancing the
detection capabilities in complex scenarios. The FRFPD
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framework sets a new performance benchmark for cross-modal
feature fusion through its multi-dimensional interaction strategy,
correcting feature maps on the channel and spatial dimensions, and
implementing cross-attention at the sequence processing level.

3 Proposed method

3.1 Overview

Among the numerous target detection CNN models,
YOLOv5 [69] is a highly reliable algorithm with fast recognition
speed, which is easier to deploy and train. It is also one of the most
popular detection frameworks currently and has a wide range of
applications. Therefore, in this paper, we choose YOLOv5 to extract
deep features and extend the transformer fusion algorithm to a dual-
stream architecture. The backbone of YOLOv5 is modified from a
single-stream structure to a dual-stream structure to separately
extract deep features of the input visible light and infrared
images. The rectification module, called Cross-Modal Feature

Rectification Module (CMFRM), is implemented three times in
the backbone. CMFRM is corrected one feature against another,
and vice versa. In this way, the features of both modalities can be
corrected. Additionally, as illustrated in Figure 1B, we introduced a
Feature Fusion Module (FFM) [41] that merges features belonging
to the same level into a single feature map. Then, a detection head is
used to predict the final pedestrian positions. Our proposed network
framework is illustrated in Figure 1.

3.2 Cross-modality feature
rectification module

In this paper, we explore the complementarity of information from
different sensors [8], [9], noting that while this information is valuable,
it is often affected by noise. To address this issue, we introduce a novel
Cross-Modal Feature Rectification Module (CMFRM) in Figure 1B,
which is capable of performing precise feature correction at each stage
of feature extraction on parallel data streams. Utilizing Transformer
technology for spatial feature correction, the CMFRM provides a

FIGURE 1
TheNetwork structure of our proposals. (A) shows our overall network architecture, which adopts a novel combination of CNN and transformer. The
deep features of visible and infrared images are extracted by two-streamCNN, and the proposed CMFRMmodule is used to leverag the features fromone
modality to rectify the features of the other modality. Feature Fusion Module (FFM) operates through a bifurcated process, as illustrated in (C) an initial
stage of global information exchange followed by a stage of comprehensive global feature fusion. This structure is designed to facilitate extensive
information interchange preceding the fusion of features at a global level. In addition, (D) shows the structure of the components in (A).
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granular correction mechanism. This not only effectively handles noise
and uncertainty across different sensory modalities but also enhances
the extraction and interaction of multimodal features, thereby
improving the overall performance of the system.

In a two-stream structure, we extract features from visible and
infrared images independently through Convolutional Neural
Networks (CNN), obtaining visible feature and infrared feature,
respectively. Both feature sets have the shape (B,C,H,W), where B is
the batch size, C is the number of channels, and H and W are the
dimensions of the spatial size. To adapt these features for the
transformer, we flatten them into the shape (B, N, C), while
proceeding along the spatial dimensions. where N is the number
of tokens, given by N = H × W. This step is a crucial phase in the
transition of CNN features to transformer-based CMFRM module.

flatvis � Fvis · view B, C,−1( ) (1)
flatinf � Finf · view B, C,−1( ) (2)

flatcat � concat flatvis, flatinf( ), dim � 2( ) (3)
Z � flatcat.permute 0, 2, 1( ) (4)

where Fvis and Finf represent the visible and infrared features from the
CNN, respectively. The view function reshapes the tensor of specified
shape without changing its data, and concat concatenates the given
tensors along the specified dimension. The permute function outputs
a tensor after permuting the dimensions of the input tensor. Thus, in Eq
4, the shape of Z is (B, 2N, C).

Positional embeddings enable the model to discern spatial
relationships between different tokens during training. After
positional embedding, the input sequence Z is then projected onto

three weight matrices to compute a set of queries, keys, and values (Q,
K, andV), expressed as Q = ZWQ, K = ZWK, V = ZWV. In this context,
the weight matrices are defined as WQ ∈ RC×DQ , WK ∈ RC×DK , and
WV ∈ RC×DV . Furthermore, the dimensions DQ, DK, and DV are
equivalent in our transformer model, such that DQ = DK = DV =
C. The Multi-head Self-Attention layer computes the attention
weights by calculating the scaled dot products between Q and K.
These weights are then applied to V to infer the refined output Ẑ.

Ẑ � Attention Q,K, V( ) � sof tmax
QKT���
DK

√( )V (5)

However, multimodal data is distributed across different spatial
domains, and relying solely on self-attention is insufficient for fully
exploiting the mixed modality information, which may result in
inadequate rectification. Based on the principle of self-attention, we
speculate that exchanging the “values” and “keys” between different
modalities might better enhance the vital information and facilitate
the flow of complementary information. Building on these
considerations, we have extended the traditional multi-head
attention based on a cascading strategy by incorporating two
instances of Cross-Attention (CA), as shown in Figure 1B.
Additionally, the process of information exchange during the two
instances of Cross-Attention can be represented by Eqs. 6–9.

CA1
vis Qvis, Kinf, Vvis( ) � sof tmax

QvisK
T
inf��

dk

√( )Vvis (6)

CA1
inf Qinf, Kvis, Vinf( ) � sof tmax

QinfK
T
vis��

dk

√( )Vinf (7)

FIGURE 2
The visualization of the detection results, subfigure (A) shows the input visible lr images, subfigure(B) is the corresponding infrared images, subfigure
(C) is the prediction result of ourmodel, and subfigure (D) is the ground truth. These images are selected from the dataset listed at https://soonminhwang.
github.io/rgbt-ped-detection/
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and

CA2
vis Qvis, Kvis, Vinf( ) � sof tmax

QvisK
T
vis��

dk

√( )Vinf (8)

CA2
inf Qinf, Kinf, Vvis( ) � sof tmax

QinfK
T
inf��

dk

√( )Vvis (9)

where vis, inf represent visible token and infrared token from Ẑ
respectively. After processing through two cascaded multi-head
cross-attention layers, the visible and infrared features are
subjected to Layer Normalization (LN) and Multi-Layer
Perceptron (MLP), ultimately producing two output features, ~Fvis
and ~Finf.

3.3 Two-stage feature fusion module

After obtaining the feature mappings from each layer, a two-
stage feature fusion module (Feature Fusion Module, FFM) [41] is
introduced to enhance the interaction and integration of global
information. As illustrated in Figure 1C, in the first stage, the two
branches are kept separate, and a cross-attention mechanism is
designed to facilitate the global exchange of information between the
two branches. In the stage 2, the concatenated features are
transformed back to the original scale through a mixed
channel embedding.

Global Information exchange stage. We first flatten the input
feature of size ~Fvis and ~Finf ∈ RH×W×C into RN×C along with channel
dimension, where N = H ×W, and C is the number of tokens, Then,
through linear embedding, we generate two vectors of the same size
RN×C, named the residual vector Xres and the interactive vector Xinter.
Building upon this, we propose an efficient cross-attention
mechanism that applies to these two interactive vectors from
different modal pathways, achieving comprehensive information
exchange across modalities. This mechanism offers complementary
interactions from a sequence-to-sequence perspective, surpassing
the rectification-based interactions from the feature map perspective
in CMFRM.

Our cross-attention mechanism, designed for improved cross-
modal feature fusion, is an adaptation of the conventional self-
attention mechanism [33]. The traditional method encodes inputs
into Queries (Q), Keys (K), and Values (V), computing a global
attention map via QKT. This results in a computationally expensive
N × N matrix. Alternatively [70], proposes using a global context
vector G = KTV, reducing the size to Chead × Chead. Our approach
builds on this by embedding interactive vectors into K and V for
each head, with both matrices sized N × Chead. The final output is a
product of these interactive vectors and the context vector from an
alternate modality, constituting the cross-attention process.

Gvis � K̂
T

visV̂vis

Ginf � K̂
T

infV̂inf

(10)

Uvis � Xinter
vis Sof tmax Ginf( )

Uinf � Xinter
inf Sof tmax Gvis( ) (11)

Note that G denotes the global context vector, while U indicates
the attended result vector. To realize attention across different
representational subspaces, we maintain the multi-head

mechanism, where the number of heads corresponds to the
number of elements in the transformer backbone. Subsequently,
the attended result vector U and the residual vector are
concatenated. Finally, we apply a second linear embedding and
resize the feature back to RH×W×C.

Global Feature Fusion Module. In the fusion component of the
Feature Fusion Module (FFM), channel-wise integration is
performed using 1 × 1 convolution for combining features from
dual pathways. Considering the necessity of spatial context for Vis-
Inf pedestrain detection, we adopt a strategy influenced by Mix-FFN
[71] and ConvMLP [72], incorporating a depth-wise 3 × 3
convolution (DW Conv) to form a skip connection architecture.
This approach facilitates the consolidation of the concatenated
feature dimensions RH×W×2C into the decoder output
dimension RH×W×C.

4 Experiments

In this section, we first introduce two multispectral datasets,
KAIST [73] and LLVIP [22]. The KAIST dataset compiles data from
day and night autonomous driving scenarios, while the LLVIP
dataset is composed of night-time surveillance scenarios. Given
our focus on nighttime pedestrian detection, we exclusively
selected the nighttime subset of the KAIST dataset. Subsequently,
we delve into some specifics of the model training phase. The
evaluation metrics for pedestrian detection diverge slightly from
those of traditional object detection, hence we will clarify the
evaluation metrics utilized in this study. We benchmark our
results against state-of-the-art methods and conduct ablation
studies to assess the effectiveness of our proposed module. Lastly,
the visualization of our proposals is provided to facilitate an intuitive
understanding of their impact. At last, we provide a visualization of
the predicted results as shown in Figure 2.

4.1 Dataset

KAIST. The KAIST dataset [73], introduced at CVPR2015,
consists of 95k aligned pairs of visible and infrared images and has
been extensively utilized. All annotations are manually labeled,
including 1,182 pedestrian instances. Due to biased annotations in
the original training set, this study employs the sanitized version
[23]. The sanitized KAIST provides 7,601 training images with at
least one valid pedestrian instance, filtered and sampled from the
original training videos. There are 2,846 pairs for night training
and 4,755 pairs for day training. The test set comprises
2,252 image pairs, with 797 for night and 1,455 for day. Test
annotations from the improved version [31], which corrects the
initial annotations, are used. The resolution of training and test
images is 640 × 512.

LLVIP. LLVIP [22] is a nighttime pedestrian dataset for
surveillance scenarios, presented at ICCV2021. It includes
15,488 strictly aligned visible-infrared image pairs, featuring
numerous pedestrians and cyclists from diverse street locations
between 6 and 10 p.m. [22]. The original resolution of the
images is 1280 × 1024, but to reduce computational demands, we
scale down the images by half to 640 × 512 in this paper.
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4.2 Evaluation

Evaluation metrics. The first assessment metric is the Log-
Average Miss Rate (LAMR), which is a specialized metric for
evaluating the performance of pedestrian detection systems. The
relationship between the Miss Rate (MR) and the False Positives Per
Image (FPPI) is plotted on a log-log scale, and nine FPPI reference
points are selected within the range [10–2, 100], evenly spaced in the
logarithmic space. LAMR is defined as shown in Eq 14.

MR � FN

TP + FN
(12)

FPPI � FP

imgs num
(13)

LAMR � exp
1
9
∑
f

log MR argmax
FPPI≤f

FPPI⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (14)

where f is within the set {10–2, 10–1.75, . . . , 100}, TP represents the
number of True Positives, FP is the number of False Positives, and
FN denotes the number of False Negatives. Additionally, we utilize
AP50 as our second metric, complementing LAMR. In the

evaluation process, all detected bounding boxes are matched to
ground truth annotations for each image via a greedy algorithm. If
the Intersection over Union (IoU) between the detection box and the
ground truth exceeds a specified threshold, the detection is
considered a True Positive (TP), indicating a successful
prediction. Due to the highly non-rigid nature of pedestrians, we
adopt the common IoU threshold of 0.5. Thus, AP50 denotes the
Average Precision when the IoU threshold is 0.5.

4.3 Comparison of results on KAIST
night dataset

We compared our model with the results of state-of-the-art models
on the KAIST Night test set, as presented in Table 1. Our model builds
upon a two-stream architecture extended from yolov5; hence, we
assessed the single-modality detection capabilities of yolov5 with
only visible and only infrared images on the same dataset. The task
of night-time pedestrian detection using solely visible light images poses
a substantial challenge, reflected in a high LAMR of 63.65%. Through
the development of effective cross-modality fusion algorithms, such as
MSDS-RCNN [23] and CFT [66], the LAMR for night-time pedestrian
detection can be significantly decreased, improving detector
performance. Furthermore, our proposed method records a LAMR
of 10.79% and an AP50 of 82.48%, evidencing the effectiveness and
competitive edge of our approach.

4.4 Ablation study

From the previous sections, we have familiarized ourselves with the
architecture and proposed modules such as CMFRM, as well as the
enhancements in our method. However, the exact quantitative
improvements contributed by these modules remain uncertain.
Therefore, in this section, we present a succinct and insightful
ablation study to address the aforementioned inquiries. Table 2
illustrates that CMFRM has led to a decrease of 1.14% in LAMR
and an enhancement of 1.47% in AP50 on the KAIST Night dataset,
and a reduction of 0.63% in LAMR on the LLVIP dataset. FFM
contributes to a decrease of 0.57% in LAMR and an improvement
of 1.18% inAP50 on the KAISTNight dataset, and a reduction of 0.80%
in LAMR on the LLVIP dataset. Finally, when compared to the baseline
model CFT [66], our comprehensive model CMTF decreases LAMR by
1.38% and enhances AP50 by 3.2% on the KAIST Night dataset, and
lowers LAMR by 1.62% on the LLVIP dataset.

TABLE 1 Results on KAIST night dataset and the results in bold indicate the
optimal.

Methods Data modality LAMR (%) AP50

Yolov5 [69] Visible 63.65 43.95%

Yolov5 [69] Infrared 14.73 77.51%

MLF-CNN [74] Visible + Infrared 25.65 67.60%

IATDNN [75] Visible + Infrared 26.88 67.02%

CWF-CNN [76] Visible + Infrared 30.82 64.59%

L-SSD [77] Visible + Infrared 35.38 48.77%

MSDS-RCNN [23] Visible + Infrared 13.73 -

CS-RCNN [78] Visible + Infrared 11.86 -

CIAN [26] Visible + Infrared 11.13 -

MBNet [79] Visible + Infrared 10.98 -

UGC [68] Visible + Infrared 10.92 -

ProbEn [67] Visible + Infrared 10.83 -

Our Method Visible + Infrared 10.79 82.48%

TABLE 2 Results of ablation study and the results in bold indicate the optimal.

Method KAIST night LLVIP

Base CMFRM FFM LAMR (%) AP50 (%) LAMR (%) AP50 (%)

✓ 12.71 79.28 5.40 97.50

✓ ✓ 11.57 80.75 4.77 97.72

✓ ✓ 12.14 80.46 4.60 97.09

✓ ✓ ✓ 10.79 82.48 3.78 97.98
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4.5 Conclusion

In this paper, we introduce an interactive cross-modal fusion
framework based on YOLOv5, designed to improve the performance
of nighttime pedestrian detection algorithms through efficient
information fusion. Our framework utilizes a dual-stream
architecture to separately handle visible and infrared images,
effectively addressing the challenges posed by low-light conditions.
Our proposed FRFPD significantly enhance model performance by
fine-tuning features acrossmodalities, reducing uncertainty and noise,
and focusing on complementary information. These modules also
facilitate multi-dimensional feature interaction and rectification,
including cross-attention mechanisms at the sequence processing
level, which are crucial for the effective generalization of cross-
modal feature combinations. Overall, our research not only boosts
the performance of nighttime pedestrian detection but also offers new
technical solutions and perspectives for visual information processing
under low-light conditions.
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