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The study centered on Quantitative Structure Property Relationship (QSPR)
analysis with a focus on various graph energies, investigating drugs like
Mefloquinone, Sertraline, Niclosamide, Tizoxanide, PHA-690509, Ribavirin,
Emricasan, and Sofosbuvir. Employing computational modeling techniques,
the research aimed to uncover the correlations between the chemical
structures of these medications and their unique properties. The results
illuminated the quantitative relationships between structural characteristics
and pharmacological traits, advancing our predictive capabilities. This research
significantly contributes to medication discovery and design by providing
essential insights into the structure-property connections of these medicinal
compounds. Notably, certain spectrum-based descriptors, such as positive
inertia energy, adjacency energy, arithmetic-geometric energy, first zegrab
energy, and the harmonic index, exhibited strong correlation coefficients
above 0.999. In contrast, well-known descriptors like the Extended adjacency,
Laplacian and signless Laplacian spectral radii, and the first and second Zagreb
Estrada indices showed weaker performance. The article emphasizes the
application of graph energies and a linear regression model to predict
pharmacological features effectively, enhancing the drug discovery process
and aiding in targeted drug design by elucidating the relationship between
molecular structure and pharmacological characteristics.
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1 Introduction

QSAR/QSPR techniques offer an efficient means to establish links between the physical
and chemical attributes of chemical compounds and their bioactivities [1]. Structure-based
topological parameters play a vital role in constructing robust predictive models [2].
Eigenvalues-based topological features have demonstrated a strong association with
quantum properties of organic structures. The groundwork for structure-based
topological parameters commenced in 1947 with Harold Wiener’s introduction of the
path number [3], which quantified the sum of distances between all pairs of vertices in
a graph.

Fundamentally, the process of converting a molecular graph into a numerical
representation relies on unchanging measures known as topological or structural
indices. A chemical graph depicts a hydrogen-depleted molecular structure, with bonds
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represented by edges and atoms represented by vertices in organic
compounds. This field is commonly known as chemical graph
theory. These structure descriptors, which remain consistent in
terms of structure and topology, enable the establishment of
connections with various physical and chemical properties, such
as boiling point, enthalpy of vaporization, heat of formation, critical
pressure, critical volume, and critical temperature. They also
facilitate the development of robust regression models [4].
Particularly noteworthy are the topological descriptors based on
spectra, which are highly regarded for their effectiveness in
correlating the quantum properties of organic substances. In our
current research, our goal is to introduce advanced spectrum-based
topological descriptors rooted in graph theory to connect with the
quantum properties of numerous substances. Simultaneously, we
aim to identify descriptors that warrant the attention of researchers,
effectively refining the scope of this field. Our recent work describes
the applications of some spectrum descriptors in the field of
computer sciences [5, 6].

In the field of chemical graph analysis, a wide array of
topological descriptors have been well-established, covering
diverse categories such as distance-based descriptors [7],
valency/degree-based descriptors [8], eigenvalues-based
descriptors [2], and counting-related topological polynomials
and descriptors [9]. Notably, spectrum-based topological
descriptors stand out due to their exceptional ability to generate
highly efficient regression models for an extensive range of
physicochemical and quantum properties, including the π-
electronic energy. These descriptors are constructed based on
eigenvalues derived from specific chemical matrices. The focus
of this study centers on a specific subset of spectrum-based
topological descriptors, where the chemical matrices in question
are dictated by the valencies of vertices within a graph. These
descriptors have earned recognition for their outstanding
effectiveness in establishing correlations with the total π-
electronic energy of polycyclic aromatic hydrocarbons.

The computational complexity associated with the
determination of numerous topological descriptors, including
the detor index [10], is nontrivial, often falling under the
categories of NP-complete or NP-hard problems.
Consequently, the computation of these indices for specific
sets of chemical or general graphs remains a challenging task
of significant relevance. A notable contribution to addressing
this challenge was made by Hayat [11], who undertook the task
of computing various distance-based topological descriptors for
specific infinite families of fullerenes and carbon nanotubes.
Additionally, Hayat and her colleagues [12, 13] conducted
comprehensive calculations for valency-based descriptors,
including the Randic index and the atom-bond connectivity
(ABC) index, within specific chemical networks. Moreover,
extensive exploration of spectrum-based topological
descriptors has been carried out by numerous researchers.
For instance, Bozkurt [14] and other researchers explored the
Randic matrix and its associated energy in the context of specific
graph families. Chen [15] introduced and conducted an in-
depth analysis of the ABC matrix and its spectral descriptors,
encompassing parameters like the ABC energy and ABC Estrada
index. Guo and Gao [16] made significant contributions to the
field by introducing and studying the arithmetic-geometric

(AG) energy and spectral radius of graphs. In a parallel vein,
Jahanbani [17] tackled the computation of the harmonic energy
and harmonic Estrada index for specific graph families. For an
extensive overview of spectrum-based topological descriptors
and their applications in chemistry, Consonni’s survey [2]
serves as a valuable resource.

In the realm of mathematical modeling, computational
techniques wield a substantial influence, encompassing
various aspects of graph theory and mathematics as a whole.
Pioneering the field, Ashrafi [18, 19] and her collaborative team
introduced a computer-driven approach for calculating indices
like the Szeged index, PI index, and revised Szeged index within
chemical graphs. Building upon Ashrafi’s foundational work,
Hayat [11] expanded and adapted this approach to encompass a
broader range of distance-based indices, extending its
application beyond chemical graphs to encompass general
graphs. This avenue of research further evolved as Hayat and
her colleagues [20] delved into degree-distance-based
topological descriptors, including the Gutman index and the
Schultz index. Diverging in approach, Darafsheh [21]
introduced an algebraic method that leverages the
automorphism group of graphs to calculate the Wiener index,
Szeged index, and PI index. In a separate research strand,
Arockiaraj [22] introduced a computational technique
grounded in vertex cuts to compute specific distance-based
indices for inorganic structures. Additionally, Ilić and Ilić
[23] made significant contributions by providing algorithms
for computing specific distance-based topological descriptors.
Notably, Ashrafi [24] proposed a computer-based methodology
for calculating the energy and Estrada index of chemical graphs,
a method that was subsequently extended to encompass general
graphs by Hayat and her research team [13]. In the present
research work, we introduce a computational approach that
builds upon Ashrafi’s method [24] and extends it to
encompass other spectrum-based descriptors, including the
ABC energy and ABC Estrada index. This approach offers the
advantage of relatively reduced computational complexity.

The total π-electronic energy, accessible through Huückel
molecular orbital (HMO) calculations, provides crucial insights
into conjugated molecules [25]. Additionally, the correlation
between adjacency energy and π-electronic energy in
molecular structures has been highlighted by Gutman [25],
while Lucic and others [26] have demonstrated strong
correlations between product and sum-connectivity indices
and the physiochemical properties of benzenoid hydrocarbons.
In a recent publication, Hayat et al. [27, 28] presented novel
computational techniques for the computation of spectrum
descriptors. Their methodologies incorporated software tools
such as HyperChem, Topocluj, and Matlab. In our study, we
adopted a distinct approach, exclusively utilizing Matlab
algorithms for the computation of these descriptors.
Moreover, in our regression analysis, we departed from the
conventional use of isomers and instead employed real-life
medicines. This deliberate choice aimed to enhance the
relevance and applicability of our findings to practical
pharmaceutical scenarios. Our utilization of a singular
software platform and emphasis on real-world medicinal data
contribute to the robustness and practicality of our methodology.
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2 Graph energies as topological
descriptors

In mathematical terms, a graph G is represented as an ordered
pair G = (V, E), where V =V(G) is a set of vertices, and E(G) signifies
the connections between pairs of vertices known as edges. In a
chemical graph, vertices correspond to atoms, and edges represent
bonds within the chemical compound. Vertices are considered
adjacent if there is an edge connecting them. The degree or
valency of a vertex ] ∈ V(G) is the count of adjacent vertices and
is denoted as d]. For organic chemical compounds, the maximum
vertex degree is four, as carbon atoms typically have a valency of
four. For a more comprehensive understanding of notations and
terms related to chemical graph theory, we recommend referring to
prior research [29, 30].

Actually, the topological descriptors T D are real valued
functions that transform on different types of graphs and covert
them into a real number, finding extensive applications in the field of
chemistry [1]. Depending upon vertex valencies, valency- and
degree-based topological descriptors have distinctive structures,
while distance-based descriptors rely on the distances between

vertices in graphs. Examples of valency-based descriptors include
the ABC index, the Randić connectivity index, the sum-connectivity
index, and Zagreb indices [31–33]. In contrast, the Szeged index, the
Balaban index and the Wiener index are comprised by distance-
based descriptors among all other invariant [11, 12, 20, 34].
Spectrum-based structural descriptors, on the other hand, base
their defining structures on the eigenvalues of matrices generated
by graph-theoretic methodologies. These descriptors encompass a
wide range of energies from the Laplacian and adjacency energy to
the Estrada index and inertia energies. Our research paper’s
architecture is visualized in Figure 1. In the following
subsections, we introduce several well-established eigenvalues-
based topological descriptors, whose corresponding chemical
matrices are defined based on vertex valencies.

2.1 The adjacency energy

The adjacency matrix, denoted asA, is a fundamental matrix in
graph theory. It is an extensively studied graph-related matrix. The
adjacency matrix of a connected graph with n vertices, G, is an n × n

FIGURE 1
Paper structure overview: Navigating the research hierarchy.
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symmetric matrix. In this matrix, the entry (A)u,v is defined as 1 if
there’s an edge between vertices u and v in G, and 0 otherwise. The
eigenvalues of A are denoted as βa1 ≥ βa2 ≥ , . . . , ≥ βan. The largest
adjacency eigenvalue of a graphG, known as theA-spectral radius, is
denoted by ASR which is written mathematically as ASR(G) ≔ βa1.
Extensive literature is available on A-spectral radius, with
comprehensive coverage in the book by Stevanovic [35]. The
Adjacency-energy is another extensively studied spectrum-based
descriptor, with strong correlations found with chemical
compound’s physio-chemical properties [25]. The formula to
evaluate the adjacency energy is AD(G) ≔ ∑n

i�1|βai | where βai
denotes the eigenvalues obtained by adjacency matrix. In existing
literature, a well-known book on graph Adjacency-energy is
published by Li et al. [36]. Additionally, Gutman’s survey
provides insights into the results and applications related to
graph energy [37].

Estrada introduced another graph parameter related to A-
eigenvalues, known as the Estrada index and afterwards, it
appeared as a significant invarient as assessing the robustness of
networks, describing the topological structure classes and measuring
centrality of complex networks including the protein’s degree
folding [38–41]. The count of positive, negative and zero A-
eigenvalues obtained from adjacency matrix of a graph are called
the positive inertia indexAIP, negative inertia indexAIN and the
nullity AIO, respectively have some potential and significant
implimentations [42–44].

2.2 Laplacian and signless laplacian matrices

Laplacian matrices are fundamental in graph theory. Given the
adjacency matrix A(G) of an n-vertex graph G and the diagonal
matrix D(G) with diagonal entries du1, du2, . . . , dun, the Laplacian
matrix of the graph G is defined as:

L G( ) � D G( ) −A G( )
The eigenvalues of L, denoted as βl1 ≥ β

l
2 ≥ , . . . , ≥ βln, are

referred to as L-eigenvalues or Laplacian eigenvalues for a graph
G. The Laplacian spectral radius [45] of a graph is defined as the
largest L-eigenvalue, which is denoted as LSR � ρL(G) ≔ βl1.
Detailed mathematical treatment of the Laplacian spectral radius
can be found in Liu et al. [46].

The Laplacian energy [47] is an energy analogue of the Laplacian
matrix. For a graph G, it is defined as:

LP � LP G( ) ≔ ∑n
i�1

βli −
2m
n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Zhou and Gutman [48] delved into mathematical properties of
the spectral radius obtained by the Laplacian matrix for graphs.
Similarly, the Laplacian based Estrada index [49] is:

LPE � LPE G( ) ≔ ∑n
i�1

eβ
l
i

Recent advancements in the mathematical behavior,
properties and applications of mentioned index can be found
in previous studies [50, 51]. Furthermore, the signless Laplacian
matrix is:

SL G( ) � D G( ) +A G( )
while the eigenvalues of SL are denoted as βq1 ≥ βq2 ≥ , . . . , ≥ βqn and
related largest SL-eigenvalue is spectral radius [52] of a graph which
can be written as:

SLR � SLR G( ) ≔ βq1

For in-depth exploration of SLR-spectral radius in graphs, Fan
et al. [53] provide valuable insights. The signless Laplacian energy,
introduced by Abreua et al. [54] and denoted as SLP for a graph G,
is defined as:

SLP � SLP G( ) ≔ ∑n
i�1

βqi − 2m
n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

A connection between the SLP-energy and A-energy for graph
families was established by Mojallal et. al [55]. Similarly, signless
Laplacian energy for some graph operations and their line graphs
was examined by Ganie et al. [56]. Moreover, the Estrada index of
this invariant was introduced by Ayyaswamy et al. [57].

SLPE � SLPE G( ) ≔ ∑n
i�1

eβ
q
i

The exploration of mentioned descriptor was done by Ellahi
et al. [58] and Nasirie et al. [59] as they evaluated the provided sharp
bounds and explored the maximum and minimum values of signless
Laplacian Estrada index of graphs with given chromatic numbers.

2.3 The randić matrix

In 2005, Rodríguez [60] introduced the Randić descriptor whose
matrix for a graph is obviously a symmetric matrix with order n × n,
defined as follows:

Ru,v �
1����

dudv

√
,

if uv ∈ E G( )

0, otherwise

⎧⎪⎪⎨⎪⎪⎩
Consider the eigenvalues of R are βr1 ≥ βr2 ≥ , . . . , ≥ β

r
n, then

randic spectral radius, explored by Rodríguez [60], is defined as:

HARSR � HARSR G( ) ≔ βr1

Utilizing the above definition, Randić energy of graphs was
inaugurated by Bozkurt et al. [14] as

HAR � HAR G( ) ≔ ∑n
i�1

βri
∣∣∣∣ ∣∣∣∣

Gutman et al. [61] Sorgun et. al [62]. further contributed to
explored the chemical significance and mathematical related to the
Randić energy.

2.4 The sum-connectivity matrix

In 2010, Trinajstic [63] introduced the concept of sum-
connectivity descriptor whose matrix for a graph is obviously a
symmetric matrix with order n × n, defined as follows:
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SMCu,v �
1������

du + dv

√
,

if uv ∈ E G( )

0, otherwise

⎧⎪⎪⎨⎪⎪⎩
Utilizing the eigenvalues of S, denoted as βs1 ≥ βs2 ≥ , . . . , ≥ βsn, are

known as S-eigenvalues of the graph, the spectral radius and energies
of SMCu,v are defined as:

SMCSR � SMCSR G( ) ≔ βs1

SMC � SMC G( ) ≔ ∑n
i�1

βsi
∣∣∣∣ ∣∣∣∣

Recent research by Prakasha et al. [64] has further delved into
the properties of the sum-connectivity energy in graphs.

2.5 Zagreb (Z1) and (Z2) matrices

Zagreb indices, pivotal in studying π-electronic energies of
organic compounds, have led to the development of two
important matrices. Rad et al. [65] introduced the first Zagreb
matrix Z1 based on the first Zagreb index. It is an n × n
symmetric matrix, defined as:

ZG1( )u,v � du + dv, if uv ∈ E G( )
0, otherwise

{
The Z1-eigenvalues, denoted as βz

1

1 ≥ βz
1

2 ≥ , . . . , ≥ βz
1

n ,
correspond to this matrix. Rad et al. [65] studied the spectral
radius, energy, and Estrada index associated with the first
Zagreb matrix:

ZG1SR � ZG1SR G( ) ≔ βz
1

1

ZG1 � ZG1 G( ) ≔ ∑n
i�1

βz
1

i

∣∣∣∣∣ ∣∣∣∣∣
ZGE1 � ZGE1 G( ) ≔ ∑n

i�1
eβ

z1
i

In parallel, the second Zagreb matrix Z2, introduced by Rad et al.
[66] and Zhan et al. [67], is based on the second Zagreb index. It is
also an n × n symmetric matrix:

ZG2( )u,v � dudv, if uv ∈ E G( )
0, otherwise

{
The ZG2-eigenvalues, βz

2

1 ≥ βz
2

2 ≥ , . . . , ≥ βz
2

n , are associated
with this matrix. Zhan et al. [67] introduced the spectral
radius, energy, and Estrada index corresponding to the second
Zagreb matrix:

ZG2SR � ZG2SR G( ) ≔ βz
2

1

ZG2 � ZG2 G( ) ≔ ∑n
i�1

βz
2

i

∣∣∣∣∣ ∣∣∣∣∣
ZGE2 � ZGE2 G( ) ≔ ∑n

i�1
eβ

z2
i

Both matrices have been subjects of in-depth mathematical
studies, and Rad et al. [66] contributed essential results on the
second Zagreb spectral radius and energy.

2.6 The harmonic matrix

In the realm of graph theory, the harmonic matrix was first
introduced by Hosamani et al. in their work [68]. This matrix,
denoted asH(G), corresponds to the harmonic index of a graph with
n vertices and is defined as an n × n symmetric matrix:

HAR( )u,v �
2

du + dv
, when uv ∈ E G( )

0, otherwise

⎧⎪⎪⎨⎪⎪⎩
Now, let’s denote the eigenvalues of this harmonic matrixH for a

graph G as βh1 ≥ βh2 ≥ . . . ≥ βhn , which we refer to as H-eigenvalues.
Various topological descriptors are defined based on these
eigenvalues:

HARSR G( ) ≔ βh1

HAR G( ) ≔ ∑n
i�1

βhi
∣∣∣∣ ∣∣∣∣

HARE G( ) ≔ ∑n
i�1

eβ
h
i

In a separate study by Jahanbani et al. [17], some remarkable
findings were obtained concerning the harmonic energy and the
harmonic Estrada index of graphs.

3 Assessing various physio-chemical
properties using spectrum-based
topological descriptors’ predictive
capability

The Molar volume, Polarizability, Molar refractivity, and
Complexity are fundamental quantum-theoretic characteristics
of chemical compounds, particularly important for drugs
targeting infectious diseases. In Section 2, we introduced
spectrum-based valency descriptors, and now we are
evaluating their ability to predict these physicochemical
properties. We use our technique, as discussed in the
previous section, to calculate these descriptors for various
drugs, namely, Mefloquinone, Sertraline, Niclosamide,
Tizoxanide, PHA-690509, Ribavirin, Emricasan, and
Sofosbuvir. Details of these all drugs can be found in a file
that we have uploaded on the GitHub repository [https://github.
com/alleerazza786/DD]. Mefloquine, a quinoline derivative, is
widely employed as an antimalarial agent, particularly in
regions with chloroquine-resistant strains of Plasmodium. It
has been shown to be effective in the prevention and treatment
of malaria [69].

Sertraline, a selective serotonin reuptake inhibitor (SSRI), is
commonly prescribed for the treatment of various mood and anxiety
disorders, including major depressive disorder, obsessive-
compulsive disorder, and panic disorder [70]. Niclosamide,
traditionally used as an anthelmintic agent, has gained attention
for its potential in cancer therapy due to its antiproliferative and
anticancer properties [71]. Tizoxanide, an active metabolite of
nitazoxanide, exhibits broad-spectrum antiparasitic activity and
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TABLE 1 The evaluated spectrum based descriptors values, along with numerous medications, provide experimental data for Molar volume, Polarizability and Molar Refractivity.

Spectrum Descriptors Mefloquinone Sertraline Niclosamide Tizoxanide PHA690509 Ribavirin Emricasan Sofosbuvir

Molar Volume 273.4 243.9 202.5 161.3 271.6 117.1 410.9 374.6

Polarizability 32.9 34 31.3 26.1 37.4 20.3 51.9 48.9

Molar Refractivity 83 85.8 79 65.7 94.3 51.1 131 123.5

Complexity 483 322 404 336 422 304 934 913

Adjacency Spectral Radius 2.4622 2.4600 2.2388 2.3069 2.3401 2.6908 2.3919 2.4541

Adjacency Energy 26.3539 26.5099 20.7710 21.4563 28.4591 20.7600 42.5579 36.8398

Estrada Adjacency Energy 50.2018 50.2119 40.5938 40.5462 55.5797 44.0513 90.4147 84.4466

Positive Inertia Index 10.001 10.004 8.0011 8.0010 10.0011 8.006 18.0012 13.0011

Negative Inertia Index 10.0001 10.021 9.0013 8.0023 10.0022 7.0001 14.0019 13.0014

Nullity 0.001 0.0002 2.0012 2.0091 3.0011 1.0014 8.0017 10.0034

Laplacian Spectral Radius 5.2244 5.2033 4.7936 4.7363 4.9609 5.7846 5.1489 5.2916

Laplacian Energy 29.2983 28.9349 24.6730 24.4892 32.8888 25.5015 53.2370 48.5145

Estrada Laplacian Energy 602.1296 604.4998 382.4322 400.2298 608.0543 732.4981 950.2364 890.3952

S.Laplacian Spectral Radius 5.2244 5.2033 4.7940 4.8661 4.9687 5.9267 5.1489 5.3757

S.Laplacian Energy 29.2983 28.9349 24.8917 24.8131 33.2040 25.6617 55.2945 51.1602

Estrada S.Laplacian Energy 602.1296 604.4998 392.9649 402.6032 610.4150 746.4629 1077.3568 1129.0853
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TABLE 2 The evaluated spectrum based descriptors values for numerous medications.

Spectrum Mefloquinone Sertraline Niclosamide Tizoxanide PHA690509 Ribavirin Emricasan Sofosbuvir

AD*SR 2.7209 2.6928 2.5450 2.7243 2.7053 3.0499 −3.6806 3.2084

AD* 30.4254 30.0150 24.4965 25.3456 33.9948 26.3699 58.1459 45.9062

RANSR 1.0000 1.0000 1.0000 1.0000 1.0000 1.2181 1.0000 1.0000

RAN 12.0392 12.2463 10.1231 10.6135 13.5366 9.7983 20.6298 16.9179

SMCSR 1.0823 1.0865 1.0354 1.0476 1.0579 1.3495 1.0555 1.0698

SMC 12.2997 12.4506 10.0052 10.3909 13.4826 9.9483 19.9824 17.0450

ABCSR 1.7185 1.7046 1.5894 1.6460 1.6612 1.9800 1.6983 1.7537

ABC 18.9863 18.9103 15.1331 15.6076 20.6901 15.4918 32.0670 26.9678

GASR 2.4213 2.4347 2.1961 2.2510 2.2869 2.6350 2.3202 2.3667

GA 25.5587 25.7997 20.0561 20.6598 27.3468 19.6853 39.6605 35.1418

AGSR 2.5121 2.4904 2.2921 2.3757 2.4050 2.7614 2.4815 2.5758

AG 27.2752 27.3151 21.5986 22.3591 29.7285 22.0231 46.0360 38.8713

ZG1SR 13.3048 13.2110 10.9905 11.4253 11.8705 13.7110 −12.7934 13.4995

ZG1 123.9316 124.0825 91.2788 93.4447 129.9754 97.7763 198.3214 177.5900

ZGE1 660293.5 621707.9 70445.7 104249.9 214775.4 960873.8 457275.5 1197102.1

ZG2SR 18.3983 18.2387 13.7948 13.9738 15.4235 20.2580 −17.4564 19.1433

ZG2 145.0980 146.1781 98.0044 99.2780 144.9343 119.9710 218.9591 209.5050

ZGE2 99266946 84703925 1001981 1221820 5467443 628892539 39011886 217710904

HARSR 0.9792 0.9824 0.9736 0.9701 0.9715 1.1769 0.9947 0.9736

HAR 11.5663 11.8236 9.6916 10.1541 12.8840 9.1625 18.9149 15.9232

HARE 24.3147 24.4230 22.5695 21.8756 28.0184 19.9063 48.5116 43.0490
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has been explored for its use in treating parasitic infections such as
giardiasis and cryptosporidiosis [72]. PHA-690509 is a potent,
selective inhibitor of the cyclin-dependent kinase (CDK2) and
has shown promise in preclinical studies for cancer treatment
[73]. Ribavirin, a nucleoside analog, has been a key component
of antiviral therapy, especially in combination with other drugs, for
the treatment of hepatitis C and other viral infections [74].
Emricasan is a caspase inhibitor with potential applications in
liver diseases, particularly in the management of liver fibrosis and
cirrhosis [75]. Sofosbuvir, a direct-acting antiviral agent, has
revolutionized the treatment of hepatitis C and has significantly
improved cure rates with fewer side effects [76]. The descriptors
displaying the strongest correlation with these properties are
recommended for use in quantitative structure and property
models. This study enhances the practical utility of these high-
performing descriptors in QSAR/QSPR research, building upon
prior seminal works [13, 77, 78].

The first algorithm mentioned in Supplementary Appendix
S1A section is employed for the assessment of diverse graph
energies. Nevertheless, we have provided the methodology for
evaluating just three descriptors, such as Laplacian energy,
signless Laplacian energy, and extended adjacency energy, as
illustrative examples. This section leverages our proposed

computational method to calculate commonly occurring
spectrum-based topological descriptors and evaluate their
effectiveness in correlating Molar volume, Polarizability, Molar
refractivity, and Complexity. The intercorrelations between these
properties and the spectrum-based descriptors outlined in Section
2 are presented in Tables 1, 2. The first row in the tables represents
Molar volume, the second row represents polarizability, the third
row represents molar refractivity, and the fourth row represents
the complexity of the mentioned drugs. These values are sourced
from the reputable chemistry-related website Chem Spider and
PubChem. However interested researcher may find these
experimental values from the URL [https://github.com/
alleerazza786/DD]. The remaining rows contain the graph
energies computed using the Matlab algorithm, as discussed in
the following section.

We utilize the data in Table 1 and Table 2 to calculate correlation
coefficients, which serve as indicators of the efficiency of these spectrum-
based descriptors. A simple rule of thumb is that higher correlation
coefficients indicate superior performance for a given topological
descriptor. Table 3 showcases the correlation coefficients between the
physicochemical properties and the spectrum-based structural
descriptors. Another Matlab algorithm is mentioned in Supplementary
Appendix SA1 section which is utilized for the correlation analysis.

TABLE 3 The correlation coefficient evaluated between pharmacological properties for numerous medications and spectrum based descriptors.

Spectrum
Descriptors

Corr.Coef .
for Mol.Vol.

Corr.Coef . for
Polarizability

Corr.Coef . for
Refractivity

Corr.Coef .
for Complexity

AD 0.9552 0.9531 0.9528 0.9304

ADE 0.9323 0.9323 0.9322 0.9620

AIP 0.8987 0.8987 0.8983 0.8947

AIN 0.9999 0.9996 0.9998 0.9287

AIO 0.8329 0.8329 0.8328 0.9261

LP 0.9381 0.9381 0.9379 0.9656

LPE 0.6828 0.6828 0.6827 0.7866

SLP 0.9351 0.9351 0.9349 0.9701

LPE 0.7500 0.7500 0.7500 0.8679

AD* 0.9161 0.9161 0.9157 0.9319

RAN 0.9449 0.9449 0.9445 0.9240

SMC 0.9505 0.9505 0.9502 0.9278

ABC 0.9420 0.9420 0.9417 0.9338

GA 0.9639 0.9596 0.9594 0.9264

AG 0.9444 0.9444 0.9441 0.9329

ZG1 0.9506 0.9430 0.9428 0.9310

ZGE1 0.1998 0.1998 0.2006 0.3788

ZG2 0.9073 0.9073 0.9073 0.9103

HAR 0.9514 0.9560 0.9556 0.9218

HRE 0.9503 0.9503 0.9501 0.9718
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4 Statistical analysis of evaluated data
and regression models

Recently M. Arockiaraj et. al [79, 80]. extensively explores the
predictive capabilities of reverse degree and entropy topological
indices for drug molecules utilized in blood cancer treatment. This
study employs Quantitative Structure Property relationship (QSPR)
regression models to assess the effectiveness of these indices.
Similarly, their work [81, 82] contributes to our understanding of
regression models in the context of drug molecules designed for the
latest treatments in combating COVID-19. The research specifically
investigates the application of linear and cubic regression models to
analyze generalized reverse degree-based topological indices for
these crucial drugs. Together, these research studies provide a
robust foundation for our current work and contribute valuable
insights to the field. Utilizing the similar techniques, In this section,
we delve into an in-depth analysis of the results we’ve obtained in the
preceding section. The data found in Table 3 reveals some promising
findings regarding spectrum-based descriptors. Notably, descriptors
like negative inertia energy, adjacency energy, geometric-arithmetic
energy, first zegrab energy, and harmonic energy exhibit
exceptionally strong correlation coefficients, surpassing 0.999,
which stands out among the rest. Conversely, a set of reputable
spectrum-based descriptors, including extended adjacency,
Laplacian, signless Laplacian spectral radius, and the second
Zagreb Estrada indices, display notably weaker performance with
correlation coefficients falling below 0.9. Any spectrum-based
topological descriptor with a correlation coefficient below 0.9 is
not recommended for incorporation into quantitative structure and
property relationship models. Surprisingly, upon examining the data
in Table 3, we find that negative inertiaAIN stands out as the most
effective spectrum-based descriptor, with correlation coefficients
exceeding 0.9999, nearly reaching a perfect correlation of 1,
especially in measuring the Molar volume of the mentioned
medications. Similarly, AIN shows extraordinary correlation
with Polarizability and Molar Refractivity. However, it is worth
noting that none of the descriptors achieve a substantial correlation
coefficient with the Complexity of the given drugs, except for the
Harmonic Energy, which stands at 0.9718.

Unexpectedly, the Adjacency and geometric-arithmetic energies
perform strikingly similarly to the inertia positive energy, with
correlation coefficients of 0.9639 and 0.9552, respectively,
approaching a perfect correlation of 1. These two spectrum-based
topological descriptors undoubtedly rank among the best, justifying
their continued use in Quantitative Structure Property relationship

models. Following the geometric-arithmetic and adjacency energies,
the First zegrab and harmonic energies also exhibit favorable
correlation coefficients. These correlation coefficients lead to the
formulation of a priority list of the five most promising spectrum-
based descriptors for assessing the physical and chemical properties
of chemical compounds. You can find this priority list in Table 4.

For these top five spectrum-based descriptors, we carry out a
comprehensive regression and correlation analysis. This analysis
includes the presentation of regression models, correlation and
determination coefficients, and the standard error of fit, along
with scatter plots.

We conducted a comprehensive regression analysis for the top
two spectrum descriptors, Inertia Positive Energy and Adjacency
Energy. This analysis encompasses the derivation of a regression
equation and the calculation of various statistical metrics, shedding
light on the nature of their relationship. The resulting regression
equation provides insight into how changes in these spectrum
descriptors influence the target variable. Furthermore, we
assessed the precision of the regression model by examining
coefficient standard errors. The correlation coefficient (R)
quantifies the strength and direction of the relationship between
the independent and dependent variables, while the R-squared value
offers information about the proportion of variance in the target
variable that the model explains. Additionally, we determined the
Standard Error of Estimation, which gauges the accuracy of the
model’s predictions. This in-depth analysis offers a robust
understanding of the relationships between Inertia Positive
Energy, Adjacency Energy, and the target variable, contributing
valuable insights for further investigation and application. The
provided data reveals strong linear relationships between the
independent variable AIN and three distinct dependent
variables. For molar volume (MV), the regression equation MV �
−175.1091 + 42.1592 ·AIN suggests that for every one-unit
increase in AIN , MV increases by approximately 42.16 units,
with a remarkable correlation coefficient (R) of 0.9999, indicating
an almost perfect positive relationship. The high R2 value (R2 =
0.9993) reflects the robustness of the model, while the small standard
error of the regression (SEr = 0.4528) signifies the accuracy of
predictions. Similarly, polarizability (PL) exhibits a strong
positive relationship with AIN
(PL � −10.1235 + 4.4895 ·AIN ), characterized by a high
correlation coefficient (R = 0.9996) and a substantial R2 value
(R2 = 0.9983). Molar Refractivity (MR) is also strongly influenced
by AIN (MR � −25.8766 + 11.3589 ·AIN ) with a very high
correlation coefficient (R = 0.9998) and a substantial R2 value

TABLE 4 Most efficient graph energies list along with correlation coefficients.

Priority
Position

Spectrum
Descriptors

Corr.Coef .
for Mol.Vol.

Corr.Coef . for
Polarizability

Corr.Coef . for
Refractivity

1 Negative Inertia Energy 0.9999 0.9996 0.9998

2 Geometric Arith. Energy 0.9639 0.9596 0.9594

3 Adjacency Energy 0.9552 0.9531 0.9528

4 First Zegrab Energy 0.9506 0.9430 0.9428

5 Harmonic Energy 0.9514 0.9560 0.9556
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FIGURE 2
Scattered diagram of Inertia Negative Energy AIN versus Molar Volume, Polarizability and Molar Refractivity.

FIGURE 3
Scattered diagram of Geometric Arithmetic Energy AG versus Molar Volume, Polarizability and Molar Refractivity.

FIGURE 4
Graphical illustration of most efficient graph energies.
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(R2 = 0.9983). These results emphasize the predictive power and
reliability of the regression models for MV, PL, and MR,
underscoring their potential applications in various fields. The
scatter diagram corresponding to the provided regression
equation is visually represented in Figure 2.

MV � −175.1091±18.1135 + 42.1592AIN ±1.7474 R = 0.9999
R2 = 0.9993 SEr = 0.4528.

PL � −10.1235±6.2932 + 4.4895AIN ±0.6071 R = 0.9996 R2 = 0.9983
SEr = 1.0471.

MR � −25.8766±1.8695 + 11.3589AIN ±0.5309 R = 0.9998 R2 =
0.9983 SEr = 1.5471.

The data represents regression results for three distinct
chemical properties, including molar volume (MV),
polarizability (PL), and molar refractivity (MR), each of which
is modeled as a function of a common independent variable,
denoted as AD. For molar volume (MV), the regression
equation MV � 1.4408 ± 1.8110 + 24.0015 · GA ± 0.7747
demonstrates a positive linear relationship with GA. A one-unit
increase in GA is associated with an increase of approximately
24.0015 units in molar volume. The model exhibits a high
correlation coefficient (R = 0.9639), indicating a strong positive
relationship betweenMV and GA. The coefficient of determination
(R2 = 0.9456) suggests that the model accounts for a substantial
portion of the variance in molar volume, while the standard error
of the regression (SEr = 0.5452) represents the precision of the
model’s predictions.

Similarly, polarizability (PL) is modeled as a linear function of
GA, given by PL � −8.1235 ± 2.1129 + 1.1489 · GA ± 0.3607. This
regression equation reveals a positive relationship between
polarizability and GA, with a high correlation coefficient (R =
0.9596). The coefficient of determination (R2 = 0.8998) indicates
that a significant portion of the variation in polarizability can be
explained by GA, while the standard error of the regression (SEr =
0.3047) reflects the accuracy of the model. Molar refractivity (MR) is
also positively influenced by GA, as evidenced by the regression
equation MR � −5.4876 ± 0.9018 + 4.3508 · GA ± 0.6653. The
strong correlation coefficient (R = 0.9594) signifies a robust
positive relationship between MR and GA, with a substantial
coefficient of determination (R2 = 0.9083). The standard error of
the regression (SEr = 0.8547) provides insights into the precision of
the model’s predictions. These regression models offer valuable
insights into the relationships between chemical properties
(molar volume, polarizability, and molar refractivity) and the
independent variable (GA) in the context of the chemical
sciences. The scatter diagram corresponding to the provided
regression equation is visually represented in Figure 3.

MV � 1.4408±1.8110 + 24.0015GA±0.7747 R = 0.9639 R2 = 0.9456
SEr = 0.5452.

PL � −8.1235±2.1129 + 1.1489GA±0.3607 R = 0.9596 R2 = 0.8998
SEr = 0.3047.

MR � −5.4876±0.9018 + 4.3508GA±0.6653 R = 0.9594 R2 = 0.9083
SEr = 0.8547.

Figure 4 serves as a graphical representation of the data found
in Table 3, allowing for a comprehensive comparison of the
efficiency of various spectrum-based descriptors. This visual
representation offers an insightful examination of the
relationships between these descriptors and the properties of
interest. Notably, the analysis reveals that among the considered

drugs, Positive Inertia Energy stands out as the most efficient
descriptor. This conclusion is supported by the observation that
Positive Inertia Energy exhibits the highest correlation coefficients
when correlated with three essential properties: Molar Volume,
Polarizability, and Molar Refractivity. These strong correlations
signify a robust association between Positive Inertia Energy and
the chemical properties in question, indicating its potential
significance in understanding and predicting these properties in
the context of the studied drugs. The graphical representation in
Figure [Reference] aids in conveying this valuable insight to a
broader audience, facilitating a clearer understanding of the
relationships between the spectrum-based descriptors and the
chemical properties of interest.

5 Conclusuion and discussion

Our research has harnessed the power of spectrum based
topological descriptors and linear regression models to forecast
the attributes of chemical compounds effectively. This
exploration has led to intriguing insights into the correlation
coefficients among a multitude of graph energies. Notably,
descriptors like negative inertia energy, adjacency energy,
geometric-arithmetic energy, first zegrab energy, and harmonic
energy have demonstrated remarkably strong correlation
coefficients with the physicochemical properties of widely-used
medications. Among these correlations, the one between AIN
and molar volume, boasting an impressive R value of 0.999, has
stood out. These findings underscore the critical role of judicious
index selection and analysis in deciphering and predicting chemical
properties, deepening our understanding of the intricate
relationships between these attributes and specific variables. We
urge fellow researchers to explore the predictive potential of
spectrum-based distance descriptors, including the distance
energy, the distance Laplacian, and distance signless Laplacian
energies, in deciphering the structural behavior of benzenoid
hydrocarbons and related compounds, opening promising
avenues for further investigation.
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