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In order to effectively prevent and combat online public opinion crises triggered
by major emergencies, this paper explores the dissemination mechanism of
uncertain information on online social platforms. According to the decision-
making behavior of netizens after receiving uncertain information, they are
divided into eight categories. Considering that there will be a portion of
netizens who clarify uncertain information after receiving it, this paper
proposes a SEFTFbTbMR model of uncertain information clarification
behavior. The propagation dynamics equations of the model are given based
on the theory of differential equations, the basic regeneration number R0 of the
model is calculated, and the existence and stability of the equilibrium point of the
model are analyzed. The theoretical analysis of the model is validated using
numerical simulation software, and sensitivity analysis is performed on the
parameters related to R0. In order to reduce the influence caused by
uncertain information, the optimal control strategy of the model is proposed
using the Hamiltonian function. It is found that the dissemination of uncertain
information among netizens can be suppressed by strengthening the regulation
of social platforms, improving netizens’ awareness of identifying the authenticity
of information, and encouraging netizens to participate in the clarification of
uncertain information. The results of this work can provide a theoretical basis for
future research on the uncertain information disseminationmechanism triggered
by major emergencies. In addition, the results can also provide methodological
support for the relevant government departments to reduce the adverse effects
caused by uncertain information in the future.
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1 Introduction

Digital new media platforms are essentially unbounded, interactive, and anonymous,
which brings a significant degree of convenience to users but also introduces certain hidden
dangers. When a major emergency occurs, various network clusters form to discuss the
event. Although the internet users within these clusters are eager to obtain relevant
information about the event, its uncertainty and urgency often mean that the relevant
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departments are unable to announce details to the public in the early
stages of the response. Thus, during this information window, some
internet users use digital new media to disseminate uncertain
information, which may cause unnecessary panic among
uninformed internet users, possibly leading to social disquiet and
unrest. Thus, to reduce the secondary effects caused by the
dissemination of uncertain information after major emergencies,
it is critical to construct a model of dissemination of uncertain
information and analyze the mechanisms whereby such information
is transmitted.

This paper develops an epidemic propagation dynamics model
and uses optimal control theory to analyze the delivery mechanism
of uncertain information dissemination among internet users. First,
based on different decision-making behaviors, netizens are
categorized into eight groups: unknowns S, thinkers E, uncertain
information publishers F, clarifiers of uncertain information T,
internet users who believe uncertain information Fb, internet
users who only believe true information Tb, internet users who
do not believe any online information M, and information
immunizers R. We then construct the SEFTFbTbMR uncertain
information dissemination model. Second, the model is solved to
find the basic regeneration number R0 of the system, and the

equilibrium points P0 and P* that exist without and with
uncertain information dissemination, respectively, are calculated.
The stability of points P0 and P* is then analyzed, and numerical
simulations are conducted using Matlab 2017b to verify the
theoretical derivations. Finally, to control the scale of uncertain
information dissemination and increase the proportion of thinkers
and clarifiers of uncertain information, an optimal control model is
established based on the SEFTFbTbMR uncertain information
dissemination model.

The main contributions of the research reported in this paper
are as follows: 1) Considering that there will be some netizens who
will exhibit behaviors such as clarifying or re-disseminating the
uncertain information after receiving it, this paper divides the
netizens into eight categories according to decision-making
behavior in the process of uncertain information dissemination.
2) During the construction of the model, we consider not only the
dissemination of uncertain information but also the dissemination
of true information that clarifies the uncertain information. 3) In
order to reduce the influence caused by uncertain information, the
Hamiltonian function is utilized to propose the optimal control
strategy of the model. The research in this paper provides a
theoretical basis for dealing with the uncertain information

FIGURE1
Organizational diagram of the current study.
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dissemination mechanism triggered by major emergencies, and the
related conclusions provide methodological support for reducing the
adverse effects of uncertain information.

2 Related work

Since the outbreak of COVID-19, various studies have examined
major emergencies from different perspectives. Tan [1], Yao [2], Gao
[3], and Zhang [4] conducted studies from the perspective of emergency
management after the occurrence of a major emergency. Other scholars
have investigated the impact of major emergencies, such as Ukwuoma
[5], Benifa [6], Asif [7], and Fazmiya [8], who analyzed the physical
effects of major emergencies on humans from a medical perspective,
using COVID-19 as an example. Mo et al. [9] argued that major
emergencies have both an emotional as impact as well as a huge
economic impact. Cheng et al. [10] found that secondary disasters of
major emergencies can have an impact on international oil prices. Yang
et al. [11] concluded that major emergencies can seriously affect the
public’s emotions and cause a certain amount of panic. Similarly, De las
Heras-Pedrosa et al. [12] argued that major emergencies can also have
serious psychological effects on the public. Atehortua et al. [13] reported
that the occurrence of major emergencies is followed by large amounts
of uncertain information emerging on social networks, leading to the
spread of panic. Jalan et al. [14] argued that, after a major emergency,
the uncertain information disseminated across new media can cause
more panic in the public than traditional media reports. Zhang et al.
[15] found that the subsequent control of major emergencies can be
hampered by the dissemination of uncertain information after the
occurrence of a major emergency.

In the study of uncertain information, it is critical to examine
the various actors in the process of information dissemination.
Crokidakis [16], Zhao [17], and Yin [18] studied the crucial role
of social media in the dissemination of uncertain information.
Allington et al. [19] argued that social media platforms are the
main disseminators of uncertain information, and Centola [20]
showed that netizens tend to believe information when it is
received from several different sources. Zhang et al. [21] used the
behaviors of online media, internet users, and the government in
response to the Chinese COVID-19 Shuanghuanglian incident
as an example to examine the dissemination of information.
Choi [22] argued that although opinion leaders play a driving
role in the dissemination of information, they are not typically
its creators. Studies have examined the mechanisms whereby
uncertain information is disseminated, including that of Li et al.
[23], who examined the information dissemination process
under major emergencies, and that of Li et al. [24], who
investigated the propagation of uncertain information
following an incident. Wei [25] analyzed the propagation
process of uncertain information using the theory of heat
conduction in physics. Litou et al. [26] studied how to
increase the rate of information dissemination at the lowest
cost. Wang et al. [27] argued that a higher-status initial
disseminator could achieve a faster rate of dissemination,
whereas Hong et al. [28] showed that centralizing the release
of truthful information effectively reduces the dissemination
rate of uncertain information among netizens.

The Susceptible Infected Recovered (SIR) model [29] was
first introduced in 1927 by Kermack and McKendrick to study
the transmission mechanism of epidemics in populations using a

FIGURE 2
Flowchart of the propagation dynamics equations for the SEFTFbTbMR model.
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kinetic approach. Their mathematical model underwent further
enhancement in 1932 [30] and 1933 [31]. Subsequently,
researchers have continued to develop and extend this model
to account for the dynamics of infectious diseases, and have
progressively merged it with disciplines such as mathematics,
sociology, complexity science, cybernetics, and computer
science [32–34]. The epidemic transmission model has been
extensively utilized in studying cross-disciplinary information
transmission owing to the similarity of the transmission pattern
of information with that of epidemics [35]. [36] developed the

M-SDI model, which uses public comments to assess the credibility of
online information; in a subsequent study, they introduced the SRFI
model [37], which uses numbers of reads and retweets to measure
uncertainty in online content. Rui et al. [38] proposed the SPIR model
based on discrete-time dynamics. Trpevski et al. [39] developed an
uncertain information dissemination model with two different
acceptance probabilities based on the SIS model. Zan [40]
constructed the DSIR and C-DSIR models by considering the
simultaneous existence of multiple uncertain pieces of information
in the real world.

FIGURE 3
Evolution of Internet user populationswhenR0< 1. (A) all typesof Internet users are present at t =0. (B) some types of Internet users are not present at t =0.
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Based on the above-mentioned studies, we find that most
scholars often assume that only uncertain information is
disseminated among netizens in the process of researching
the dissemination mechanism of uncertain information, and
the decision-making behavior of netizens after receiving
uncertain information is relatively simple. However, in
reality, due to the characteristics of digital media technology,
Internet users can not only receive uncertain information but
also real information that clarifies uncertain information.
Moreover, with the continuous improvement of their own

quality, some netizens, when faced with uncertain
information, will make a judgment by investigating and
collecting evidence or thinking for moment, thus
spontaneously clarifying the uncertain information and
ultimately choosing to publish real information. Considering
the above realities, this paper divides netizens into eight
categories according to different decision-making behaviors in
the process of uncertain information dissemination. When
constructing the model, we consider not only the
dissemination of uncertain information but also the

FIGURE 4
Evolution of Internet user populationswhenR0 > 1. (A) all typesof Internetusers are present at t =0. (B) some types of Internet users are notpresent at t =0.
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dissemination of truthful information that clarifies the uncertain
information.

3 The model

The workflow of the current study in this paper is shown in
Figure 1 below, which consists of four main steps: 1) Internet user
behavior classification. 2) Construction of the model. 3) Calculation
of equilibrium points. 4) Stability analysis of equilibrium points.

The model construction and derivation process in this paper
follows the literature [41]. The specific steps are as follows: First, we
construct the SEFTFbTbMR model based on the classical infectious
disease model. To find the equilibrium point of the model, we
calculate the basic regeneration number of the system, R0, using the
next-generation matrix method [42]. We then judge the local
asymptotic stability and global asymptotic stability of the
equilibrium point using the Routh-Hurwitz criterion [43] and
Liapunov’s second method [44], respectively. Finally, we conduct
numerical simulations of the model.

FIGURE 5
Effect of variations in δ and B on R0.

FIGURE 6
Effect of variations in α1 and μ1 on R0.
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3.1 Construction of the uncertain
information dissemination model

The classical epidemic transmission dynamics model mentioned
in the literature [29] is given below:

dS

dt
� −βSI

dI

dt
� βSI − γI

dR

dt
� γI

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (1)

where S refers to susceptible, I refers to infected, R refers to
recovered, β is the rate of infection, and γ is the rate of recovery.

In this paper, on the basis of the classical epidemic disease
dissemination dynamics model given as Eq. 1, the Internet users in
the digital new media platform are divided into eight categories
according to their behavior after receiving uncertain information
as follows:

(1) The unknowns S are ordinary internet users who have not
received uncertain information;

(2) The thinkers E are internet users who, after receiving
uncertain information, think about the veracity of this
information before acting (i.e., neutral actors);

(3) The uncertain information publishers F are Internet users
who, after receiving uncertain information, choose to
disseminate the uncertain information;

(4) The clarifiers of uncertain information T are Internet users
who, after receiving uncertain information, choose to
investigate, obtain evidence, and release true information;

(5) The internet users who believe in uncertain
information, Fb;

(6) The internet users who only believe in truthful
information, Tb;

(7) The internet users who do not believe any information, M;
(8) The information immunizers R are Internet users who are not

interested in either uncertain or true information.

Combining the above eight categories of Internet users with
different decision-making behaviors, this paper amends the classical
infectious disease SIR model given as Eq. 1 to construct an uncertain
information dissemination model, which is defined as the
SEFTFbTbMR model. The propagation rules of the
SEFTFbTbMR model are as follows:

(I) At moment t, the total number of netizens in the network is
N(t), comprising the eight groups identified above, that is,

S t( ) + E t( ) + F t( ) + T t( ) + Fb t( ) + Tb t( ) +M t( ) + R t( ) � N t( ).
(2)

(II) B individuals enter the system per unit time. These individuals
are ordinary internet users who have not received uncertain
information (i.e., the transfer rate of unknown internet users in
the system is B). Individuals in the eight groups exit the system
at the same removal rate g.

(III) The propagation rate of uncertain information is δ.
When S makes contact with F and receives some item
of uncertain information, one of the following four
choices is made: S chooses to propagate the uncertain
information immediately, thus becoming a new member
of population F; S chooses to clarify the uncertain
information immediately, thus becoming a new
member of population T; S chooses to think
appropriately before acting, thus becoming a new
member of population E; or S does not take any

FIGURE 7
Effect of variations in α3 and μ2 on R0.
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interest in the uncertain information and chooses to
withdraw from the discussion, thus becoming a new
member of population R. The proportions of
transformations into F, T, E, and R are α1, α2, α3, and
α4, respectively; where α1 + α2 + α3 + α4 � 1.

(IV) Members of population E are converted to population Fwith
probability β1 and to population T with probability β2.
Members of population F are converted to population T
with probabilityω after learning the true information. As the
uncertain information and the true information in the

system come into contact, members of population F will
be converted to population Fb with probability μ1 and to
population M with probability μ2. Members of T will be
converted to population Tb with probability η1 and to
population M with probability η2. As the information is
time-sensitive, populations Fb, M, and Tb convert to
population R with probabilities γ1, γ2, and γ3, respectively.

Based on the above propagation rules, the dynamics for the
SEFTFbTbMR model can be written as follows:

FIGURE 9
Effect of variations in g and β2 on R0.

FIGURE 8
Effect of variations in β1 and ω on R0.
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dS

dt
� B − δFS − gS

dE

dt
� α3δFS − β1E − β2E − gE

dF

dt
� α1δFS + β1E − ωF − μ1F − μ2F − gF

dT

dt
� α2δFS + β2E + ωF − η1T − η2T − gT

dFb

dt
� μ1F − γ1Fb − gFb

dM

dt
� μ2F + η2T − γ2M − gM

dTb

dt
� η1T − γ3Tb − gTb

dR

dt
� γ1Fb + γ2M + γ3Tb + α4δFS − gR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (3)

The flow chart of the propagation dynamics equations for the
SEFTFbTbMR model is shown in Figure 2.

Based on Equations 2, 3, we obtain

dN t( )
dt

� B − gN t( ). (4)

When N0 � N(0), Eq. 4 yields N(t) � (N0 − B
g)e−gt + B

g,
namely, lim

t→∞N(t) � B
g. Thus, we can judge the positive invariant

set of system (3) to be

Ω �
S, E, F, T, Fb,M, Tb, R ∈ R+

8 :

0≤ S + E + F + T + Fb +M + Tb + R≤
B

g

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭. (5)

3.2 Calculation of equilibrium points

Summing up the equilibrium equations in system (3), it can be
concluded that there exists an equilibrium point of the system
without uncertain information propagation, which is defined as

P0 � B

g
, 0, 0, 0, 0, 0, 0, 0( ). (6)

Based on the fundamental regeneration number in propagation
dynamics [42], we define the total number of times a member of
population F transforms a member of population S into a new
member of population F during the average propagation period as
the fundamental regeneration number of uncertain information
propagation, denoted as R0. The R0 of the system can be
calculated by the next-generation matrix method. Letting
X � (F, E, T, Fb,M, Tb, R, S)Τ, system (3) can be rewritten as

dX

dt
� F X( ) − V X( ), (7)

where

F X( ) � α1δFS, α3δFS, 0, 0, 0, 0, 0, 0( )Τ, (8)

V X( ) �

−β1E + ωF + μ1F + μ2F + gF
β1E + β2E + gE

−α2δFS − β2E − ωF + η1T + η2T + gT
−μ1F + γ1Fb + gFb

−μ2F − η2T + γ2M + gM
−η1T + γ3Tb + gTb

−γ1Fb − γ2M − γ3Tb − α4δFS + gR
−B + α1δFS + α2δFS + α3δFS + α4δFS + gS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

The Jacobianmatrix for Equations 8, 9 at equilibrium point (6) is
calculated as follows:

DF X( ) � F 0
0 0

[ ], (10)

DV X( ) � V 0
V1 V2

[ ], (11)

where

F �
α1δ

B

g
0

α3δ
B

g
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

V � ω + μ1 + μ2 + g −β1
0 β1 + β2 + g

[ ]. (13)

According to the literature [45], the R0 of system (3) is
equivalent to the spectral radius of the matrix FV−1:

R0 � ρ FV−1( ) � Bδ α1 β1 + β2 + g( ) + α3β1[ ]
g β1 + β2 + g( ) g + μ1 + μ2 + ω( ). (14)

From the definition of R0, there exists an equilibrium point of
the system with uncertain information propagation when R0 > 1,
which can be expressed as

P* � S*, E*, F*, T*, Fb*,M*, Tb*, R*( ). (15)

Equilibrium point (15) should satisfy

B − α1δF*S* − α2δF*S* − α3δF*S* − α4δF*S* − gS* � 0
α3δF*S* − β1E* − β2E* − gE* � 0
α1δF*S* + β1E* − ωF* − μ1F* − μ2F* − gF* � 0
α2δF*S* + β2E* + ωF* − η1T* − η2T* − gT* � 0
μ1F* − γ1Fb* − gFb* � 0
μ2F* + η2T* − γ2M* − gM* � 0
η1T* − γ3Tb* − gTb* � 0
γ1Fb* + γ2M* + γ3Tb* + α4δF*S* − gR* � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (16)

A specific expression for equilibrium point (15) in terms of R0

can be obtained by performing calculations on system (16):

S* � β1 + β2 + g( ) g + μ1 + μ2 + ω( )
δ α1 β1 + β2 + g( ) + α3β1[ ] � B

gR0
, (17)

E* � δα3F*S*
β1 + β2 + g

� α3B R0 − 1( )
β1 + β2 + g( )R0

, (18)

F* � B − gS*
δS*

� g R0 − 1( )
δ

, (19)
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T* � β2E* + α2δF*S* + ωF*
g + η1 + η2

� R0 − 1( )
g + η1 + η2

β2α3B

β1 + β2 + g( )R0
+ α2B

gR0
+ gω

δ
[ ], (20)

Fb* � μ1F*
γ1 + g

� gμ1 R0 − 1( )
δ γ1 + g( ) (21)

M* � μ2F* + η2T*
γ2 + g

� R0 − 1( )
γ2 + g

gμ2
δ

+ η2
g + η1 + η2

β2α3B

β1 + β2 + g( )R0
+ α2B

gR0
+ gω

δ
[ ]{ },

(22)

Tb* � η1T*
γ3 + g

� η1 R0 − 1( )
g + η1 + η2( ) γ3 + g( ) β2α3B

β1 + β2 + g( )R0
+ α2B

R0
+ gω

δ
[ ], (23)

R* � γ1Fb*+ γ2M*+ γ3Tb*+α4δF*S*
g

� γ1μ1 R0 − 1( )
δ γ1 +g( ) + Bα3 R0 − 1( )

gR0

+ γ2 R0 − 1( )
g γ2 +g( ) gμ2

δ
+ η2
g+ η1 + η2

β2α3B

β1 + β2 +g( )R0
+ α2B

gR0
+ gω

δ
[ ]{ }

+ η1γ3 R0 − 1( )
g g+ η1 + η2( ) γ3 +g( ) β2α3B

β1 + β2 +g( )R0
+ α2B

R0
+ gω

δ
[ ].

(24)

3.3 Stability analysis of equilibrium points

Theorem 1. When R0 < 1, β1 + β2 + 2g + μ1 + μ2 + ω> δα1B
g ,

equilibrium point P0 is locally asymptotically stable in the
feasible domain Ω.

Proof: The Jacobian matrix J(P0) of system (3) at equilibrium point
P0 is

J P0( ) �

−g 0 −δB
g

0 0 0 0 0

0 −β1 −β2 −g
α3δB

g
0 0 0 0 0

0 β1
α1δB

g
−μ1 −μ2 −ω−g 0 0 0 0 0

0 β2
α2δB

g
+ω −g− η1 − η2 0 0 0 0

0 0 μ1 0 −g− γ1 0 0 0

0 0 μ2 η2 0 −g− γ2 0 0

0 0 0 η1 0 0 −g− γ3 0

0 0
α4δB

g
0 γ1 γ2 γ3 −g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Let the eigenvalues of matrix (25) beNi (i � 1, 2, 3, . . . , 8). From
matrix (25), six of the eigenvalues are negative:

N1 � −g< 0, N2 � −g − η1 − η2 < 0, N3 � −g − γ1 < 0, N4

� −g − γ2 < 0, N5 � −g − γ3 < 0, N6 � −g< 0

The remaining two eigenvalues are also eigenvalues of matrixA1,
which is

A1 �
−β1 − β2 − g

α3δB

g

β1
α1δB

g
− μ1 − μ2 − ω − g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (26)

The eigenvalues of A1 satisfy the following quadratic equation:

λ2 + c1λ + c2 � 0, (27)
where

c1 � β1 + β2 + 2g + μ1 + μ2 + ω − δα1B

g
, (28)

c2 � −δα1B − δBα1β1
g

− δBα3β1
g

− δBα1β2
g

+ β1g + β2g + g2 + β1μ1

+ β2μ1 + gμ1 + β1μ2 + β2μ2 + gμ2 + β1ω + β2ω + gω

� −δα1B − δBα1β1
g

− δBα3β1
g

− δBα1β2
g

+ β1 + β2 + g( )
× μ1 + μ2 + g + ω( ).

(29)
From β1 + β2 + 2g + μ1 + μ2 + ω> δα1B

g , it can be seen that c1 > 0.
From R0 � Bδ[α1(β1+β2+g)+α3β1]

g(β1+β2+g)(g+μ1+μ2+ω)< 1, we have
(β1 + β2 + g)(g + μ1 + μ2 + ω) − δα1B − δBα1β1

g − δBα3β1
g − δBα1β2

g > 0.
Therefore, c2 > 0.

Based on the Routh–Hurwitz criterion [43], it can be concluded
that the locally asymptotically stable equilibrium point P0 lies within
the feasible domain Ω when
R0 < 1, β1 + β2 + 2g + μ1 + μ2 + ω> δα1B

g , which proves Theorem 1.

Theorem 2. When R0 < 1, δB≤g2, the equilibrium point P0 is
globally asymptotically stable in the feasible domain Ω.

Proof:We construct the Lyapunov function around the equilibrium
point P0 as follows:

LP0 t( ) � E t( ) + F t( ) + T t( ) + Fb t( ) + Tb t( ) +M t( ) + R t( ). (30)

Based on system (3), the derivative of the Lyapunov function
(30) at equilibrium point P0 is

LP0′ t( ) � E′ t( ) + F′ t( ) + T′ t( ) + Fb′ t( ) + Tb′ t( ) +M′ t( ) + R′ t( )
� α3δFS − β1E − β2E − gE + α1δFS + β1E − ωF − μ1F

− μ2F − gF + α2δFS + β2E + ωF − η1T − η2T − gT

+ μ1F − γ1Fb − gFb + μ2F + η2T − γ2M − gM + η1T

− γ3Tb − gTb + γ1Fb + γ2M + γ3Tb + α4δFS − gR

� δS − g( )F − g E + T + Fb + Tb +M + R( ).
(31)

From Eq. 5, we know that S≤ B
g, and because δB≤g2, it

follows that
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LP0′ t( )≤ δB

g
− g( )F − g E + T + Fb + Tb +M + R( )≤ 0. (32)

Based on Equations 31, 32, it can be concluded that LP0′(t) � 0 is
only true if F � E � T � Fb � Tb � M � R � 0. For system (3), the
only solution on Ω that satisfies LP0′(t) � 0 is P0. Based on the
LaSalle invariance principle [46], it can be demonstrated that the
globally asymptotically stable equilibrium point P0 exists in the
feasible domain Ω when R0 < 1, δB≤g2 is true, which
proves Theorem 2.

Theorem 3.When R0 > 1, α3β1+α1(β1+β2)α1
< μ1 + μ2 + ω, the uncertain

information propagation equilibrium point P* is locally
asymptotically stable in the feasible domain Ω.

Proof: The Jacobian matrix J(P*) of system (3) at equilibrium point
P* with uncertain information propagation is

J P*( ) �

−g− δF* 0 −δS* 0 0 0 0 0
α3δF* −β1 −β2 −g α3δS* 0 0 0 0 0
α1δF* β1 α1δS*− μ1 −μ2 −ω−g 0 0 0 0 0
α2δF* β2 α2δS*+ω −g− η1 −η2 0 0 0 0
0 0 μ1 0 −g− γ1 0 0 0
0 0 μ2 η2 0 −g− γ2 0 0
0 0 0 η1 0 0 −g− γ3 0

α4δF* 0 α4δS* 0 γ1 γ2 γ3 −g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(33)

We denote the eigenvalues of matrix (33) as
Hi (i � 1, 2, 3, . . . , 8). It is apparent from matrix (33) that five of
the eigenvalues are negative:

H1 � −g< 0, H2 � −g − η1 − η2 < 0, H3 � −g − γ1 < 0, H4

� −g − γ2 < 0, H5 � −g − γ3 < 0

The remaining three eigenvalues are also eigenvalues of matrix
A2, which is

A2 �
−g − δF* 0 −δS*
α3δF* −β1 − β2 − g α3δS*
α1δF* β1 α1δS* − μ1 − μ2 − ω − g

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (34)

Converting the elements of matrix A2 to an expression
containing R0(14) yields matrix A*:

A* �

−gR0 0 − δB

gR0

α3g R0 − 1( ) −β1 − β2 − g
α3δB

gR0

α1g R0 − 1( ) β1
α1δB

gR0
− μ1 − μ2 − ω − g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(35)

For ease of writing and derivation later, we let the elements of
matrix (35) be

K1 � gR0, K2 � δB

gR0
, K3 � −α3g R0 − 1( ), K4 � β1 + β2 + g,K5

� −α3δB
gR0

K6 � −α1g R0 − 1( ), K7 � −β1, K8

� − α1δB

gR0
− μ1 − μ2 − ω − g( ) � α3β1 μ1 + μ2 + ω + g( )

α3β1 + α1 β1 + β2 + g( )

Because R0 > 1, we have that
K1 > 0, K2 > 0, K4 > 0, K8 > 0, K3 < 0, K5 < 0, K6 < 0, K7 < 0.

Writing matrix A* as

A* �
−K1 0 −K2

−K3 −K4 −K5

−K6 −K7 −K8

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (36)

the eigenvalues satisfy the following one-dimensional
cubic equation:

λ3 + h1λ
2 + h2λ + h3 � 0, (37)

where

h1 � K1 + K4 + K8 > 0, (38)
h2 � K1K4 −K2K6 − K5K7 +K1K8 +K4K8, (39)

h3 � −K2K4K6 +K2K3K7 − K1K5K7 +K1K4K8

� K1 K4K8 −K5K7( ) +K2 K3K7 − K4K6( ). (40)

First, to determine the positive and negative solutions of Eq. 39,
recall that K6 < 0. Then, K1K4 − K2K6 +K1K8 > 0, and

K4K8 −K5K7 � − β1 + β2 + g( ) α1δB

gR0
− μ1 − μ2 − ω − g( ) − α3δBβ1

gR0

� −α1δB β1 + β2 + g( ) + β1 + β2 + g( ) μ1 + μ2 + ω + g( )gR0 − α3δBβ1
gR0

� β1 + β2 + g( ) μ1 + μ2 + ω + g( )gR0 − α3δBβ1 + α1δB β1 + β2 + g( )[ ]
gR0

� Bδ α1 β1 + β2 + g( ) + α3β1[ ] − α3δBβ1 + α1δB β1 + β2 + g( )[ ]
gR0

� Bδ − Bδ( ) α1 β1 + β2 + g( ) + α3β1[ ]
gR0

� 0.

(41)

Therefore, h2 > 0.
Second, to determine the positive and negative solutions of Eq.

40, if K3 < 0, K6 < 0, K7 < 0, then K2(K3K7 − K4K6)> 0. Thus,
based on Eq. 41, we have that h3 > 0.

From Equations 38–40, the values of h1h2 and h1h2-h3 are
respectively

h1h2 � K1
2K4 +K1K4

2 −K1K2K6 −K2K4K6 −K1K5K7 −K4K5K7

+K1
2K8 + 3K1K4K8 +K4

2K8 −K2K6K8 −K5K7K8

+K1K8
2 +K4K8

2,

(42)
h1h2 − h3 � K1

2K4 + K1K4
2 − K1K2K6 −K4K5K7 +K1

2K8

+ 2K1K4K8 +K4
2K8 − K2K6K8 −K5K7K8 + K1K8

2

+ K4K8
2 − K2K3K7

� K1
2 K4 + K8( ) + K4 + K8( ) K4K8 − K5K7( )

− K2 K3K7 +K6K8( )
+ K1 K4

2 − K2K6 + 2K4K8 +K8
2( ).

(43)
Finally, to determine the positive solutions of Eq. 43, recall that

K6 < 0 and K4K8 − K5K7 � 0. Therefore, the following must hold:

K1
2 K4 + K8( ) + K4 + K8( ) K4K8 −K5K7( )
+K1 K4

2 −K2K6 + 2K4K8 + K8
2( )> 0

The calculation of K3K7 +K6K8 is simplified as follows:
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K3K7 +K6K8 � α3g R0 − 1( )β1 + α1g R0 − 1( ) α1δB

gR0
− μ1 − μ2 − ω − g( )

� g R0 − 1( ) α3β1 +
α1

2Bδ

gR0
− α1 g + μ1 + μ2 + ω( )[ ]

� g R0 − 1( ) α3β1 α3β1 + α1 β1 + β2 − μ1 − μ2 − ω( )[ ]
α3β1 + α1 β1 + β2 + g( ) .

(44)

Because R0 > 1, α3β1+α1(β1+β2)α1
< μ1 + μ2 + ω, we have that

K3K7 +K6K8 < 0. Because K2 > 0, we have that
−K2(K3K7 +K6K8)> 0, and it follows that h1h2 − h3 > 0.

Based on the Routh–Hurwitz criterion [43], it can be
concluded that the locally asymptotically stable uncertain
information propagation equilibrium point P* lies within the
feasible domain Ω when R0 > 1, α3β1+α1(β1+β2)α1

< μ1 + μ2 + ω, which
proves Theorem 3.

Theorem 4. When R0 > 1, the uncertain information propagation
equilibrium point P* is globally asymptotically stable in the feasible
domain Ω.

Proof:We construct the Lyapunov function around the equilibrium
point P* as follows:

LP* t( ) � S t( ) − S*[ ] + E t( ) − E*[ ] + F t( ) − F*[ ] + T t( ) − T*[ ]
+ Fb t( ) − Fb*[ ] + Tb t( ) − Tb*[ ] + M t( ) −M*[ ] + R t( ) − R*[ ]{ }2

.

(45)

Based on system (3), the derivative of the Lyapunov function
(45) at the equilibrium point P* is

LP*′ t( ) � 2
S t( ) − S*[ ] + E t( ) −E*[ ] + F t( ) −F*[ ] + T t( ) −T*[ ]
+ Fb t( ) −Fb*[ ] + Tb t( ) −Tb*[ ] + M t( ) −M*[ ] + R t( ) −R*[ ]{ }

× S′ t( ) +E′ t( ) +F′ t( ) +T′ t( ) +Fb′ t( ) +Tb′ t( ) +M′ t( ) +R′ t( )[ ]
� 2

S t( ) − S*[ ] + E t( ) −E*[ ] + F t( ) −F*[ ] + T t( ) −T*[ ]
+ Fb t( ) −Fb*[ ] + Tb t( ) −Tb*[ ] + M t( ) −M*[ ] + R t( ) −R*[ ]{ }

× B−g S+E+F+T+Fb+Tb+M+R( )[ ].
(46)

From point P* in Eq. 15, it follows that
B − g(S* + E* + F* + T* + Fb* + Tb* +M* + R*) � 0, namely, B �
g(S* + E* + F* + T* + Fb* + Tb* +M* + R*).

Therefore, Eq. 46 can be expressed as

LP*′ t( ) � 2
S t( ) − S*[ ] + E t( ) − E*[ ] + F t( ) − F*[ ]
+ T t( ) − T*[ ] + Fb t( ) − Fb*[ ] + Tb t( ) − Tb*[ ]
+ M t( ) −M*[ ] + R t( ) − R*[ ]

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

g S* + E* + F* + T* + Fb* + Tb* +M* + R*( ) − g
S + E + F + T
+Fb + Tb +M + R

( )[ ]
� −2g

S t( ) − S*[ ] + E t( ) − E*[ ] + F t( ) − F*[ ] + T t( ) − T*[ ]
+ Fb t( ) − Fb*[ ] + Tb t( ) − Tb*[ ] + M t( ) −M*[ ]
+ R t( ) − R*[ ]

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

2

≤ 0
(47)

From Eq. 47, it can be concluded that LP*′(t) � 0 only
if S(t) � S*, E(t) � E*, F(t) � F*, T(t) � T*, Fb(t) � Fb*, Tb(t) �
Tb*, M(t) � M*, R(t) � R* all hold. From system (3), the only
solution on Ω that satisfies LP*′(t) � 0 is P*. Based on the LaSalle
invariance principle [46], it can be demonstrated that the
globally asymptotically stable equilibrium point P* of uncertain

information propagation exists in the feasible domain Ω when
R0 > 1 holds, which proves Theorem 4.

3.4 Numerical simulation analysis of
equilibrium point stability

To verify the theoretical derivations, we now assign values to the
parameters and perform numerical simulations using Matlab2017b.
As these parameters cannot be obtained directly in practical cases,
we use reasonable values within the context of the situation. The
relevant parameters are assigned based on the following scenarios:

Scenario 1: To verify the local and global asymptotic stability of
equilibrium point P0 in the feasible domain Ω for R0 < 1, the
parameters are assigned as follows:

B � 1, g � 0.2, α1 � 0.2, α2 � 0.2, α3 � 0.5, α4 � 0.1, β1 � 0.2,
β2 � 0.3, μ1 � 0.4, μ2 � 0.3, η1 � 0.3, η2 � 0.3,ω � 0.6,
γ1 � 0.5, γ2 � 0.5, γ3 � 0.5, δ � 0.02

⎧⎪⎨⎪⎩ .

(48)
Based on the parameters in (48), we have that R0 � 0.0229< 1,

which satisfies the basic assumptions of Theorems 1 and 2. To
further explore whether the initial values of the various Internet user
populations in the system impact the final stability of the
equilibrium point P0, we maintain the values in (48) and conduct
numerical simulations with different initial values. Figure 3 shows
the evolution of equilibrium point P0 over time when R0 < 1.

From Figure 3, it is evident that, regardless of the initial
proportions of the Internet population, every Internet user
eventually becomes an unknown entity. Thus, equilibrium point
P0 is asymptotically stable within the feasible domainΩwhen R0 < 1,
which is consistent with the theory.

Based on Scenario 1, we can know that in the real world, when a
major emergencies occurs in a certain place, as long as R0 < 1, the
uncertain information in the online social platform will be gradually
forgotten by the netizens over time. In this case, the relevant government
departments do not need to make additional interventions, and the
uncertain information does not affect the stability of society.

Scenario 2: To verify the local and global asymptotic stability of
equilibrium point P* in the feasible domain Ω for R0 > 1, the
parameters are assigned as follows:

B � 1, g � 0.2, α1 � 0.4, α2 � 0.15, α3 � 0.4, α4 � 0.05, β1 � 0.2,
β2 � 0.2, μ1 � 0.2, μ2 � 0.2, η1 � 0.3, η2 � 0.3,ω � 0.3, γ1 � 0.5,
γ2 � 0.5, γ3 � 0.5, δ � 0.5

⎧⎪⎨⎪⎩ .

(49)
Based on the parameter values in (49), we have that

R0 � 1.4815> 1, which satisfies the basic assumptions of
Theorems 3 and 4. To further explore whether the initial values
of the various Internet user populations impact the final stability of
equilibrium point P*, we maintain the values in (49) and conduct
numerical simulations with different initial values. Figure 4 shows
the evolution of the equilibrium point P* when R0 > 1.

From Figure 4, it is evident that, regardless of the initial populations
of each state in the system, all users eventually become an unknown
entity. Thus, the uncertain information propagation equilibrium point
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P* is asymptotically stable within the feasible domain Ω when R0 > 1,
which is consistent with the theory.

Based on Scenario 2, we can know that in the real world, when a
major emergencies occur in a certain place, when R0 > 1, the
uncertain information in the online social platform will keep
spreading among netizens over time. In this case, if the relevant
government departments do not intervene, it will lead to the
continuous spread of panic among netizens, which will eventually
affect the stability of society.

4 Optimal control model

Based on the SEFTFbTbMR uncertain information dissemination
model, it is recommended that netizens be encouraged to clarify
uncertain information as much as possible, or to think and judge
uncertain information instead of posting random remarks; this action
will reduce the impact of uncertain information. Therefore, the
number of thinkers and clarifiers of uncertain information should
be increased. Thus, we now examine the effect of modifying the
model’s proportionality constants α2, α3, β2, and ω into control
variable functions α2(t), α3(t), β2(t), and ω(t), respectively.

The objective function is defined as follows:

J α2, α3, β2,ω( ) � ∫tf

0

E t( ) + T t( ) − ψ1

2
α2

2 t( ) − ψ2

2
α3

2 t( ) − ψ3

2
β2

2 t( )

−ψ4

2
ω2 t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt,
(50)

where tf is the end moment, and ψ1, ψ2, ψ3, and ψ4 are the weight
coefficients of each function.

We seek to satisfy the following system constraints:

dS

dt
� B − gS − α1δFS − α2 t( )δFS − α3 t( )δFS − α4δFS

dE

dt
� α3 t( )δFS − β1E − β2 t( )E − gE

dF

dt
� α1δFS + β1E − ω t( )F − μ1F − μ2F − gF

dT

dt
� α2 t( )δFS + β2 t( )E + ω t( )F − η1T − η2T − gT

dFb

dt
� μ1F − γ1Fb − gFb

dM

dt
� μ2F + η2T − γ2M − gM

dTb

dt
� η1T − γ3Tb − gTb

dR

dt
� γ1Fb + γ2M + γ3Tb + α4δFS − gR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (51)

The initial conditions necessary to satisfy system (60) are

S 0( ) � S0, E 0( ) � E0, F 0( ) � F0, T 0( ) � T0,
Fb 0( ) � Fb0,M 0( ) � M0, Tb 0( ) � Tb0, R 0( ) � R0

, (52)

where

α2 t( ),α3 t( ),β2 t( ),ω t( ) ∈U ≜
α2,α3,β2,ω( )∣∣∣∣ α2 t( ),α3 t( ),β2 t( ),ω t( )( )
measurable,
0≤α2 t( ),α3 t( ),β2 t( ),ω t( )≤1,∀t ∈ 0, tf[ ]

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭.

(53)

Theorem 5. There exists an optimal control tuple
(α2*, α3*, β2*,ω*) ∈ U such that

J α2*, α3*, β2*,ω*( ) � max J α2, α3, β2,ω( ): α2, α3, β2,ω( ) ∈ U{ }.
(54)

Proof: Set X(t) � (S(t), E(t), F(t), T(t), Fb(t), Tb(t),M(t),
R(t))T and

L t, X t( ), α2 t( ), α3 t( ), β2 t( ),ω t( )( )
� E t( ) + T t( ) − ψ1

2
α2

2 t( ) − ψ2

2
α3

2 t( ) − ψ3

2
β2

2 t( ) − ψ4

2
ω2 t( )

The existence of optimal control tuples is contingent upon
fulfilling the following criteria:

1. The set of control variables and corresponding state variables
must constitute a nonempty set.

2. The control set U must be closed and convex.
3. The right-hand side of (60) should take the form of a linear

system comprising state variables and control variables.
4. The product of the target generalization must be convex on U.
5. There is a constant k1 > 0, k2 > 0, l> 0 such that the product of

the intended generalized function satisfies

−L t, X t( ), α2, α3, β2,ω( )≥ k1 α2| |2 + α3| |2 + β2
∣∣∣∣ ∣∣∣∣2 + ω| |2( ) l

2 − k2.

(55)

As conditions 1–3 are straightforward, only conditions 4 and
5 are proved.

First, it is easy to obtain inequalities based on system (51):

S′≤B, E′≤ α3 t( )δFS, F′≤ α1δFS + β1E, T′≤ α2 t( )δFS + β2 t( )E
+ ω t( )F, Fb′≤ μ1F,M′≤ μ2F + η2T, Tb′≤ η1T, R′≤ γ1Fb + γ2M

+ γ3Tb + α4δFS..

(56)

Therefore, condition 4 holds.
Second, for any t≥ 0, there exists a positive constant Z satisfying

|X(t)|≤Z. Hence,

−L t, X t( ), α2, α3, β2,ω( ) � ψ1

2
α2

2 t( ) + ψ2

2
α3

2 t( ) + ψ3

2
β2

2 t( )
+ ψ4

2
ω2 t( ) − E t( ) − T t( )

≥ k1 α2| |2 + α3| |2 + β2
∣∣∣∣ ∣∣∣∣2 + ω| |2( ) l

2 − 2Z.

(57)

Setting k1 � min ψ1
2 ,

ψ2
2 ,

ψ3
2 ,

ψ4
2{ }, k2 � 2Z, l � 2, condition

5 then holds.
At this point, all optimal control tuples have been successfully

verified, proving Theorem 5.

Theorem 6. For the optimal control tuple (α2*, α3*, β2*,ω*) ∈ U
for system (51), there is an associated variable ρi(i � 1, 2, ..., 8)
such that
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dρ1
dt

� ρ1 + ρ4( )α2 t( )δF + ρ1α4δF + ρ3α1δF + ρ1F + ρ2S( )α3 t( )δ

+ρ8α4δF + ρ1g + ρ1α1δF

dρ2
dt

� 1 + ρ2 − ρ4( )β2 t( ) + ρ2 β1 + g( ) − ρ3β1

dρ3
dt

� ρ1 − ρ4( )α2 t( )δS − ρ5μ1 + ρ8α4δS + ρ1 − ρ2( )α3 t( )δS

+ρ1 −α1δS + α4δS[ ]

+ ρ3 − ρ4( )ω t( ) − ρ6μ2 + ρ3 −α1δS + μ1 + μ2 + g[ ]
dρ4
dt

� 1 − ρ7η1 − ρ6η2 + ρ4 η1 + η2 + g( )
dρ5
dt

� ρ5 γ1 + g( ) − ρ8γ1

dρ6
dt

� ρ6 γ2 + g( ) − ρ8γ2

dρ7
dt

� ρ7 γ3 + g( ) − ρ8γ3

dρ8
dt

� ρ8g,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(58)

with the following boundary conditions:

ρ1 tf( ) � ρ2 tf( ) � ρ3 tf( ) � ρ4 tf( ) � ρ5 tf( ) � ρ6 tf( ) � ρ7 tf( )
� ρ8 tf( ) � 0.

(59)
Furthermore, the optimal control tuple (α2*, α3*, β2*,ω*) ∈ U

for the state system can be obtained from the following equation:

α2
* t( ) � min 1, max 0,

ρ1 − ρ4( )δFS
ψ1

{ }{ }
α3* t( ) � min 1, max 0,

ρ1 − ρ2( )δFS
ψ2

{ }{ }
β2* t( ) � min 1, max 0,

ρ2 − ρ4( )E
ψ3

{ }{ }
ω* t( ) � min 1, max 0,

ρ3 − ρ4( )F
ψ4

{ }{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Proof: To derive the necessary expressions for the optimal control
system and control tuple, we define a Hamiltonian function with a
penalty term, with the following expression serving as a guideline:

H � −L t,X t( ), α2 t( ), α3 t( ), β2 t( ),ω t( )( )
+ ρ1 B − gS − α1δFS − α2 t( )δFS − α3 t( )δFS − α4δFS[ ]
+ ρ7 η1T − γ3Tb − gTb[ ] + ρ2 α3 t( )δFS − β1E − β2 t( )E − gE[ ]
+ ρ6 μ2F + η2T − γ2M − gM[ ]
+ ρ3 α1δFS + β1E − ω t( )F − μ1F − μ2F − gF[ ]
+ ρ5 μ1F − γ1Fb − gFb[ ]
+ ρ4 α2 t( )δFS + β2 t( )E + ω t( )F − η1T − η2T − gT[ ]
+ ρ8 γ1Fb + γ2M + γ3Tb + α4δFS − gR[ ] − λ11α2 t( )
− λ12 1 − α2 t( )( ) − λ21α3 t( ) − λ22 1 − α3 t( )( ) − λ31β2 t( )
− λ32 1 − β2 t( )( ) − λ41ω t( ) − λ42 1 − ω t( )( ),

(61)

where the penalty term λij(t)≥ 0 satisfies λ11(t)α2(t) � λ12(t)(1 −
α2(t)) � 0 at the optimal control point for α2*, λ21(t)α3(t) � λ22(t)(1 −
α3(t)) � 0 at the optimal control point for α3*, λ31(t)β2(t) � λ32(t)(1 −
β2(t)) � 0 at the optimal control point for β2*, and λ41(t)ω(t) �
λ42(t)(1 − ω(t)) � 0 at the optimal control point for ω*.

Based on Pontryagin’s maximum principle [47], the
concomitant system can be expressed as follows:

dρ1
dt

� −∂H
∂S

,
dρ2
dt

� −∂H
∂E

,
dρ3
dt

� −∂H
∂F

,
dρ4
dt

� −∂H
∂T

,

dρ5
dt

� − ∂H
∂Fb

,
dρ6
dt

� −∂H
∂M

,
dρ7
dt

� − ∂H
∂Tb

,
dρ8
dt

� −∂H
∂R

.

(62)

The boundary conditions of this system are

ρ1 tf( ) � ρ2 tf( ) � ρ3 tf( ) � ρ4 tf( ) � ρ5 tf( ) � ρ6 tf( ) � ρ7 tf( )
� ρ8 tf( ) � 0.

(63)
The optimality conditions in terms of α2* are

∂H
∂α2*

� ψ1α2 t( ) − ρ1δFS + ρ4δFS − λ11 + λ12 � 0. (64)

Thus, the optimal control equation can be written as

α2
* � ρ1 − ρ4( )δFS

ψ1

+ λ11 − λ12. (65)

To obtain the final optimal control equation without λ11 or λ12,
the following three cases are discussed separately.

1. For t | 0< α2*(t)< 1{ }, λ11(t) � λ12(t) � 0, the optimal control
equation can be expressed as follows:

α2
* � ρ1 − ρ4( )δFS

ψ1

. (66)

2. For t|α2*(t) � 1{ }, λ11(t) � 0, the optimal control equation can
be expressed as follows:

1 � α2
* � ρ1 − ρ4( )δFS − λ12

ψ1

. (67)

Because λ12(t)≥ 0, we have that (ρ1−ρ4)δFS−λ12
ψ1

≥ 1.

3. For t|α2*(t) � 0{ }, λ12(t) � 0, the optimal control equation can
be expressed as follows:

0 � α2
* � ρ1 − ρ4( )δFS + λ11

ψ1

. (68)

Based on these three cases, the final optimal control equation for
α2*(t) can be written as

α2
* t( ) � min 1, max 0,

ρ1 − ρ4( )δFS
ψ1

{ }{ }. (69)

Similarly, the final optimal control equation for α3*(t) is

α3
* t( ) � min 1, max 0,

ρ1 − ρ2( )δFS
ψ2

{ }{ }, (70)

and that for β2*(t) is
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β2
* t( ) � min 1, max 0,

ρ2 − ρ4( )E
ψ3

{ }{ }. (71)

Finally, the optimal control equation for ω*(t) can be written as

ω* t( ) � min 1, max 0,
ρ3 − ρ4( )F

ψ4

{ }{ }. (72)

We have now obtained system (51), which includes the initial
conditions (52), and the accompanying system (58), which includes
the boundary conditions. The optimal control system can now be
expressed as follows:

dS

dt
� B − gS − α1δFS − min 1, max 0,

ρ1 − ρ4( )δFS
ψ1

{ }{ } t( )δFS

−min 1, max 0,
ρ1 − ρ2( )δFS

ψ2

{ }{ } t( )δFS − α4δFS

dE

dt
� min 1, max 0,

ρ1 − ρ2( )δFS
ψ2

{ }{ } t( )δFS − β1E

−min 1, max 0,
ρ2 − ρ4( )E

ψ3

{ }{ } t( )E − gE

dF

dt
� α1δFS + β1E − min 1, max 0,

ρ3 − ρ4( )F
ψ4

{ }{ } t( )F − μ1F − μ2F − gF

dT

dt
� min 1, max 0,

ρ1 − ρ4( )δFS
ψ1

{ }{ } t( )δFS

+min 1, max 0,
ρ2 − ρ4( )E

ψ3

{ }{ } t( )E

+min 1, max 0,
ρ3 − ρ4( )F

ψ4

{ }{ } t( )F − η1T − η2T − gT

dFb

dt
� μ1F − γ1Fb − gFb

dM

dt
� μ2F + η2T − γ2M − gM

dTb

dt
� η1T − γ3Tb − gTb

dR

dt
� γ1Fb + γ2M + γ3Tb + α4δFS − gR

dρ1
dt

� ρ1 + ρ4( )min 1, max 0,
ρ1 − ρ4( )δFS

ψ1

{ }{ } t( )δF + ρ1α4δF + ρ3α1δF

+ ρ1F + ρ2S( )min 1, max 0,
ρ1 − ρ2( )δFS

ψ2

{ }{ } t( )δ + ρ8α4δF + ρ1g + ρ1α1δF

dρ2
dt

� 1 + ρ2 − ρ4( )min 1, max 0,
ρ2 − ρ4( )E

ψ3

{ }{ } t( ) + ρ2 β1 + g( ) − ρ3β1

dρ3
dt

� ρ1 − ρ4( )min 1, max 0,
ρ1 − ρ4( )δFS

ψ1

{ }{ } t( )δS − ρ5μ1 + ρ8α4δS

+ ρ1 − ρ2( )min 1, max 0,
ρ1 − ρ2( )δFS

ψ2

{ }{ } t( )δS + ρ1 −α1δS + α4δS[ ]

+ ρ3 − ρ4( )min 1, max 0,
ρ3 − ρ4( )F

ψ4

{ }{ } t( ) − ρ6μ2 + ρ3 −α1δS + μ1 + μ2 + g[ ]
dρ4
dt

� 1 − ρ7η1 − ρ6η2 + ρ4 η1 + η2 + g( )
dρ5
dt

� ρ5 γ1 + g( ) − ρ8γ1

dρ6
dt

� ρ6 γ2 + g( ) − ρ8γ2

dρ7
dt

� ρ7 γ3 + g( ) − ρ8γ3

dρ8
dt

� ρ8g

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(73)

where

S 0( ) � S0, E 0( ) � E0, F 0( ) � F0, T 0( ) � T0, Fb 0( ) � Fb0,M 0( )
� M0, Tb 0( ) � Tb0, R 0( ) � R0ρ1 tf( ) � ρ2 tf( ) � ρ3 tf( )
� ρ4 tf( ) � ρ5 tf( ) � ρ6 tf( ) � ρ7 tf( ) � ρ8 tf( ) � 0.

(74)
This completes the proof of Theorem 6.

5 Discussion

This paper investigates the dissemination mechanism of
uncertain information triggered by major emergencies on
online social platforms. Based on the construction of the
SEFTFbTbMR model of uncertain information clarification
behavior, the optimal control strategy of the model is
proposed using the Hamiltonian function. It is known from
the analysis of the model that the size of the basic
regeneration number plays a crucial role in predicting whether
uncertain information can eventually die out. When the basic
regeneration number is < 1, uncertain information can die out
automatically over time. When the basic regeneration number
is > 1, uncertain information will always exist on the online social
platform, which can significantly disrupt society.

During major emergencies, due to limited resources for public
opinion control, uncertain information may spread unchecked on
online social platforms. This can lead to some netizens
unintentionally or intentionally becoming disseminators of such
information. Currently, government departments are responsible
for investigating and managing major emergencies. However, it may
not be possible for them to effectively control and remove all sources
of uncertain information within a short period of time. The value of
this study lies in its ability to provide theoretical support for relevant
government departments to reduce the adverse effects caused by the
propagation of uncertain information in the future. The
experimental results of this article help to deepen our
understanding of the propagation mechanism of uncertain
information among Internet users and further enrich the related
theories and methods of uncertain information
propagation research.

5.1 Sensitivity analysis of the basic
regeneration number R0

The experimental results of this paper show that the value of the
basic regeneration number determines whether uncertain
information can be disseminated in the online social platform.
The basic regeneration number R0 is jointly composed of
different parameters in the model. Therefore, this section focuses
on the influence of related parameters on the basic
regeneration number.

To analyze the influence of parameter value changes on the basic
regeneration number R0, we obtained the first-order partial
derivatives for each parameter in R0. A positive sign in the
partial derivative function indicates a positive influence of the
parameter on R0. If the sign of the partial derivative function is
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negative, it indicates that the parameter has a negative impact on the
basic reproduction number R0.

∂R0

∂B
� δ α1 β1 + β2 + g( ) + α3β1[ ]
g β1 + β2 + g( ) g + μ1 + μ2 + ω( )> 0 (75)

∂R0

∂δ
� B α1 β1 + β2 + g( ) + α3β1[ ]
g β1 + β2 + g( ) g + μ1 + μ2 + ω( )> 0 (76)
∂R0

∂α1
� Bδ

g g + μ1 + μ2 + ω( )> 0 (77)
∂R0

∂α3
� Bδβ1
g β1 + β2 + g( ) g + μ1 + μ2 + ω( )> 0 (78)

∂R0

∂β1
� Bδα3 β2 + g( )
g β1 + β2 + g( )2 g + μ1 + μ2 + ω( )> 0 (79)

∂R0

∂β2
� − Bδα3β1

g β1 + β2 + g( )2 g + μ1 + μ2 + ω( )< 0 (80)

∂R0

∂g
� −

Bδ
α1 β1 + β2 + g( )2 2g + μ1 + μ2 + ω( )
+α3β1[ β1 + β2( ) 2g + μ1 + μ2 + ω( )
+g 3g + 2μ1 + 2μ2 + 2ω( )]

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

g2 β1 + β2 + g( )2 g + μ1 + μ2 + ω( )2 < 0 (81)

∂R0

∂μ1
� − Bδ α1 β1 + β2 + g( ) + α3β1[ ]

g β1 + β2 + g( ) g + μ1 + μ2 + ω( )2 < 0 (82)

∂R0

∂μ2
� − Bδ α1 β1 + β2 + g( ) + α3β1[ ]

g β1 + β2 + g( ) g + μ1 + μ2 + ω( )2 < 0 (83)

∂R0

∂ω
� − Bδ α1 β1 + β2 + g( ) + α3β1[ ]

g β1 + β2 + g( ) g + μ1 + μ2 + ω( )2 < 0 (84)

To visualize the impact of various parameter values on R0, we
used Matlab 2017b numerical simulation software. Based on the
assignment result (49), we kept the remaining parameters constant
and varied the value range of B from 1 to 5, δ from 0.1 to 1, and the
rest of the parameters from 0 to 1. We conducted numerical
simulations in groups of two by two to determine the effects of
different parameter values on R0.

Figure 5 shows that the basic regeneration number R0 increases
as parameters B and δ increase. 1) The larger the number of new
Internet users in the social platform per unit of time, the more
conducive to the spread of uncertain information. The larger the
base of Internet users, the greater the number of individuals who
may be concerned about uncertain information, and the more
likely it is that such information will become widely known. 2) The
speed at which uncertain information spreads affects its
propagation. In other words, the more Internet users on a
social platform who come into contact with the publisher of
uncertain information, the more likely it is to spread. Thus, the
spread of uncertain information can be curbed by limiting the
speech flow of certain netizens on social media platforms or
blocking specific keywords.

Figure 6 shows that the basic regeneration number R0 increases
with parameter α1 and decreases with parameter μ1. 1) When
unknown people receive uncertain information, they promote the
spread of uncertain information in social platforms if they choose to
believe in the content of the uncertain information and
spontaneously spread it. 2) Publishers of uncertain information
who receive true information on social platforms and choose not
to publish their own statements, regardless of whether they believe in

the true information or not, inhibit the spread of uncertain
information on social platforms.

Figure 7 shows that the basic regeneration number R0 increases
with parameter α3 and decreases with parameter μ2. 1) When the
unknown person receives the uncertain information, if he does not
spread the uncertain information, but keeps a wait-and-see attitude,
it will promote the spread of uncertain information in the social
platform. 2) If an uncertain information publisher receives real
information on a social platform, they may choose not to publish
their own speech, regardless of whether they believe the real
information or not. This can help inhibit the spread of uncertain
information on the platform.

Figure 8 shows that the basic regeneration number R0 increases
with an increase in parameter β1 and decreases with an increase in
parameter ω. 1) The dissemination of uncertain information in
social platforms is facilitated when the thinker still chooses to believe
in the content of the uncertain information and disseminates it after
forensically examining and thinking about the uncertain
information. 2) The spread of uncertain information on social
media is hindered when the person who originally shared the
uncertain information realizes that it is false after receiving
accurate information and decides to clarify it.

According to Figure 9, the basic regeneration number R0

decreases as parameters g and β2 increase. 1) The higher the
number of netizens exiting in the social platform per unit time,
the more conducive to suppressing the spread of uncertain
information. 2) The spread of uncertain information on social
media can be reduced when individuals recognize that the
information is false and take the time to clarify it after gathering
evidence and carefully considering the information.

5.2 Comparison with existing research on
uncertain information dissemination

This section compares the research in this paper with existing
research on uncertain information dissemination. In their study of
uncertain information dissemination [21], only distinguish between
the decision-making behavior of online media and that of Internet
users. However, they fail to consider that different Internet users
may exhibit various decision-making behaviors when faced with
uncertain information. Some may even adopt the same decision-
making behaviors as online media [24, 43]. Only considered two
decision-making behaviors of Internet users: dissemination or
thinking. However, in reality, some Internet users choose to
clarify uncertain information when faced with it, while others
maintain their behavior after contacting other Internet users. In a
previous study [46], observed this effect but did not consider that
some netizens may not immediately change their minds after
interacting with others, but rather become more thoughtful.

Compared to the studies conducted by the aforementioned
scholars on uncertain information dissemination, this paper
considers not only the fact that Internet users exhibit multiple
decision-making behaviors when faced with uncertain
information, but also that some of them choose to clarify such
information. Additionally, it acknowledges that Internet users are
influenced not only by uncertain information, but also by real
information. This paper categorizes Internet users into eight
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groups based on their decision-making behaviors during uncertain
information dissemination. The model considers both the
dissemination of uncertain information and the dissemination of
real information that clarifies uncertain information, making it
highly innovative.

5.3 Limitations and future prospects

The research presented in this paper has the following
limitations. First, in constructing the uncertain information
dissemination model, the impact of time lags on uncertain
information dissemination was not considered. In reality,
information dissemination has a certain degree of lag, and
Internet users receive uncertain information at inconsistent
times. Therefore, in future research, we will add a time lag to
our model. Second, this paper does not differentiate the
communication ability of Internet users, whereas, in reality, the
information released by opinion leaders is more likely to be trusted
by ordinary Internet users. Therefore, in the future, we will
combine complex networks with the uncertain information
dissemination model to study the propagation mechanism
based on different network structures. Finally, this study only
used Matlab for the numerical simulations, without any real data.
Therefore, in future research, we will integrate real data where
possible and simulate real cases.

6 Conclusion

This paper has described the SEFTFbTbMR uncertain
information dissemination model, which is based on the classical
SIR epidemic dynamics model. The next-generation matrix method
was used to calculate the basic regeneration number and equilibrium
points of the model, and the local stability and global stability of the
equilibrium points were theoretically analyzed according to the
Routh–Hurwitz criterion and the Lyapunov function,
respectively. The accuracy of the theoretical derivation was
verified through numerical simulations, and the sensitivity of the
basic regeneration number to various parameters was analyzed.
Finally, to reduce the influence of uncertain information, optimal
control theory was applied to the model, and a strategy was
proposed. This will further enrich the relevant theories and
methods for the propagation of uncertain information. The main
results of this study are as follows:

(1) Strengthen the supervision of social platforms to block the
dissemination of uncertain information (i.e., reduce the value
of δ in the model, and increase the values of μ1 and μ2). When
major emergencies occur, social platforms can use their own
authority to supervise related information so as to reduce the
emergence of uncertain information at the source. After
uncertain information has emerged, the flow of some
published remarks should be limited on the platform, or
certain keywords should be blocked to reduce the
dissemination rate. This suppresses the dissemination of
uncertain information.

(2) Improve the ability of internet users to determine the
authenticity of information, improve the reward and
punishment mechanism, and encourage users to participate
in the clarification of uncertain information (i.e., increase the
values of ω and β2 in the model and reduce the values of β1, α1,
and α3). Following a major emergency, the relevant
governmental departments should release the real
information related to the events in a timely manner and
provide materials to support Internet users in carrying out
independent investigations. The government should also seek
to punish Internet users who release uncertain information to
reduce its spread. Internet users who publish true information
should be rewarded so as to encourage expression of users’
own opinions and greater participation in clarifying uncertain
information.
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