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Introduction: The unscented Kalman filter based on unbiased minimum-variance
(UKF-UMV) estimation is usually used to handle the state estimation problem of
nonlinear systems with an unknown input. When the nonlinear system is disturbed
by non-Gaussian noise, the performance of UKF-UMV will seriously deteriorate.

Methods: Amaximumcorrentropyunscentedfilter basedon theunbiasedminimum
variance (MCUF-UMV) estimation method is proposed on the basis of the UKF-UMV
without the need for estimation of an unknown input and uses the maximum
correntropy criterion (MCC) and fixed-point iterative algorithm for state estimation.

Results: When the measurement noise of the nonlinear system is non-Gaussian
noise, the algorithm performs well.

Discussion:Ourproposed algorithmalsodoes not require estimationof anunknown
input, and there is no prior knowledge available about the unknown input or any prior
assumptions. The unknown input can be any signal. Finally, a simulation example is
used to demonstrate the effectiveness and reliability of the algorithm.
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1 Introduction

The state estimation problem of systems with unknown input is very common in practical
applications, such as target tracking and automatic control [1–6]. There have beenmany studies
on state estimation for linear discrete-time systems with unknown input, and the methods for
state estimation are mainly summarized into the following three categories: the first method is
the augmented state Kalman filter (ASKF), in which the unknown input is considered a part of
the state and then estimated; that is, both the state and the unknown input are estimated
simultaneously [7]. This method assumes the unknown input as a random process with known
statistical characteristics, but in reality, the dynamic disturbance is unknown, so its performance
usually does not achieve the desired effect. The second method is the modified Kalman filter
(MKF) using the Bayesian method when the input variable of the state equation is not fully
observed [8]. The third method is to use unbiased minimum-variance (UMV) state estimation
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when information on unknown input is not available [9–11].
Compared with ASKF and MKF, which rely on all or part of the
knowledge of the unknown input, the UMV filter does not require any
prior knowledge or assumption about the unknown input, and the
unknown input can be any signal, making it more practical.

Recently, a large number of research studies have emerged on
nonlinear systems with an unknown input. [12–14] proposes an
unscented Kalman filter-based unbiased minimum-variance
(UKF-UMV) estimation, which uses the UMV state estimation
framework to develop a new nonlinear filter to handle the
unknown input. [15] proposes a robust unscented unbiased
minimum-variance (RU-UMV) estimator for nonlinear
systems with unknown input, which can effectively handle
innovation and observe outliers. [16] proposes a robust
unscented M-estimation-based filter (RUMF) for state
estimation of nonlinear systems of actual vehicles with
unknown input. The proposed algorithm is robust to non-
Gaussian process noise and innovation in different
maneuvering scenarios. However, this algorithm adopts a
complex 7-degree-of-freedom vehicle dynamics model, which
is very time-consuming, and considers non-Gaussian process
noise, without considering non-Gaussian measurement noise.

Correntropy is a measure of local similarity defined in kernel space.
The maximum correntropy criterion (MCC) has been successfully
applied in many fields of signal processing and machine learning in
recent years to cope with non-Gaussian measurement noise in the
system, especially heavy-tailed measurement noise. [17–21] proposes a
maximum correntropy Kalman filter (MCKF), which uses the robust
MCC as the optimality criterion instead of the minimum mean square
error (MMSE) criterion. [22] derives a multi-kernel maximum
correntropy Kalman filter (MKMCKF) to deal with the interference
of multivariate non-Gaussian noise for the systems with an unknown
input. This algorithm makes the assumption that dk+1 = dk when
estimating the unknown input, which can indeed be applied in most
cases, such as when the unknown input is represented by continuous
signal sin or cos cycles, the error is relatively small. However, if the
unknown input is discontinuous, such as a pulse square wave function,
this simple assumption will reduce the accuracy in a certain sense and
become inaccurate. In order to improve the robustness of the unscented
Kalman filter (UKF) to impulse noise, [23] proposes a maximum
correntropy unscented filter (MCUF) for nonlinear systems, but
does not consider nonlinear systems with unknown input.

Based on the analysis of the above research studies, we propose a
maximum correntropy unscented filter based on the unbiased
minimum-variance (MCUF-UMV) estimation algorithm. When
the nonlinear system with unknown input is disturbed by non-
Gaussian measurement noise, especially pulse measurement noise,
the performance of the algorithm is good. The contributions of this
paper are summarized as follows:

1. The MCUF-UMV algorithm is proposed. First, the prior
estimate of the state and prior error covariance matrix are
obtained through unscented transformation (UT), and then
the nonlinear system and measurement equation are
transformed into a quasi-linear regression form using
statistical linearization technology. A state augmented model
is built, and the MCC and fixed-point iterative algorithm are
used to estimate the state.

2. Different from [22], we do not use the simple assumption
dk+1 = dk. Based on the UKF-UMV form in [14], which does
not require unknown input estimation, the MCC is used to
estimate the state. There is no need for any prior knowledge or
assumptions about the unknown input, and the unknown
input can be any signal.

3. We show that for non-Gaussian noise interference, MCUF-UMV
is significantly superior to the existing filter in simulation.

The remainder of the paper is structured as follows: section 2
presents preliminary preparation and gives the nonlinear system
model and problem statement. Section 3 presents the derivation and
equations summary of the MCUF-UMV algorithm. Section 4
demonstrates the excellent performance of the MCUF-UMV
algorithm through an illustrative example. Section 5 presents the
conclusion.

2 Preliminary and problem statement

2.1 Maximum correntropy criterion

The correntropy representing the similarity measure is
as follows:

V X,Y( ) � E ψ X,Y( )[ ] � ∫ψ x, y( ) dFXY x, y( ),
where X,Y ∈ R are two random variables, FXY is the joint
probability distribution function, and ψ(x, y) � Gσ(e) �
exp(− e2

2σ2) is the shift-invariant Mercer kernel. e = x − y, and σ is
the kernel bandwidth. In most practical cases, the correntropy of the
Gaussian kernel can be approximated through the
sampling estimator:

V̂ X, Y( ) � 1
N
∑N
i�1

Gσ e i( )( ),

where e(i) = x(i) − y(i) and {x(i), y(i)}Ni�1 is the N samples extracted
from FXY. Using Taylor series to expand the Gaussian kernel

V X,Y( ) �∑∞
n�0

−1( )n
2nσ2nn!

E X − Y( )2n[ ],
the correntropy is the weighted sum of all even moments of the error
variable X − Y.

2.2 System model

The following system model can be used to describe nonlinear
discrete-time systems with unknown input:

xk+1 � f xk, uk+1( ) + Gkdk + qk, (1)
zk � h xk, uk( ) + rk, (2)

where xk ∈ Rn, uk ∈ Rl, dk ∈ Rp, and zk ∈ Rm are, respectively, the
state vector, known input vector, unknown input vector, and
measurement vector at time k; f(·) and h(·) are nonlinear
functions; Gk is a known matrix; the process noise qk is assumed
to be zero mean white noise and the process noise qk and the
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measurement noise rk are uncorrelated. The covariance matrices of
process noise and measurement noise are Qk and Rk, respectively. In
fact, we do not have any prior knowledge about unknown input dk
available, nor do wemake a prior assumption that unknown input dk
can be any signal. Our research is based on this fact.

Problem statement: Based on systems 1, 2, this paper first uses
UT to obtain the prior estimate of the state and prior error
covariance matrix, then uses the statistical linearization technique
to transform the nonlinear system and measurement equation into
the quasi-linear regression form, and finally uses the MCC and
fixed-point iterative algorithm for state estimation, which can
effectively solve the interference of non-Gaussian measurement
noise on nonlinear systems with unknown input.

3 MCUF-UMV algorithm derivation

3.1 Statistical linear regression

First, the one-step prediction is calculated. Given the mean
x̂k−1|k−1 and covariance Pxx

k−1|k−1, 2n + 1 sigma points χik−1|k−1 and
corresponding weight values w can be obtained through UT, which
gives the formula χik−1|k−1

χik−1|k−1 �
x̂k−1|k−1, i � 0

x̂k−1|k−1 +
������������
n + λ( )Pxx

k−1|k−1
√( )

i
, i � 1, . . . , n

x̂k−1|k−1 −
������������
n + λ( )Pxx

k−1|k−1
√( )

i−n
, i � n + 1, . . . , 2n

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ,

where n refers to the dimension of the state and ( ��
P

√ )i represents
the i-th column of the matrix root. The corresponding weights of
these sampling points are calculated as follows:

w0
m � λ

n + λ( ),

w0
c �

λ

n + λ( ) + 1 − α2 + β( ),
wi

m � wi
c �

1
2 n + λ( ), i � 1, . . . , 2n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

where the subscript m represents the mean, c represents the
covariance, and the superscript represents the i-th sampling point.
The parameter λ = α2(n + κ) − n is a scaling parameter. The selection
of α controls the distribution state of the sampling points, and κ is
the parameter to be selected, whose value should generally ensure
that the matrix (n + λ)Pxx

k−1|k−1 is a positive semi-definite matrix. The
selected parameter β is a non-negative weight coefficient that can
merge the motion errors of higher-order terms in the equation.
Using nonlinear process function f(·) transformation for each sigma
point, we obtain

χik|k−1 � f χik−1|k−1, uk( ),
The predicted mean and covariance matrix of the state are

x̂k|k−1 �∑2n
i�0

wi
mχ

i
k|k−1,

Pxx
k|k−1 �∑2n

i�0
wi

c χik|k−1 − x̂k|k−1( ) χik|k−1 − x̂k|k−1( )T + Qk−1.

New sigma points are generated based on one-step prediction

χ* i
k|k−1 �

x̂k|k−1, i � 0

x̂k|k−1 +
�����������
n + λ( )Pxx

k|k−1
√( )

i
, i � 1, . . . , n

x̂k|k−1 −
�����������
n + λ( )Pxx

k|k−1
√( )

i−n
, i � n + 1, . . . , 2n

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ,

using nonlinear measurement function h(·) transform for newly
generated sigma points

Zi
k|k−1 � h χ* i

k|k−1, uk( ).
and the prediction of the measurement vector is

ẑk|k−1 � ∑2n
i�0

wi
mZ

i
k|k−1.

The innovation and cross covariance matrices are

Pzz
k|k−1 �∑2n

i�0
wi

c Zi
k|k−1 − ẑk|k−1( ) Zi

k|k−1 − ẑk|k−1( )T + Rk

Pxz
k|k−1 �∑2n

i�0
wi

c χ* i
k|k−1 − x̂k|k−1( ) Zi

k|k−1 − ẑk|k−1( )T.
Before introducing the proposed algorithm, we transform the

nonlinear measurement equation into the linear form using the
statistical linearization technique as follows:

zk � Hk xk − x̂k|k−1( ) + ẑk|k−1 + θk, (3)
where Hk is the measurement slope matrix.

Hk � Pxz
k|k−1( )T Pxx

k|k−1( )−1.
The covariance of θk is

Φk � Pzz
k|k−1 − Pxz

k|k−1( )T Pxx
k|k−1( )−1Pxz

k|k−1
� Pzz

k|k−1 −HkP
xx
k|k−1H

T
k .

3.2 Existing UKF-UMV without unknown
input estimation

The MCUF-UMV algorithm we derived in Section 3.3 is based
on the UKF-UMV in [14] that does not require estimation of
unknown input. Therefore, this section provides an introduction
and summary of UKF-UMV without unknown input estimation.
According to Eq. 3, the innovation Δzk is represented as

Δzk � zk − ẑk|k−1 � Hk xk − x̂k|k−1( ) + θk. (4)
According to Eqs 1, 4

Δzk � HkGk−1dk−1 + ηk,

where

ζk � f xk−1, uk( ) − x̂k|k−1 + qk−1,

ηk � Hkζk + θk,

and

E ζkζ
T
k[ ] � Pxx

k|k−1,
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~Rk � E ηkη
T
k[ ] � HkP

xx
k|k−1H

T
k + Φk � Pzz

k|k−1.

The existing UKF-UMV without unknown input estimation is
summarized as follows:

Kk � Pxx
k|k−1H

T
k
~R
−1
k � Pxz

k|k−1 Pzz
k|k−1( )−1,

Mk � GT
kH

T
k
~R
−1
k HkGk( )−1GT

kH
T
k
~R
−1
k ,

Lk � Kk + I − KkHk( )GkMk,

x̂k|k � x̂k|k−1 + Lk zk − ẑk|k−1( ),
Pxx
k|k � I − LkHk( )Pxx

k|k−1 I − LkHk( )T + LkΦkL
T
k .

3.3 State estimation

From the nonlinear model described above, the augmented
model is given as follows:

x̂k|k−1
zk − ẑk|k−1 +Hkx̂k|k−1

[ ] � I
Hk

[ ]xk + vk, (5)

where I is the dimension of the n × n identity matrix and vk can be
expressed as

vk � − xk − x̂k|k−1( )
θk

[ ],
with

E vkvTk[ ] � Pxx
k|k−1 0
0 Φk

[ ]
� Bp

k|k−1B
pT
k|k−1 0

0 BΦ
k B

ΦT
k

[ ]
� BkB

T
k ,

where Bp
k|k−1, B

Φ
k and Bk is obtained by using Cholesky

decomposition. Then, multiplying both sides of Eq. 5 by B−1
k , the

following formula is obtained:

Dk � Wkxk + ek,

where

Dk � B−1
k

x̂k|k−1
zk − ẑk|k−1 +Hkx̂k|k−1

[ ],
Wk � B−1

k

I
Hk

[ ], ek � B−1
k vk.

Then, the cost function based on the MCC can be obtained
as follows:

JL xk( ) � 1
L
∑L
i�1

Gσ Di
k −Wi

kxk( ),
where the dimension of Dk is expressed in L and L = n +m.Di

k is the
ith element of Dk, Wi

k is the ith row of Wk, and σ is the kernel
bandwidth of correntropy. Then, the optimal estimate of xk is

x̂k � argmaxxk
1
L
∑L
i�1

Gσ eik( ),

where eik is the ith element of ek:

eik � Di
k −Wi

kxk.

Let

∂JL xk( )
∂xk

� 0,

The optimal solution is given as

xk � ∑L
i�1

Gσ eik( )WiT
k W

i
k[ ]⎛⎝ ⎞⎠−1

× ∑L
i�1

Gσ eik( )WiT
k D

i
k[ ]⎛⎝ ⎞⎠.

It can be seen that the optimal solution is a fixed-point xk
equation, which can also be rewritten as

xk � WT
kCkWk( )−1WT

kCkDk, (6)
where

Ck � Cx
k 0
0 Cz

k
[ ],

with

Cx
k � diag Gσ e1k( ), . . . , Gσ enk( )( ),

Cz
k � diag Gσ en+1k( ), . . . , Gσ en+mk( )( ).

Eq. 6 can be further expressed as follows:

xk � x̂k|k−1 + ~Kk zk − ẑk|k−1( ), (7)
where

~Kk � ~P
xx

k|k−1H
T
k Hk

~P
xx

k|k−1H
T
k + ~Φk( )−1,

~P
xx

k|k−1 � Bp
k|k−1 Cx

k( )−1BpT
k|k−1,

~Φk � BΦ
k Cz

k( )−1BΦT
k .

The detailed derivation process of Eq. 7 is in the Appendix.

3.4 Summary of MCUF-UMV equations

This section presents the summary of the MCUF-UMV
algorithm. Given the mean x̂k−1|k−1 and covariance Pxx

k−1|k−1, when
2n + 1 sigma points χik−1|k−1 and the corresponding weights wi

m, w
i
c

are obtained through UT, and χik|k−1 is obtained through nonlinear
process function f(·).

1. Time update

x̂k|k−1 �∑2n
i�0

wi
mχ

i
k|k−1,

Pxx
k|k−1 �∑2n

i�0
wi

c χik|k−1 − x̂k|k−1( ) χik|k−1 − x̂k|k−1( )T + Qk−1.

Based on x̂k|k−1 and covariance Pxx
k|k−1, new sigma points χ* i

k|k−1
are obtained by UT, and then Zi

k|k−1 is obtained by the nonlinear
measurement function h(·). Then
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ẑk|k−1 �∑2n
i�0

wi
mZ

i
k|k−1,

Pzz
k|k−1 �∑2n

i�0
wi

c Zi
k|k−1 − ẑk|k−1( ) Zi

k|k−1 − ẑk|k−1( )T + Rk,

Pxz
k|k−1 �∑2n

i�0
wi

c χ* i
k|k−1 − x̂k|k−1( ) Zi

k|k−1 − ẑk|k−1( )T.
2. Measurement update

Given a suitable kernel bandwidth σ and small constant ϵ for
state estimation, let t = 1 and x̂(k|k)0 � x̂k|k−1, where x̂(k|k)t represents
the state estimation during fixed-point iteration t.

eik � Di
k −Wi

kx̂ k|k( )t−1,
Cx

k � diag Gσ e1k( ), . . . , Gσ enk( )( ),
Cz

k � diag Gσ en+1k( ), . . . , Gσ en+mk( )( ),
~P
xx

k|k−1 � Bp
k|k−1 Cx

k( )−1BpT
k|k−1,

~Φk � BΦ
k Cz

k( )−1BΦT
k ,

Hk � Pxz
k|k−1( )T Pxx

k|k−1( )−1,
~Kk � ~P

xx

k|k−1H
T
k Hk

~P
xx

k|k−1H
T
k + ~Φk( )−1,

x̂ k|k( )t � x̂k|k−1 + ~Kk zk − ẑk|k−1( ).
The following inequality is given as

‖x̂ k|k( )t − x̂ k|k( )t−1‖
‖x̂ k|k( )t−1‖ ≤ ϵ,

where x̂k|k � x̂(k|k)t. If the above inequality is true, continue to the
next step; otherwise, return to iterative steps in the measurement
update again.

Finally, the covariance Pxx
k|k of the state measurement update

error is obtained:

Pxx
k|k � I − ~KkHk( )Pxx

k|k−1 I − ~KkHk( )T + ~KkΦk
~K
T

k .

4 Illustrative example

In this section, an example of uniformly accelerating linear
motion target tracking in [24] with minor modification is used
to demonstrate the effectiveness and reliability of the MCUF-
UMV algorithm by comparing its performance with that of
UKF-UMV in nonlinear systems with unknown input. We only
use mixed Gaussian noise as an example to illustrate the
performance of the algorithm in the presence of non-
Gaussian measurement noise interference. In this example,
by manually switching between mixed Gaussian noise and
Gaussian noise, we demonstrate the performance of the
algorithm under mixed Gaussian noise and Gaussian noise
interference, respectively.

4.1 Mixed Gaussian noise

Consider a particle M moving in the two-dimensional plane,
whose position, velocity, and acceleration at a certain moment k can
be represented by the vector xk � [�xk, �yk, _�xk, _�yk, €�xk, €�yk]T. Assuming
that M undergoes approximately uniformly accelerated linear
motion in the x-axis direction and also approximately uniformly

FIGURE 1
Motion trajectory map.

Frontiers in Physics frontiersin.org05

Zhang et al. 10.3389/fphy.2024.1347843

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1347843


accelerated linear motion in the y-axis direction, the equation of
motion for this particle in Cartesian coordinates is

xk+1 �

1 0 T 0
T2

2
0

0 1 0 T 0
T2

2
0 0 1 0 T 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk +

1
−1
0.4
−0.2
0.5
−0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dk + qk,

where dk is the unknown input, simulated with dk = 0.1cos(0.2k). qk is
the process noise. Assuming that the radar with the coordinate position
(�x0, �y0) tracks particleM, the distance lk between the radar and particle
M and the angle ϕk of particleM relative to the radar can be obtained. In
actual measurements, the radar has noise rk. In a coordinate system
centered on the radar, the measurement equation is

zk � h xk( ) + rk � lk + rlk
ϕk + rϕk

[ ] �

�������������������
�xk − �x0( )2 + �yk − �y0( )2√

+ rlk

arctan
�yk − �y0

�xk − �x0
( ) + rϕk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where rlk is the measurement noise regarding the distance lk between
the radar and particleM and rϕk is the measurement noise regarding
the angle ϕk between the radar and particleM relative to the radar. In

the Cartesian coordinate system, the state equation of the model is
linear, while the measurement equation is nonlinear. In the
simulation, the covariance matrix Qk of system noise qk and the
measurement noise rk, which are mixed Gaussian noise, are
as follows:

Qk � diag 1, 1, 0.12, 0.12, 0.012, 0.012{ },
rk ∽ 0.9N 0, 0.01( ) + 0.1N 0, 100( ).

Initial state x0 = [1000,5000,10,50,2,−4]T. Measurement number N =
50 and sampling time T = 0.5s.

The generated motion trajectory diagram is shown in Figure 1,
and the tracking position, velocity, and acceleration mean square
errors (MSEs) are shown in Figure 2. Table 1 shows the comparison
ofMSEs of two algorithms from ten independent experiments. From
the experimental results, it can be seen that the MCUF-UMV
algorithm performs significantly better under mixed Gaussian
noise interference.

4.2 Gaussian noise

Using the same model as given in Section 4.1, the measurement
noise rk is replaced with Gaussian noise, and its covariance matrix Rk

is represented as follows:

Rk � diag 102, 0.0012{ }.

FIGURE 2
Tracking error chart with mixed Gaussian noise.
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To ensure that the entire system model is in the Gaussian
environment, the unknown input is set to a random number.
The tracking position, velocity, and acceleration MSEs are shown
in Figure 3. Table 2 shows the comparison of the MSEs of two
algorithms from ten independent experiments. From the data, it can
be seen that when the measurement noise is Gaussian noise, the
performance of MCUF-UMV is not as good as compared to that of
UKF-UMV.

5 Conclusion

We have proposed theMCUF-UMV algorithm for the nonlinear
discrete-time system with the unknown input when the system is
disturbed by non-Gaussian noise, especially heavy-tailed impulse
noise. First, the prior estimation and prior error covariance of the
state are obtained by UT. By using statistical linearization
techniques, nonlinear system and measurement equation are

FIGURE 3
Tracking error chart with Gaussian noise.

TABLE 1 MSEs of 10 independent experiments of position, velocity, and acceleration in mixed Gaussian noise.

Experiment MCUF-UMV
position

UKF-UMV
position

MCUF-UMV
velocity

UKF-UMV
velocity

MCUF-UMV
acceleration

UKF-UMV
acceleration

1 28.208414 84.579935 2.711820 44.612122 0.424037 5.516357

2 13.989319 18.533778 1.181625 12.586217 0.281214 6.309897

3 11.871045 21.010794 2.730424 19.616551 0.179617 5.849185

4 40.149114 62.241404 3.809605 23.279794 0.147400 7.892510

5 31.350351 84.129213 2.618486 8.262821 0.373872 4.021028

6 18.848458 44.971707 1.678344 12.760293 0.305540 10.316087

7 44.078077 72.514440 2.660592 23.560852 0.182067 14.191144

8 30.835332 68.140025 3.255109 20.098220 0.412753 11.119720

9 65.427237 89.223493 5.985490 7.390882 0.418364 15.480138

10 12.654580 35.408031 1.455289 12.159764 0.399467 5.044264
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transformed into quasi-linear regression forms. Based on the UKF-
UMV form that does not require unknown input estimation, the
MCC and fixed-point iterative algorithm are used to estimate the
state. We do not have any prior knowledge or assumptions about the
unknown input, and the unknown input can be any signal. Finally, a
simulation experiment has been conducted to demonstrate the
effectiveness and reliability of the MCUF-UMV algorithm under
non-Gaussian noise interference. In future work, we will further
apply this algorithm to specific practical applications.
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Appendix A

Wk � B−1
k
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[ ] � Bp−1
k|k−1 0
0 BΦ−1

k

[ ] I
Hk

[ ] � Bp−1
k|k−1

BΦ−1
k Hk

[ ], (A.1)

Ck � Cx
k 0
0 Cz

k
[ ], (A.2)

Dk � B−1
k

x̂k|k−1
zk − ẑk|k−1 +Hkx̂k|k−1

[ ] � Bp−1
k|k−1 0
0 BΦ−1

k

[ ]
x̂k|k−1

zk − ẑk|k−1 +Hkx̂k|k−1
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k zk − ẑk|k−1 +Hkx̂k|k−1( )[ ].

(A.3)
By (A.1) and (A.2), we have

WT
kCkWk � Bp−1

k|k−1( )TCx
kB

p−1
k|k−1 +HT

k BΦ−1
k( )TCz

kB
Φ−1
k Hk. (A.4)

Next, the matrix inverse lemma was used to obtain:

WT
kCkWk( )−1 � Bp

k|k−1 Cx
k( )−1BpT

k|k−1 − Bp
k|k−1 Cx

k( )−1BpT
k|k−1H

T
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HkB
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k|k−1 Cx

k( )−1BpT
k|k−1H

T
k + BΦ

k Cz
k( )−1BΦT

k( )−1
HkB

p
k|k−1 Cx

k( )−1BpT
k|k−1, (A.5)

and by (A.1)–(A.3), we have

WT
kCkDk � Bp−1

k|k−1( )TCx
kB

p−1
k|k−1

+HT
k BΦ−1

k( )TCz
kB

Φ−1
k zk − ẑk|k−1 +Hkx̂k|k−1( ). (A.6)

Combining (A.5) and (A.6), we have Eq. 7.
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