
Generalized Lorenz-Mie theory
and simulation software for
structured light scattering
by particles

Ming Jian Cheng1, Yuan Cong Cao1, Kuan Fang Ren2*,
Huan Zhang1 and Li Xin Guo1*
1School of Physics, Xidian Univeristy, Xi’an, China, 2CORIA-UMR 6614, Normandie Université, CNRS,
Université et INSA de Rouen, Mont-Saint-Aignan, France

Structured light refers to an optical field with modulated phase and amplitude,
characterized by distinct spatial patterns. It has applications in optical
manipulation, 3D imaging, remote sensing, and communications. The
Generalized Lorenz-Mie Theory (GLMT) extends foundational Mie theory to
accommodate complex structured lights, enabling precise characterization of
structured light-particle interactions. GLMT has emerged as a central theoretical
framework for analyzing interactions between spherical particles and arbitrary
structured light. This paper introduces ABSphere, simulation software utilizing
GLMT to model structured light-spherical particle interactions. It then
comprehensively reviews representative structured lights, including
Laguerre–Gaussian, Bessel, and Airy beams, elucidating their interactions with
spherical particles. Understanding structured light scattering behavior is crucial
for elucidating underlying interaction mechanisms with spherical particles. The
paper also emphasizes the significance of modeling structured light scattering by
particles and discusses future directions for ABSphere software. Through
continuous theoretical refinements and advancements, deeper understanding
of structured light-particle interaction mechanisms can be achieved, enabling
innovations in optical applications and technologies.
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1 Introduction

Structured light plays a pivotal role in various optics applications due to its distinct
phase, amplitude, and vector distributions [1]. By precisely controlling these properties,
intricate intensity patterns and specific optical effects can be generated, enabling accurate
measurement and manipulation of particles. Structured light finds significant applications
in diverse domains, including optical manipulation [2], 3D imaging [3, 4], sensing
measurements [5], and optical communication [6], as shown in Figure 1. In
interactions with particles, scattering emerges as the predominant process,
encompassing light absorption, dispersion, and scattering itself [7]. Understanding
optical scattering characteristics of particles enhances knowledge of light-particle
interaction mechanisms and enables analysis of particle properties and morphology via
scattered light analysis [8].
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In 1908, Mie [9] derived an analytical expression for the
scattering of plane electromagnetic waves by homogeneous
spheres based on Maxwell’s equations, using the method of
separation of variables. This led to the development of Lorenz-
Mie theory, which allows calculating scattering intensity, phase, and
directional distributions when plane electromagnetic waves interact
with spherical particles of any size and material. Consequently, the
theory has become fundamental in addressing light and
electromagnetic scattering problems.

However, conventional Mie scattering theory has limitations in
addressing the complexities of structured light. While numerical
methods like Finite-Difference Time-Domain (FDTD) and Finite
Element Method (FEM) can rigorously calculate interactions
between structured light and particles, they are computationally
expensive and lack comprehensive physical understanding of
scattering processes. To overcome these limitations, G. Gouesbet

et al. [10] pioneered using the Bromwich formula in 1988 to study
far-field scattering of Gaussian beams by homogeneous medium
spheres. This groundbreaking work led to developing Generalized
Lorenz-Mie Theory (GLMT), continuously refined and expanded to
address particle interactions with arbitrary structured light. GLMT
has become a central theoretical framework for analyzing structured
light-particle interactions, inheriting foundational Mie principles
while extending applicability to polychromatic, polarized, and
structured light scenarios [11]. GLMT imposes no restrictions on
particle size, solving electromagnetic scattering characteristics and
mechanical effects for spherical particles of any size within its
theoretical framework. The primary focus of GLMT is solving
beam shape coefficients (BSCs) associated with a given structured
light, providing profound insight into physical mechanisms
governing their particle interactions. Furthermore, GLMT offers
more accurate and efficient solutions for optical manipulation and
related research and applications [12].

As shown in Figure 2, the basic problem involves a spherical particle
of specific size and optical properties, illuminated by structured light of
specific intensity and phase distributions. The computational process
involves several steps: First, based on laser wavelength, particle size, and
refractive index distribution, the electromagnetic field distribution
inside and around a spherical particle under plane wave incidence is
determined using Mie scattering theory. The Mie scattering coefficients
an and bn are calculated according to boundary conditions. Next, the
electromagnetic field distribution of structured light is decomposed
using mathematical methods, and the beam shape factor is calculated.
The beam shape factor describes specific intensity and phase
distributions of structured light. Finally, by combining the Mie
scattering coefficients and beam shape factor, scattering and
absorption characteristics of a spherical particle under structured
light incidence are obtained. The GLMT provides a fast, efficient
computational method to predict and analyze structured light-
spherical particle interactions.

This paper first introduces ABSphere, simulation software for
modeling interactions between structured light and spherical
particles. It then comprehensively reviews representative structured
lights: Laguerre–Gaussian (LG) beams, Bessel-type beams, and Airy
beams. Elucidating their interactions with spherical particles using the
GLMT framework, their scattering characteristics are investigated.
Understanding these structured lights’ scattering behavior is crucial
for elucidating their interaction mechanisms with spherical particles.
The paper also emphasizes the significance of modeling structured light
scattering by particles. Finally, it discusses future directions for
ABSphere software, including exploring more complex structured
lights and expanding applications. Through ongoing theoretical
refinements and advancements, deeper understanding of structured
light-spherical particle interaction mechanisms can be achieved,
providing a solid theoretical foundation for optical application and
technology advancements.

2 Simulation software ABSphere:
modeling the interaction of structured
light with a spherical particle

The distinct spatial intensity and phase distribution of
structured light leads to significant variations in the BSCs across

FIGURE 1
Structured Light: unveiling advanced applications across
diverse domains.

FIGURE 2
Fundamental problem of structured light scattering by a
spherical particle under the framework of GLMT.
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different types of structured light. These coefficients reflect diverse
interaction modes between structured light with distinct intensity
and phase distributions and play a crucial role in shaping significant
differences in their scattering results [13]. Within the GLMT
framework, BSCs emerge as critical parameters for delineating
interaction dynamics between structured light and spherical
particles. Researchers have developed BSCs algorithms for various
structured lights, including localized approximation [14], extended
boundary condition [15], angular spectrum expansion [16, 17], and
one-dimensional orthogonal [18] methods. The aim is to precisely
capture particle scattering characteristics associated with different
structured lights, enabling detailed depiction of their interactions
with spherical particles. Moreover, the type and structure of
spherical particles discernibly influence scattering characteristics.
Once the BSCs calculation method for structured light is established,
different spherical particle types exhibit unique responses to
structured light scattering behavior. By combining Mie scattering
coefficients for diverse spherical particles, a comprehensive
scattering model for structured light interacting with arbitrary
particles can be formulated. Through investigating structured
light scattering characteristics passing through various spherical
particles, deeper understanding and effective utilization of
interaction mechanisms between structured light and spherical
particles can be achieved.

Within the GLMT framework, the scattering coefficientsAm
n and

Bm
n of structured light can be expressed as follows [19]:

Am
n � angm

n,TM

Bm
n � bngm

n,TE
{ (1)

Here, an and bn in Eq. 1 are the Mie coefficients of the spherical
particle corresponding to electric magnetic - and magnetic-
multipoles of order n, respectively, independent of beam shape
coefficients, while the BSCs gm

n,TM and gm
n,TE are sets of expansion

coefficients used to describe the characteristics of incident light,
independent of the particles.

Developing simulation software modeling structured light
interaction with spherical particles offers valuable resources for
optical research. One such software, ABSphere has been developed
[20] and is available online [21]. The numerical technique used in
ABSphere for GLMT calculation was well-examined in [22]. The current
version, ABSphere 1.10, calculates scattering diagrams, internal/near
fields, radiation pressure force/torque on a spherical particle from
structured light as functions of particle size/position. It integrates
three type shaped beams: standard Gaussian beam, elliptical Gaussian
beam and the dog-nut beam. The expansion of Mie scattering function
in Debye series provides powerful tools for analyzing different order
scattering concentrations, enabling in-depth exploration of structured
light-matter interaction mechanisms. This software robustly supports
theoretical studies and lays theoretical foundations for applying/
advancing structured light techniques. By calculating and applying
different structured light’s BSCs, the software now simulates
interactions between complex structured light and a single spherical
particle. ABSphere enhances understanding and optimizes particle
scattering from structured light. Its user-friendly interface significantly
aids education/training, enabling beginners to directly observe and
comprehend complex structured light-particle scattering phenomena.

Figure 3 showcases the intuitive interface of Software ABSphere,
featuring separate settings for beam source and particle parameters.

This clear separation enhances usability and provides diverse
modeling capabilities for structured light input. The software
supports various types of structured light, including basic
Gaussian beams, elliptical Gaussian beams, annular beams, and
Bessel beams. Software ABSphere calculates waveform factors for
different structured lights, enabling computation of scattering
models for complex interactions with individual spherical
particles. Users can select the desired type of structured light and
adjust parameters like wavelength, beam width, and polarization
state. This customization allows for generating intricate patterns
tailored to specific research requirements.

Software ABSphere offers flexible particle parameter settings for
scattering calculations of larger spherical particles, enabling
adjustment of the number of layers and complex refractive
indices to accommodate diverse simulation requirements. The
software supports both homogeneous medium and multilayer
sphere models, enabling more accurate simulation of particles in
complex environments. This capability enhances simulation
accuracy, closely aligning results with real-world scenarios.

Software ABSphere offers comprehensive scattering analysis,
including radar cross-section (RCS) maps, electromagnetic field
distribution, radiation pressure, torque, and extinction, scattering,
and absorption factors. Enabling in-depth analysis of particle
scattering characteristics and interactions with structured light, these
features also support diverse structured light modeling, flexible
parameter adjustment, realistic multilayer particle models, and
comprehensive scattering analysis. A powerful and precise tool for
studying light-matter interactions, Software ABSphere provides users
with sophisticated tools to understand these complex phenomena.

The GLMT was initially developed to address far-field scattering
problem of Gaussian beams by spherical particles [10]. To model
scattering by other structured lights, Gaussian beam scattering data
is often used for validation. Figure 4 depicts the scattering intensity
distribution of Gaussian beams with varying complex refractive
indices in a bilayer sphere model, calculated using Software
ABSphere. Notably, as the inner layer refractive index increases,
indicating a larger difference between inner and outer layers, the
scattering intensity stabilizes in the backward scattering region
(around 180°). Regardless of polarization state—unpolarized,
circularly polarized, or elliptically polarized light—minimal
fluctuations occur. However, for specific angles, unpolarized and
circularly polarized light may exhibit scattering minima.

When computing BSCs in structured light, it is important to
consider various light source parameters like beam width,
wavelength, polarization state, and incidence configuration (on-
axis [23] or off-axis [24]) as they significantly affect scattering
results. These effects can be analyzed by examining scattered
spherical particle radiation distribution patterns. Figure 5 shows
radiation patterns of Gaussian beams with different beam widths (5,
10, 15, 20 μm) scattered by uniform particles of varying sizes (15, 30,
45 μm). It demonstrates distinctive characteristics of Gaussian
beams when scattered by spherical spheres. Decreasing beam
width results in a narrower main lobe in the scattering radiation
pattern, indicating a more concentrated scattering range and
increased central radiation intensity. Larger spherical particles
exhibit more concentrated main lobes in their scattering
radiation patterns, reflecting higher energy. Conversely, smaller
spherical particles display more uniform radiation distributions.
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FIGURE 3
Interface display of particle scattering simulation software ABSphere.

FIGURE 4
RCS plots of Gaussian beams with non-polarized, elliptical polarization, and circular polarization scattering from a bilayer spherical shell model
under different complex refractive index scenarios, (A) \lambda_inner = 1.40, (B) \lambda_inner = 1.47, (C) \lambda_inner = 1.54, (D) \lambda_inner
= 1.61.
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In investigating optical scattering behavior of particles,
analyzing scattering force distributions provides an effective
method to demonstrate interaction effects between structured
light and spherical particles, including scattering angle variations
and intensity differences. These distributions closely relate to factors

like particle size and uniformity [25]. Figure 6 depicts scattering
force distributions exerted by multilayer spherical particles with
different layer numbers (single, 2, and 10) on Gaussian beams of
varying wavelengths (384, 550, and 780 nm). These multilayer
spherical particles may comprise various materials, with each

FIGURE 5
RCS plots of Gaussian beams with different particle sizes under different beamwidth radii conditions, (A) ω0 = 5 μm, (B) ω0 = 10 μm, (C) ω0 = 15 μm,
(D) ω0 = 20 μm, all with a wavelength of 550 nm.

FIGURE 6
Scattering intensity of Gaussian beams with different wavelengths by spherical particles with varying numbers of layers, (A) homogeneous medium
particles, (B) Bilayer particles, (C) Ten-layer particles. The beam width is 30 μm.
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layer possessing distinct refractive indices and thicknesses.
Adjusting layer number and refractive index properties of
multilayer spherical particles enables precise control over
scattering force distribution and intensity.

Figure 7 presents visualizations of intensity distributions within
and outside particles for both on-axis and off-axis incidence of
Gaussian and elliptical Gaussian beams. These offer insights into
optical behavior and scattering characteristics of spherical particles.
In conclusion, Software ABSphere is a powerful tool for
investigating structured light interactions with spherical particles.
It enables nuanced understanding of their scattering behavior and
design of strategies to control scattering effects. By analyzing
scattering force distribution and intensity, optimization of
particle structure and properties becomes feasible, enabling
achievement of specific scattering effects and desired optical
performance.

3 Research on the Mie scattering
characteristics of structured light

3.1 Modeling of particle scattering for
LG beams

Since the seminal work by Allen et al. in 1992 [26] revealed that
LG beams possess both orbital angular momentum (OAM) and spin
angular momentum (SAM) due to their helical phase front

structures, LG beams have garnered substantial attention. The
unique phase structures of high-order LG beams result in axial
forces several times stronger than those of fundamental Gaussian
beams when trapping spherical particles [27, 28], establishing LG
beams as vital components in precision optical manipulation [29].
Moreover, a detailed analysis of the scattering characteristics of LG
beams with spherical particles enables extraction of fundamental
microparticle parameters [30] and identification of source
properties of LG beams [31]. These applications rely on
theoretical simulation models within the GLMT framework [8].

The integral method is a common approach for calculating the
BSCs of Gaussian beams, but can be computationally slow for LG
beams. To enhance efficiency, the localized approximation method
has been employed [32]. However, caution is warranted as this
method has limited accuracy in describing LG beams. To address
this limitation, the finite series method [33, 34] and the angular
spectrum expansion method [35] have been increasingly adopted,
significantly improving the efficiency of calculating BSCs [36].
Recently, Votto et al. proposed a calculation method for the
BSCs of freely propagating LG beams based on the finite series
algorithm [37], providing closed-form expressions and eliminating
dependence on recursive algorithms.

Exploration of LG beam interactions with spherical particles has
largely centered on understanding the influence of optical OAM
modes on particle scattering characteristics. Such research enriches
knowledge of OAM in light-matter interactions. Rury et al. [38]
developed a model for Mie scattering of circularly polarized LG

FIGURE 7
Scattering intensity distribution of different structured light by spherical particles. (A)On-axis Gaussian beam scattering, (B)Off-axis Gaussian beam
(x = 3 μm) scattering, (C) On-axis elliptical Gaussian beam scattering, (D) Off-axis elliptical Gaussian beam (x = 3 μm) scattering.
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beams by spherical particles, confirming significant OAM roles in
light-matter interactions. Zambrana-Puyalto et al. [39] further
investigated LG beam scattering by dielectric spheres, showing
LG beams enhance ripple structure due to OAM conservation
during scattering. Additionally, Kiselev et al. [40] used far-field
matching to study intensity distribution and phase variation of LG
beams scattered by particles in the near field. Their study revealed
photon nanojet morphology and optical vortex near-field structure
sensitivity to OAMmode numbers. These findings highlight OAM’s
significant impact on LG beam-spherical particle interactions and
emphasize its critical role in investigating the Mie scattering
characteristics of LG beam.

Figure 8 illustrates the E-plane RCS of a first-order LG beam
under different beam widths, wavelengths, and particle sizes for
uniform spherical scatterers. The forward scattering intensity is
markedly higher than backward, consistent with most beams. In
Figure 8A, increasing beam width enhances scattering in all
directions. Similarly, larger particles (Figure 8B) increase
scattering intensity in all directions. This can be attributed to the
larger beamwidth or particle size leading to higher incident intensity
and consequently increased scattering. However, Figure 8C shows
scattering intensity decreases with wavelength. Nevertheless, larger
wavelengths result in more pronounced fluctuation in scattering
intensity across angles.

In recent years, extensive research has been conducted on the
scattering properties of diverse spherical particle types, including
homogeneous dielectric spheres [41], ellipsoidal particle spheres
[42], uniaxial anisotropic spheres [43], chiral particle spheres [44],
perfect electric conductor spheres [45], and more. This research
focuses on understanding the effects of spherical particles on post-
scattering parameters of structured light. The unique characteristics
of these spherical particles, such as shape, size, structural features,
charge, and relative refractive index, significantly influence their
scattering properties. In addition to exploring spherical particle
effects, these studies also delve into complex aspects like RCS
and radiation force distributions. Moreover, the application of
structured light scattering studies has expanded to encompass
complex biological cell spheres [46]. By studying structured light
scattering on biological cell spheres, researchers gain insights into
cellular structures, properties, and dynamics.

Advancing research on structured light-particle interactions is
shifting focus towards studying structured light-suspended particle
scattering in the atmosphere [47]. Understanding structured light
propagation and scattering is important for developing novel
imaging and sensing technologies, exploring fundamental
phenomena, and understanding light-matter interactions in
complex media. In the atmosphere, diverse suspended particles
with varying compositions and forms exist, including aerosols,
haze, raindrops, and dust [48]. These are often approximated as
spherical particles for computing scattering and extinction
characteristics via Mie scattering theory. For instance, Shi et al.
[49], as shown in Figure 9, used a Mie scattering model of LG beams
with individual spherical particles to investigate LG beam
transmission in a haze environment. They found LG beams
exhibit stronger penetration than Gaussian beams.

Furthermore, integrating a single-sphere scattering model of LG
beams with raindrop particles and a size distribution model of
raindrops enabled discussing transmission attenuation
characteristics of LG beams in rainy environments, confirming
their transmission advantage [50]. Additionally, applying the
complex source point method within the GLMT framework
studied scattering characteristics of LG beams by marine-type
aerosol particles [51]. These works provide critical theoretical
and simulation foundations for deeper understanding particle
scattering behavior in response to structured light and optical
environment characteristics in the atmosphere.

3.2 Modeling of particle scattering for
Bessel-type beams

Bessel beams, introduced by Durnin in 1987, represent a distinct
class of light beams offering diffraction-free solutions satisfying the
Helmholtz equation [52]. Unlike conventional Gaussian beams,
Bessel-type beams maintain an unaltered transverse intensity
distribution during propagation. Their remarkable ability to self-
reconstruct enables them to recover their beam profile even after
encountering obstacles or distortions over a specified transmission
distance. These characteristics provide significant advantages for
optical manipulation [53] and microscopy imaging [54]. In contrast,

FIGURE 8
E-plane RCS of LG beams with different waist radii (A), particle sizes (B), wavelengths (C), and scattering by homogeneous medium
spherical particles.
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conventional Gaussian beams face challenges at the focal plane when
encountering particle distortions, resulting in strong divergence and
difficulties capturing particles simultaneously at multiple positions
[53]. Bessel-type beams overcome this limitation with their self-
reconstruction capability and stable transverse intensity
distribution. Furthermore, Bessel-type beams exhibit strong
penetration abilities, ensuring relatively stable transmission
properties in heterogeneous media and possessing a larger
penetration depth [54]. Consequently, they are invaluable for
imaging and manipulation applications in inhomogeneous media.

Applications of Bessel-type beams often involve interactions
with particles. Establishing a Mie scattering model for this
interaction provides new perspectives and tools for exploring the
complex process. Modeling the Mie scattering of Bessel-type beams
within the GLMT framework requires deriving and calculating the
BSCs, much like models used for LG beam scattering by spherical
particles. Various methods have been employed to derive the BSCs
of Bessel-type beams for studying their scattering characteristics
with spherical particles. Traditional numerical integration methods
are relatively complex for calculating the BSCs of Bessel-type beams
[55, 56]. To address this complexity, Taylor and Love improved the
calculation formula for BSCs, achievingmuch faster calculations and
facilitating quicker Mie scattering calculations [57]. Other methods
for deriving the BSCs of Bessel beams include localized
approximation, angular spectrum expansion, surface integral
equation, finite series expansion, and multi-level finite series
expansion [58–61]. The localized approximation method, as
demonstrated by Ambrosio et al. [59], offers comparable
calculation speeds to numerical integration methods. The angular
spectrum expansion method, used by Chen and Qin [62, 63],
provides explicit analytical expressions for the BSCs of arbitrary-
order polarized Bessel beams and has gained prominence as a
reference method in the GLMT framework [64, 65]. Additionally,
finite series algorithms, surface integral equationmethods, and beam

superposition algorithms contribute to the calculation of BSCs of
Bessel beams [66–68]. Wang et al. [69] proposed a simpler approach
using traditional integration methods to directly calculate the BSCs
of Bessel beams. These diverse methods offer researchers different
avenues to derive BSCs, enabling them to compare and choose the
most accurate method for describing the interaction between Bessel
beams and spherical particles.

Numerous studies have investigated scattering characteristics of
Bessel-type beams with various structures interacting with spherical
particles. They examined zero-order Bessel beams [70–73], higher-
order Bessel beams [74], multi-order Bessel-Gaussian (BG) beams
[75], and vector Bessel beams [76–78]. The focus was understanding
source parameter effects on post-scattering behavior of Bessel-type
beams. Parameters included incident half-cone angle (or wavefront
parameter), wavelength, polarization state, beam width radius, and
mode order. A critical characteristic of Bessel-type and other vortex
beams is OAM. Shi et al. [79] studied the OAM spectrum of vector
BG beams after particle scattering, as shown in Figure 10. This
research provides valuable insights into changes in OAM
characteristics of structured light following microparticle
scattering. Precise theoretical derivation within the GLMT
framework has greatly facilitated exploration of this typical
structured light’s scattering behavior.

Researchers have investigated not only scattering characteristics
but also the distribution of radiation forces on Bessel-type beams
after scattering by various spherical particles to enhance their utility
for optical manipulation. For example, Sun et al. [80] investigated
the longitudinal and transverse optical trapping forces of vector
Bessel beams on a uniform sphere. Figure 11 illustrates differences in
scattering efficiency factors of BG beams by double-layer spherical-
shell particles under different humidity conditions, simulating
aerosol particle models of varying humidity. Analysis shows
aerosol spherical particles with higher humidity exhibit elevated
scattering efficiency factors and weaker absorption effects. This is

FIGURE 9
Schematic diagram of remote sensing of haze atmospheric aerosols based on vortex scattering [49].
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attributed to smaller complex refractive indices (including real and
imaginary parts) of more humid aerosol particles, leading to more
pronounced scattering compared to drier particles.

In recent years, comprehensive studies have been conducted on
the scattering characteristics of Bessel-type beams by various
spherical particles within the framework of GLMT. These studies
have examined charged spherical particles [81–83], double-layer
concentric spherical particles [84, 85], biological spherical particles
[86–88], multi-layer spherical particles [89, 90], negative refractive
index spherical particles [91], metallic spherical particles [92], non-
volatile spherical particles [93], and non-uniform spherical particles
[94], among others. By leveraging the GLMT, distinct particle
scattering models are established in simulations for single-layer,
multi-layer, or differently shaped particles by combining the BSCs
and particle scattering coefficients and applying various boundary
conditions. For instance, Shi et al. [95] conducted a study on the
scattering characteristics of vector BG beams on sand dust particles.

The investigation focused on factors such as the polarization mode
and incident angle, both of which significantly influence the
scattering behavior.

The efficiency factor, derived from the differential RCS, is a
critical physical parameter characterizing scattering, absorption, and
extinction of interacting spherical particles. Figure 12 shows the
influence of the OAM mode number, beam width, and polarization
mode of BG beams on the scattering efficiency factor (Qsca),
absorption efficiency factor (Qabs), and extinction efficiency
factor (Qext). BG beams with varying OAM mode orders exhibit
significantly different intensity distributions. As the OAM mode
order decreases, the dark core size decreases, leading to larger
scattering, absorption, and extinction efficiency factors after
interaction with spherical particles. This suggests more beam
energy is absorbed and scattered by the spherical particles.
Therefore, BG beams with higher OAM mode orders
demonstrate better transmission performance and slower decay

FIGURE 10
(A) Schematic diagram illustrating the impact of particle scattering on theOAM of vortex beams. (B)Intensity and phase distribution of superimposed
fields in the far field Region [79].
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FIGURE 11
Scattering efficiency factor (A), absorption efficiency factor (B), extinction efficiency factor (C) of dual-layer spherical shells at different humidity.

FIGURE 12
Influence of different azimuthal orders (A–C), beam widths (D–F), and polarization modes (G–I) of BG beams on the scattering efficiency factor (A,
D, G), absorption efficiency factor (B, E, H) and extinction efficiency factor (C, F, I) of spherical particle scattering.

Frontiers in Physics frontiersin.org10

Cheng et al. 10.3389/fphy.2024.1354223

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1354223


in complex particle environments. Additionally, BG beams with
larger beam width exhibit larger scattering, absorption, and
extinction efficiency factors, as a larger beam width corresponds
to a larger spot size, resulting in more energy incident on the
particles and stronger scattering and absorption effects, leading to
larger efficiency factors. Furthermore, Figures 12G–I showcase the
particle scattering characteristics of BG beams with different
polarization states, including linear, unpolarized, circular,
azimuthal, and radial polarizations. The results reveal consistent
efficiency factor variations across polarization states at different
particle positions. However, unpolarized and circularly polarized BG
beams demonstrate relatively larger efficiency factors, while the
efficiency of linear, radial, and azimuthal polarized beams
remains consistent. This suggests unpolarized and circularly
polarized BG beams exhibit superior transmission performance
in scattering medium.

3.3 Modeling of particle scattering for other
types of structured light

Structured light, including Airy beams, has been widely utilized
in various fields such as optical trapping and imaging. Airy beams
possess unique properties advantageous for applications in micro-
nano fabrication, optical trapping, and imaging [96]. They exhibit
non-diffracting and self-healing properties with high transmission
stability during propagation. Additionally, Airy beams demonstrate
self-acceleration with a highly concentrated beam intensity along the
main propagation direction, rendering them effective in micro and
nanoscale particle manipulation.

While investigating Airy beam interactions with spherical
particles, Lu leveraged the GLMT and Maxwell stress tensor
method for full-wave simulations. Findings confirmed the optical
manipulation capabilities of Airy beams on chiral spherical particles
[97], chiral nanoparticles [98], and Mie scattering particles [99].
Notably, chiral spherical and other non-homogeneous particles
exhibited reduced scattering within specific regions, providing
manipulation advantages using Airy beams [100]. Moreover, Airy
beam scattered radiation attracted spherical particles into the main
intensity field [101], influenced by factors including relative
refractive index, size, and position [102, 103]. These insights
deepen Airy beam-particle interaction understanding, enabling
potential particle manipulation applications. Subsequent research
probed more complex particle scattering, including double-layered
[104] and multi-layered spherical particles [105]. Despite added
complexity, plane wave spectrum methods simplified Airy beam
scattering problems with such particles, significantly enhancing
computational efficiency [104–106]. Additionally, Airy beam
benefits extend to metallic particles [107]. Previous studies
focused largely on typical Airy beams, circular Airy beams, and
polarization properties. However, Shahabadi et al. investigated a
novel petal-shaped Airy vortex beam, created by superimposing two
circular Airy vortex beams with opposite topological charge signs.
This unique beam effectively guides and captures particles [108].

Researchers have explored interactions between spherical
particles and various structured light, including Hermite-
Gaussian, Lommel, Mathieu beams, and Hermite-Gaussian
beams. Conventional methods using finite series expansion

calculate Hermite-Gaussian beam BSCs, but Li and Huang
introduced the complex source point method for higher-order
Hermite-Gaussian BSCs [109, 110]. They researched Hermite-
Gaussian scattering by multi-layered spherical particles and
marine aerosols. Another approach, proposed by Votto et al.,
simplifies BSC calculation by directly deriving them from
Lommel beam BSCs. Lommel beam BSC derivation primarily
relies on integral localization approximation and surface integral
equation methods [111]. Chafiq and Cui expanded these to study
Lommel scattering by homogeneous and non-homogeneous
spherical particles, investigating beam polarization effects [112,
113]. Within GLMT, Mathieu and cylindrical vector beam
scattering by spheres has also been investigated [114, 115]. These
beams represent only a subset of explored structured light, holding
significant research value in optical communications, manipulation,
and sensing. GLMT’s accurate calculation model proves
indispensable for studying structured light-particle interaction.

4 Significance and developments in
particle scattering with structured light

4.1 Significance of structured light particle
scattering

The significance of structured light cannot be overstated,
offering rich optical properties and a wide range of applications.
These properties and applications provide ample flexibility and
innovation in designing optical devices and systems. By utilizing
structured light, scientists and engineers can precisely control
intensity and phase structures, enabling more efficient and
accurate optical manipulations and controls, markedly enhancing
optical device performance and application effectiveness. Structured
lights drive development of optical devices and applications, paving
the way for new optical technology innovations and applications. In
the specific subject of particle scattering in structured lights, several
key aspects should be considered. Firstly, the intricate phase and
intensity distribution of structured light can profoundly influence
particle scattering behavior. This scattering behavior depends
significantly on the structured light’s properties, understanding
this relationship paramount for optimizing optical device
performance.

For instance, employing structured lights, which are beams of
light engineered to exhibit unique topological features like doughnut
or vortex beams, can elicit distinctive scattering phenomena.
Particles interacting with these structured lights may experience
OAM transfer, generating non-trivial scattering patterns and
enhancing overall scattering outputs. This offers researchers
precise control and manipulation of particles during scattering
experiments, opening opportunities for scientific exploration.
Additionally, the polarization properties inherent in structured
lights also dictate the nature of particle scattering. Structured
light can be meticulously engineered and designed to manifest
well-defined polarization states, ranging from linear, circular,
elliptical, radial, angular or even more complex polarization
states. Particles’ scattering characteristics exhibit profound
sensitivity to the precise polarization state of the incident beam.
Rigorous, detailed analysis of the polarization properties of scattered
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light can yield valuable insights into the size, shape, and refractive
index of the particles involved, painting a more comprehensive
picture of their light interactions. Moreover, the intricate dynamics
of multiple particle interactions within a structured light can be
meticulously explored. The relative positions and distances between
individual particles, along with their unique scattering properties,
play significant roles in eliciting a range of interesting collective
scattering phenomena. Such investigations facilitate deeper
understanding of particle-particle interactions and unravel the
complexities of scattering dynamics within structured light
beams. Structured lights offer a versatile, multifaceted platform
for delving deep into the intricate world of particle scattering
phenomena. Their tailored properties, such as meticulously
controlled phase distribution, carefully honed intensity profile,
and distinct polarization states, serve as critical tools in
enhancing our understanding and utilization of scattered light for
diverse applications spanning microfluidics, particle sorting, optical
trapping, and even biological sensing.

The Mie theory, a fundamental principle meticulously refined
and developed by numerous scientists over a century, has undergone
significant transformation. Its latest iteration, the GLMT, emerged
as an indispensable analytical framework for rigorous investigations
into the intricate electromagnetic scattering properties of regular-
shaped particles. Applicable not only to basic particle models like
simple homogeneous spheres, but also to more complex entities
including charged, magnetic, and multi-layered particles, the theory
significantly broadened the scope of its applicability. The far-
reaching implications of the GLMT have been instrumental in
elucidating the intricate dynamics of scattering phenomena

across a wide range of complex atmospheric environments, from
atmospheric aerosols and dust particles to haze. The theory’s utility
extends beyond mere elucidation, proving invaluable in enhancing
our understanding across diverse disciplines including atmospheric
science, optical imaging, and remote sensing. Expansion of Mie
theory, moving beyond simple spherical constructs to incorporate
more intricate geometries like ellipsoids, cylinders, and other forms
of irregularity, has paved the way for nuanced and realistic
investigations into our environment’s intricate workings. This has
enabled more accurate modeling and prediction of atmospheric
phenomena, thereby deepening our understanding of the intricate
interplay among various environmental elements.

4.2 The development of simulation
software ABSphere

Structured light, a class of light beams characterized by distinct
intensity and phase patterns, has proven instrumental in numerous
sophisticated optical applications, including optical communication,
structured light imaging, and optical manipulation. Given their diverse
and profound utility, enhancing simulation capabilities for structured
light particle scattering represents a paramount study objective.We seek
to elucidate nuances of particle scattering, particularly concerning
structured light. Composite beams and structured light arrays,
currently garnering significant scholarly attention, offer superior
transmission efficiencies and remarkable stabilization traits over
single-beam counterparts. Our focus is keenly fixed on emergent
composite beams and arrays - components of the acclaimed

FIGURE 13
Development roadmap for the optical scattering software ABSphere.
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ABSphere series. We seek to deepen understanding of scattering
phenomena associated with these intricate structured lights. This
quest is not merely superficial, but an endeavor to unravel
complexities and uncover latent utilities in this rapidly evolving sphere.

In addition, the current software faces limitations in calculating
diverse particle models. Efforts are underway to introduce more
complex models for accurate real-world scenario representation.
Anticipating continuous development by dedicated researchers, an
accurate, efficient, comprehensive software solution is sought to aid
fundamental research, education, and teaching. Collaborative efforts
can significantly advance optical science and engineering, deepen
understanding of structured light-micro-particle interactions,
optimize optical designs, and enable innovative applications.

As shown in Figure 13, in subsequent development of the
innovative ABSphere software, our primary focus will be
significantly expanding the types of beams it can handle. Building
on existing capabilities, including standard Gaussian, elliptical
Gaussian, and dog-nut beams, we aim to integrate a wide range of
more complex structured lights, such as LG, Bessel-type, Airy, Hermite-
Gaussian, and Mathieu. We also plan to incorporate multiple
superimposed beams, providing significantly more comprehensive
and accurate scattering simulations for studying and applying
structured light beam scattering. Using a computational model from
GLMT, with corresponding BSCs, we can precisely calculate a plethora
of scattering characteristics for relevant particles. This includes near-
field, internal field, far-field distribution, RCS, scattering efficiency
factor, radiation torque, radiation pressure, and scattering angle
distribution. We are committed to providing more accurate inputs
and expanding calculation ranges for beam parameters impacting BSCs,
including wavelength, beam width, and polarization. Figure 13 also
depicts the planned interface for subsequent ABSphere development,
giving an intuitive understanding of our research directions and
ambitions. We hope this enhanced software will substantially
contribute to education, research, and practical applications.

5 Conclusion

The paper introduces the application of ABSphere, a simulation
software, for analyzing complex interactions between structured
light and different particle types. Serving as a valuable tool for
investigating microparticle-structured light interaction, the study
provides a comprehensive overview of particle scattering in
structured light contexts, focusing on GLMT-based analysis. It
explores scattering properties associated with various structured
lights such as LG, Bessel-type, and Airy beams. Understanding these
structured lights’ scattering behaviors is essential for

comprehending their interaction mechanisms with spherical
particles. Highlighting the significance of modeling structured
light scattering by particles, the paper suggests future research
directions for ABSphere, including broadening applications and
investigating complex structured lights. Through ongoing
theoretical refinements and advancements, this research aims to
deepen understanding of interaction mechanisms between
structured light and spherical particles, laying a solid foundation
for advancements in optical applications and technologies.
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