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Reynolds-averaged Navier-Stokes (RANS) simulations have found widespread
use in engineering applications, yet their accuracy is compromised, especially in
complex flows, due to imprecise closure term estimations. Machine learning
advancements have opened new avenues for turbulence modeling by extracting
features from high-fidelity data to correct RANS closure terms. This method
entails establishing a mapping relationship between the mean flow field and the
closure term through a designated algorithm. In this study, the k-ω SST model
serves as the correction template. Leveraging a neural network algorithm, we
enhance the predictive precision in separated flows by forecasting the desired
learning target. We formulate linear terms by approximating the high-fidelity
closure (fromDirect Numerical Simulation) based on the Boussinesq assumption,
while residual errors (referred to as nonlinear terms) are introduced into the
momentum equation via an appropriate scaling factor. Utilizing data from
periodic hills flows encompassing diverse geometries, we train two neural
networks, each possessing comparable structures, to predict the linear and
nonlinear terms. These networks incorporate features from the minimal
integrity basis and mean flow. Through generalization performance tests, the
proposed data-driven model demonstrates effective closure term predictions,
mitigating significant overfitting concerns. Furthermore, the propagation of the
predicted closure term to the mean velocity field exhibits remarkable alignment
with the high-fidelity data, thus affirming the validity of the current framework. In
contrast to prior studies, we notably trim down the total count of input features to
12, thereby simplifying the task for neural networks and broadening its
applications to more intricate scenarios involving separated flows.
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1 Introduction

Owing to the inherently chaotic characteristics of turbulence, its numerical prediction
turns out to be highly challenging. The Reynolds-averaged Navier-Stokes (RANS)
simulation serves as a standard technique for predicting turbulence, establishing itself
as the primary tool employed in the majority of industrial computations [1]. Despite the
superior accuracy provided by the Direct Numerical Simulation (DNS) and Large-Eddy
Simulation (LES), the RANS method proves more resource-efficient [2]. The closure terms
within the RANS equations employ various modeling methods, which can be classified into
three categories. The first and most basic category encompasses the mixing length-based
model [3], colloquially referred to as the zero equation model. Despite its computational
cost-efficiency, this model proves apt primarily for simpler flows and lacks sufficient
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accuracy for more intricate scenarios. The second category includes
eddy viscosity-based models, incorporating one-equation models
such as the Spalart-Allmaras (SA) model [4], and two-equation
models like the k-ϵ, k-ωmodels, k-ω SSTmodel. These models hinge
on the assumption of eddy viscosity to establish a linear association
between the Reynolds stress and strain rate tensor [5]. Although this
approach amplifies generality and robustness, it manifests notable
constraints in complex flows, including flow separation and
reattachment [6, 7]. The third category comprises the Reynolds
Stress Model (RSM), which formulates transport equations for each
component of the Reynolds stress, frequently termed as the seven-
equation model [8]. Although RSM offers higher accuracy, it is
computationally demanding and performs poorly in flows with
substantial curvature.

Traditionally, turbulence modeling has evolved using a
combination of intuition, asymptotic theory and empiricism,
where turbulence closure models were formulated by physical
arguments [9]. The coefficients of the closure terms were
determined by calibrating experimental or DNS data, highlighting
the source of errors in RANS models. However, the advent of
artificial intelligence has facilitated the application of Machine
Learning (ML) techniques to establish mapping relationships
between closure terms and flow field data. Data-driven
methodologies have been subsequently employed for closure in
the RANS model, transcending simple physical relationships [10].
Utilizing supervised learning, a mapping can be constructed
between flow field features and high-fidelity data, theoretically
mitigating the error from closure terms to a markedly reduced
level [11]. This accomplishment, though challenging to attain in
traditional turbulence modeling, becomes feasible with data-driven
turbulence modeling. Within the framework of data-driven closure
turbulence models, various methods have been proposed to
accommodate diverse RANS models. While some researchers
have displayed interest in RSM [12, 13], the majority of
investigations have revolved around the Linear Eddy Viscosity
Model (LEVM).

Zhu et al. [14] implemented a neural network to construct a
mapping between the eddy viscosity and the mean flow field derived
from the Spalart-Allmaras (SA) model, with two distinct coupling
modes compared by Liu et al. [15]. The coupling mode refers to the
approach through which the predicted values are integrated into the
RANS equation. Maulik et al. [16] devised a mapping between
steady-state turbulent eddy viscosities and initial conditions. Such
surrogate models, electing learning targets from the RANS mean
field, cannot surpass the original RANSmodels in terms of accuracy.
Despite this, they afford a reduction in computational cost by
obviating the need to solve the partial differential equation. A
series of augmented models were developed [17–20] by selecting
learning targets from high-fidelity fields or by targeting the
differences between high-fidelity fields and SA mean fields. These
augmented models generated improved results while retaining the
advantages of the SA model.

Ling and Templeton [21] investigated the uncertainty region of
the k-ϵ model using several machine learning algorithms, and
successfully procured the Reynolds stress anisotropy tensor from
high-fidelity data, leveraging both random forests [22] and neural
networks [23]. They proposed the Tensor Basis Neural Networks
(TBNN) with higher prediction accuracy, and improved the velocity

fields by integrating the Reynolds stress anisotropy tensor into the
converged k-ϵ fields. Significantly, the TBNN has been extensively
adopted and refined by numerous researchers investigating data-
driven turbulence models, consistently producing commendable
predictions [24, 25]. Furthermore, Wang et al. [26] introduced a
Physics-Informed Machine Learning (PIML) approach that
considered the invariance of the framework. They targeted the
discrepancies in the Reynolds stress between DNS and the
Launder-Sharma k-ϵ models in the case of a periodic hill,
employing random forests to forecast these discrepancies. To
further enhance the invariance of the PIML framework, Wu et al.
[27] developed a minimal integrity basis comprising turbulent
quantities like velocity, pressure, and turbulent kinetic energy.
The first invariants of these invariant bases were utilized as
inputs for the ML model, enabling successful prediction of
discrepancies in Reynolds stress. Beyond these studies, additional
research has been undertaken based on the k-ϵ model. Chang et al.
[28], Xu et al. [29] established surrogate models, demonstrating
that the flow features based on the first order spatial derivative
of the velocity field are both necessary and sufficient. Heyse
et al. [30] provided uncertainty estimates for eddy viscosity
models. Moreover, Zhang et al. [31] utilized deep learning to
replace the source term in the ϵ equation and introduced a data
correction method named “coordinate” technology. More
recently, apart from the ML methods mentioned above, other
techniques such as the discrete adjoint method [32], symbolic
regression method [33], and field inversion machine learning
(FIML) method [34] have likewise exhibited promising results
within this domain.

In addition to the studies based on k-ϵmodel, the k-ω SSTmodel
has also been considered as a research template. Liu et al. [35]
proposed an iterative framework where the mean flow features and
labels used for training are sourced from DNS data. Contrary to the
prevalent one-loop frameworks, this methodology engages a
machine learning model to predict the Reynolds stress at each
time step, thus enhancing performance in relation to the k-ω SST
model. Subsequent research by Liu et al. [36] further enhanced the
model’s generalization performance by adopting a bounded
normalization method. Similar to TBNN, Kaandorp and Dwight
[37] propose a Tensor-Based Random Forest (TBRF) algorithm,
which, notably, is more straightforward to implement and train.
Shifting the focus away from Reynolds stress or constitutive
components, Wu et al. [38] exploited an Artificial Neural
Network (ANN) to learn the intermittency factor γ in Mentor’s
SST-γ model. While many researchers consider the machine
learning methods as black boxes, some aim to demonstrate
algebraic relationships. Zhao et al. [39] obtained an explicit
algebraic model using the gene expression programming (GEP)
method. Frey Marioni et al. [40] utilized high-fidelity data and ANN
to generate alternative Reynolds stress anisotropy formulations to
replace the standard Boussinesq approximation. In a novel
approach, Schmelzer et al. [41] introduced the Symbolic
Regression method, termed as Sparse Regression of Turbulent
Stress Anisotropy (SpaRTA), to deduce algebraic stress models
for the closure term. These models, formulated as tensor
polynomials, were inferred from high-fidelity data and allowed
for a cost-effective correction of the k-ω SST model. Additionally,
the works of Huijing et al. [42], Zhang et al. [43], Cherroud et al. [44]
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have been instrumental in the further promotion and enhancement
of SpaRTA.

Studies focusing on eddy viscosity models hold practical
significance when exploring various RANS models as templates
for data-driven turbulence modeling. A key concern revolves around
effectively integrating the predicted values from ML into the CFD
process. To enhance the prediction accuracy of eddy viscosity
models, researchers often choose to optimize inaccurately fitted
closure terms. An important discovery by Wu et al. [45] revealed
that directly substituting the RANS closure term with the DNS
Reynolds stress led to an ill-conditioned equation. This issue was
effectively resolved by decomposing the Reynolds stress into linear
and nonlinear parts. The widely adopted treatment involves
integrating the linear part into the viscous term of the Navier-
Stokes equation, while utilizing the nonlinear term as a source term
[27]. Building upon this basis, McConkey et al. [46] imposed a non-
negative constraint on the linear part. More challenging scenarios
were explored by Guo et al. [47, 48], who constructed the linear and
nonlinear terms solely from high-fidelity Reynolds stresses, while
disregarding the high-fidelity velocity information. This concept has
also been embraced by Volpiani et al. [49], Berrone and Oberto [50],
among others, with several studies demonstrating the improved
prediction accuracy resulting from this approach.

However, several challenges arise with this approach. To
improve the prediction accuracy of both the linear and nonlinear
terms, researchers often utilize an extensive set of input features.
Incorporating input features based on a minimal integrity basis
results in a complex structure for the ML model, which is further
compounded when mean flow features are included. Such
excessively intricate ML models not only present difficulties
during training but also carry an increased risk of overfitting. In
most cases, the prediction of linear and nonlinear terms is carried
out independently, and subsequently, these terms undergo
transformations to account for physical factors, leading to more
intricate representations. However, in addition to the inherent
stochastic nature of prediction errors, the reconstruction of both
linear and nonlinear terms may introduce unexpected variations.
These deviations can subsequently manifest in the reconstructed
Reynolds stresses, resulting in discrepancies from the high-fidelity
data, and such errors may propagate to other flow field quantities.
Hence, we intend to advance this methodology by simplifying the
inputs and outputs of the ML model, thereby reducing the number
of inputs while ensuring invariance. Moreover, we aim to employ a
straightforward expression for the output, thereby minimizing
unnecessary errors during the reconstruction of the Reynolds stress.

This paper introduces a data-driven turbulence model that
employs the k-ω SST model as the correction template. The k-ω
SSTmodel, although widely utilized, exhibits limitation in accurately
predicting flow separation. The primary objective of our proposed
model is to improve the performance of the k-ω SST model,
particularly in complex flow scenarios. To achieve this, our
model adopts the entire Reynolds stress as the learning target,
derived from a high-fidelity dataset. During the training process,
the Reynolds stress is decomposed into linear and nonlinear
components, and two distinct neural networks are constructed to
predict these components individually. The predicted values are
reconstructed to form a predictive closure term that participates in
the RANS calculation. Importantly, the nonlinear part, representing

the residual portion generated during the Reynolds stress
approximation, is predicted directly to avoid excessive
transformations. This treatment aims to minimize the
accumulation of random errors during the restructuring process,
thereby improving the accuracy of the prediction results.
Additionally, we employ a reduced amount of data during
training to demonstrate the effectiveness of our approach with
the least amount of high-fidelity data, thereby establishing the
rationality of the data-driven model framework.

The present work is structured as follows: Section 2 elucidates
the decomposition method of the closure term, delineates the
prediction objectives for machine learning, and outlines the
structure of the comprehensive data-driven model. Section 3
introduces the structure and input features of neural networks,
and discusses the normalization methods for input features and
labels. Section 4 exhibits the training and prediction results of the
data-driven model. Detailed discussions on the closure term and
velocity prediction in interpolation tests, in comparison with high-
fidelity data, are provided. Finally, conclusions are given in Section 5.

2 Methodology

For incompressible flows, the steady-state Reynolds-averaged
Navier-Stokes equations can be expressed as Eqs 1, 2.

∇ · U � 0, (1)
∇ · UU( ) − ∇ · ] ∇U + ∇U( )T[ ] � −∇p + ∇ · τ, (2)

where U is the mean flow velocity, ] is the molecular kinematic
viscosity, p is the pressure normalized by the constant density of the
fluid and τ � −u′u′ is the Reynolds stress tensor. Here, u′
corresponds to the fluctuating velocity, which is defined as the
difference between the instantaneous velocity and the
average velocity.

The unclosed term τ can be decomposed into isotropic and
anisotropic parts. The commonly used LEVM posits that the
anisotropic component is equivalent to the product of the eddy
viscosity coefficient and the time-averaged strain rate, commonly
referred to as the Boussinesq assumption. Mathematically, this can
be expressed as

τ � a − 2
3
kI ≈ 2]tS − 2

3
kI, (3)

where a designates the anisotropic tensor, ]t stands for the eddy
viscosity and k is the turbulent kinetic energy. The term S represents
the mean strain rate tensor, defined as S � 1

2 [∇U + (∇U)T]. As such,
Eq. 2 can be recast into the following form:

∇ · UU( ) − ∇ · ] + ]t( ) ∇U + ∇U( )T( )[ ] � −∇p′, (4)

where p′ � p + 2
3 k is referred to as the “modified pressure.” The

transformation evident in Eq. 4 enhances the stability of numerical
computations. This operation on the eddy viscosity is referred to as
implicit treatment [27], which will be discussed further in this paper.

Various LEVMs employ a diverse array of computational
methodologies to determine the eddy viscosity ]t, whereas data-
driven turbulence models utilize machine learning algorithms for
the same purpose. The inputs for machine learning algorithms rely
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on baseline RANS simulations, which ensures consistency in
calculation and prediction. Consequently, the “improvement”
proposed in this paper is specific to a particular LEVM model.
The primary objective of this paper is to enhance the effectiveness of
the k-ω SST model, which will be further elaborated in the
subsequent section.

2.1 The k-ω SST model

The k-ω SST model [51] calculates eddy viscosity using

]t � a1k

max a1ω, SF2( ). (5)

Turbulence kinetic energy k and specific dissipation rate ω are
obtained through Eqs 6, 7:

∂k

∂t
+ Uj

∂k

∂xj
� Pk − β*kω + ∂

∂xj
] + σk]t( ) ∂k

∂xj
[ ], (6)

∂ω

∂t
+ Uj

∂ω

∂xj
� αS2 − βω2 + ∂

∂xj
] + σω]t( ) ∂ω

∂xj
[ ]

+ 2 1 − F1( )σω2 1
ω

∂k

∂xi

∂ω

∂xi
. (7)

The closure coefficients and auxiliary relations are as follows:

F2 � tanh max
2

�
k

√
β*ωy

,
500]
y2ω

( )[ ]2⎡⎣ ⎤⎦,
Pk � min τij

∂Ui

∂xj
, 10β*kω( ),

F1 � tanh min max

�
k

√
β*ωy

,
500]
y2ω

( ), 4σω2k
CDkωy2

[ ]{ }4⎧⎨⎩ ⎫⎬⎭,

CDkω � max 2ρσω2
1
ω

∂k

∂xi

∂ω

∂xi
, 10−10( ), ϕ � ϕ1F1 + ϕ2 1 − F1( ),

α1 � 5
9
, α2 � 0.44, β1 �

3
40
, β2 � 0.0828, β* � 9

100
,

σk1 � 0.85, σk2 � 1, σω1 � 0.5, σω2 � 0.856.

2.2 Optimal eddy viscosity

In RANS simulations, the mean field errors often arise from the
closure term [52], particularly within the context of the k-ω SST model,
where the primary source of errors is intricately associated with the eddy
viscosity ]t. In traditional RANS modeling, various physics-based
strategies have been proposed to identify a suitable ]t that minimizes
errors within themean flow field. However, despite the utility ofmultiple
RANS models, their performance remains unsatisfactory when dealing
with separated flows. In this study, we depart from the traditional
turbulence modeling approach and instead adopt a data-driven method
to identify a more suitable closure from a data-based perspective.

The optimal ]t* is derived from high-fidelity data, with the
awareness that ]t is an artificial term based on an assumption
absent in DNS calculations. Nevertheless, ]t can be formulated
from the DNS field using the Boussinesq assumption, specifically
aiming to minimize the discrepancy between the anisotropic
Reynolds stress tensor and its linear term, as represented by Wu
et al. [27] using Eq. 8:

]t* � arg min
]t

a − 2]tS‖ ‖, (8)

where ]t* represents the optimal eddy viscosity, and a and S are
obtained from the DNS database. The notation ‖ · ‖ represents the
Frobenius norm of a matrix. Practically, the equation above can be
calculated using the following expression:

]t* � 1
2
a : S
S : S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣, (9)

which represents a least-squares approximation of eddy viscosity
obtained from high-fidelity data. The absolute value is applied to
prevent the occurrence of negative values, which could induce
instability and complicate convergence. Eq. 3 shows that the
Reynolds stress anisotropy tensor has a linear relationship with
the strain rate tensor, which justifies referring to ]t* as the linear

FIGURE 1
Mean streamwise velocity profiles for the propagation test at
Re = 5600 and α = 1.0. The profiles are displayed at nine streamwise
locations x/h = 0, 1, 2, . . ., 8. Baseline RANS simulations and DNS
results are included for comparison. (A) Propagation for linear
term. (B) Propagation for linear and nonlinear terms. (C) Propagation
for the Reynolds stress from DNS.
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portion of the Reynolds stress. An alternative to taking absolute
values is to utilize max(]t*, 0). Nevertheless, in the calculations, pairs
of positive and negative values usually appear at the anomalous local
maximum regions, and this method tends to yield an excess of zero
values. Although Eq. 9 forces negative values to be converted to
positive values, the error introduced by this approach will be
handled by the nonlinear term mentioned below. Moreover, the
non-negative eddy viscosity obtained through this approach will be
utilized as one of the machine learning targets for the prediction of
the mean field.

2.3 Propagation test and nonlinear term

Within the framework of RANS simulation, primary attention is
often devoted to velocity and its derivative quantities. The optimal
determination of Reynolds stress aims to enhance the accuracy of
mean flow field prediction. Nevertheless, the extent to which this
linear component improves velocity prediction remains uncertain.
Here, we employ a Reynolds stress propagation test to examine the
effects of ]t*, and all tests are conducted using the simpleFoam solver
in OpenFOAM.

The propagation test follows a similar procedure to the standard
calculation using the k-ω SSTmodel, with the main distinction being
that ]t no longer requires Eq. 5 to be updated iteratively. Tomaintain
consistency with the subsequent model that incorporates machine
learning algorithms, we use the converged velocity field computed
by the k-ω SST model as the initial condition for the propagation
test. At each time step, the value of ]t remains constant and is
substituted with ]t*, starting from t = 0. The remaining case settings
align with the baseline RANS simulation.

It is crucial to emphasize that the ]t* used in the computation is
directly derived from the DNS mean field and does not represent the
value predicted through machine learning. This approach allows for
an examination of the ideal scenario where the influence of ]t* on
velocity is fully encompassed in the final result, thereby enabling the
error analysis of the impact it introduces. For comparison, the DNS
field with a Reynolds number of Re = 5600 and α = 1.0 (representing
the steepness of the hills) is selected, and the case configuration will
be introduced in the subsequent section.

The propagated mean streamwise velocity profiles for linear
term (2]t*S) at nine streamwise locations are shown in Figure 1A,
along with the profiles fromDNS and the baseline RANS simulation.
The results indicate that the baseline k-ω SST simulation engenders
imprecise outcomes throughout the periodic hills, particularly in the
middle of two hills, which manifests as a primary zone of error.
Specifically, at both x/h = 1 and x/h = 2 near the lower wall, the
baseline simulation underestimates the negative velocity, while
conversely overestimating the velocity starting from x/h = 3. At
x/h = 5, the DNS velocity profile exhibits positive values, whereas the
baseline simulation still predicts negative velocity. This suggests that
the baseline simulation predicts a larger separation bubble, with the
reverse flow extending from the leeward side of the first hill to the
windward side of the second hill.

However, the propagation test displays some improvements in
velocity, notably high consistency with DNS on the windward side.
Each profile indicates that the velocity propagated by the linear term
maintains a similar trend to DNS. Despite these improvements, the

velocity propagated solely from ]t* exhibits discrepancies,
particularly near the lower wall. From x/h = 3 to x/h = 5, the
velocities prematurely transition to positive values, as displayed on
the velocity profile, showing a small bump towards the left. This
underscore the limitations of relying solely on the linear term to
accurately obtain Reynolds stresses, as velocities calculated using the
linear term still exhibit significant errors. The relationship between
Reynolds stress and strain rate tensor cannot be simply regarded as
linear, highlighting the limitations of LEVMs.

Additionally, we plot the difference between the Reynolds stress
anisotropy tensor a and the linear term in Figure 2. In the
propagation test, the Reynolds stress is approximated by the
linear term, i.e., a � 2]t*SDNS. As this work focuses on two-
dimensional flow, the errors in a11, a12, and a22 are presented
here. Since a is the zero-trace tensor (i.e., a11 + a22 + a33 = 0),
Figure 2 also displays the non-zero a33. The results indicate that the
error in the flow separation zone is most pronounced. All four
components featured in Figure 2 exhibit substantial errors near the
lower wall, correlating with the anomalous velocity observed in
Figure 1A. This implies that these errors significantly influence the
velocity prediction.

It has been established that a cannot be accurately reproduced
solely through a linear relationship. To enhance the velocity
prediction, the introduced nonlinear term, denoted as a⊥

hereafter, is derived from the discernible correlation between Δa
and velocity. Thus, the Reynolds stress anisotropy tensor,
incorporating the linear term and nonlinear a⊥, is expressed as:

a � 2]t*S + a⊥. (10)

By utilizing definition Eqs 2, 10 is reformulated as:

∇ · UU( ) − ∇ · ] + ]t*( ) ∇U + ∇U( )T( )[ ] � −∇p′ + γ∇ · a⊥, (11)

where γ is a scaling factor determined by minimizing the mean
square error between propagation and DNS velocity, detailed in
Section 3.5. Eq. 11 will be used in the second propagation test.
Compared to Eq. 4, the only modification is the addition of a term on
the right side of the equation. This term remains constant in the
propagation test and serves as a corrective measure. The current
Reynolds stress anisotropy tensor is divided into linear and
nonlinear parts, both of which can be obtained directly from the
high-fidelity data. Since we have already calculated the linear term
using Eq. 9, the nonlinear term can be determined as a⊥ � a − 2]t*S.

To assess the effectiveness of this approach, a new propagation
test using Eq. 11 is conducted, as depicted in Figure 1B. It is clear that
the propagated velocity has been greatly improved compared to
Figure 1A. The previously observed underestimation of velocity near
the upper wall has been addressed, and the flow separation region,
which exhibited the most severe error in Figure 1A, also shows
significant improvement in Figure 1B. The position of the separation
bubble tends to align with DNS, and the small protrusion of velocity
near the lower wall has disappeared. Based on these comparisons, it
becomes evident that the inclusion of the nonlinear term is crucial
for accurate velocity prediction.

We also explore the direct substitution of Reynolds stress.
Although we have decomposed a into two terms, it raises the
question: what would happen if we directly inserted the entire a
from DNS into Eq. 2? By incorporating the complete a directly,
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the presence of ]t would be eliminated, fundamentally altering
the essence of the LEVM. Nevertheless, contemplating this
possibility serves to highlight the advantages of Eq. 10. By
replacing a⊥ on the right side of Eq. 11 with aDNS and
removing ]t* on the left side, we can perform another
propagation test. The resulting outcomes are depicted in
Figure 1C. During this process, we encounter challenges in
achieving convergence, with large fluctuations in velocity.
Figure 1C displays the profiles at a certain time during the
velocity fluctuations, which are even less effective than the
baseline simulation. This reaffirms the effectiveness of the
nonlinear term. This issue was also discussed by Thompson
et al. [53], Wu et al. [45], who proposed that the explicit
insertion of Reynolds stress can make the RANS equation ill-
conditioned. In their work, Wu et al. [45] introduced a condition
number, delving into the drawbacks of an explicit closure term,
while affirming the efficacy of the implicit substitution method.

Up to this point, the corrected velocity has been obtained under
ideal conditions, where the Reynolds stress used for calculations is

directly derived from DNS. Alongside ]t* being identified as a
learning target, several components of a⊥ will also be treated as
additional learning targets. These target quantities will be predicted
using a specific machine learning algorithm, with the results
presented in this section serving as the upper limit for the data-
driven model.

2.4 Model framework

In summary, this study aims to enhance the prediction capability
of the k-ω SST model. Through verification, the RANS closure term
composed of linear and nonlinear terms can effectively reduce the
prediction errors and closely reproduce the DNS velocity. The
overall model framework will be elaborated in this section.

As illustrated in Figure 3. It consists of two distinct phases: the
training and the prediction phase, which are independent of each
other. In the training phase, we employ supervised learning, with ]t*

and a⊥ as labels, and the inputs are derived from the mean field

FIGURE 2
Errors in the Reynolds stress anisotropy tensor a approximated by optimal eddy viscosity for four components. The errors are calculated as Δa �
aDNS − 2]t′SDNS.

FIGURE 3
Framework of the current data-driven model.
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obtained by the baseline simulation. The training process involves
solving a regression problem, which concludes when the discrepancy
between the predicted and target values reaches a specific threshold.

During the prediction phase, the trained model is integrated
into the CFD calculation. When the baseline simulation
converges, the data-driven model makes predictions. A
modified RANS solver calculates the features and passes them
to the data-driven model. The predicted ]t* and a⊥ are then
utilized in solving the momentum equation. Propagation tests
have demonstrated that several thousand time steps are required
for the modified closure term to converge. Taking this into
account, we adopt a “one-time correction” approach, as
suggested by Ho and West [54]. This approach operates as an
open-loop control, where the data-driven model is invoked only
once at a chosen moment, and the predicted values are frozen and
incorporated into the calculation until convergence is reached.
Another iterative framework used by Liu et al. [35] involves
repeated invocations of the model, using predicted values from
each iteration in subsequent predictions. However, given the high
number of iterations required in the propagation tests, small
errors that might arise within iterative frameworks could be
amplified. Hence, the current research adopts the open-loop
control approach to mitigate the potential amplification of
such errors, which is also influenced by the need for stability
and certainty in the results produced by the model.

The propagation tests for the present study, as well as the
baseline simulations, are conducted using the finite volume open-
source CFD code, OpenFOAM. We utilize the simpleFoam
solver, which is designed for steady incompressible Newtonian
fluids. The modified simpleFoam solver incorporates Eq. 11 and
is capable of computing features while invoking the data-
driven model.

3 Machine learning algorithm

3.1 Neural networks

In the present work, neural networks are applied to predict the
closure term. A neural network is a mathematical or computational
model designed to replicate the structural and functional dynamics
of biological neural networks, particularly the central nervous
system of animals, such as the brain. These models are employed
to approximate or estimate functions without the need for deriving
explicit functional relationships. Neural networks can be perceived
as a black boxes that establish a mapping relationship between
specific features and labels.

A typical neural network comprises an input layer, an output layer,
and several hidden layers. The input layer receives the specific features,
and the network is updated by minimizing the difference between the
output layer and the labels. Neurons are the fundamental components of
a neural network, and each neuron receives n inputs from the previous
layer, all of which areweighted. An activation function processes the sum
of these inputs, combined with a bias term, to produce the neuron’s
output. It can be mathematically represented as Eq. 12.

z � h ∑n
i�1

ωixi + b⎛⎝ ⎞⎠, (12)

where x denotes the inputs from the previous layer, h denotes the
activation function, and ω and b represent the weight and bias,
respectively.

In this study, two distinct neural networks, N1 and N2, are
trained to predict the linear and nonlinear terms, respectively. N1 is
utilized to predict the linear term ]t*, while N2 is employed to predict
the nonlinear term a⊥. Despite using the same input features, N1 and

TABLE 1 Input features for neural networks.

Feature Description Raw input a Normalization factor b

q1 The first invariant of B1 I1(Ŝ2) ———

q2 The second invariant of B2 I2(Ŝ3) ———

q3 The first invariant of B3 I1(Ω̂2) ———

q4 The second invariant of B4 I2(Ω̂2
Ŝ) ———

q5 The first invariant of B5 I1(Ω̂2
Ŝ
2) ———

q6 The second invariant of B6 I2(Ω̂2
ŜΩ̂Ŝ

2) ———

q7 Turbulence intensity k 1
2U iU i

q8 Wall-distance based Reynolds number min(
�
k

√
d

50] , 2) ———

q9 Ratio of turbulent time scale to mean strain time scale 1
ω

1
‖S‖

q10 Pressure gradient along streamline Uk
∂P
∂xk

���������
∂P
∂xk

∂P
∂xk

UiUi

√
q11 Ratio of pressure normal stresses to shear stresses

�����
∂P
∂xk

∂P
∂xk

√
|ρ2 ∂U2

k
∂xk

|

q12 Variables in SST model
�
k

√
ωd

———
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N2 differ in their network structure and hyperparameters. The
number of neurons in each layer is proportional to the number
of input features, denoted as Nq. For N1, the network structure is
Nq − 6Nq − 12Nq − 6Nq − 6Nq − 2Nq −Nq. Similarly, for N2, it isNq −
6Nq − 12Nq − 6Nq − 2Nq − 3Nq. A more complex network structure
has the potential to capture complex mapping relationships better;
however, it also increases the risk of overfitting. To strike a balance,
the current network design is chosen with appropriate complexity
and minimized overfitting risk.

The choice of activation function is critical as it introduces
nonlinearity between layers of neurons, enabling the learning of
complex models, which is essential given the nonlinear nature of
most real-world problems. For both N1 and N2, the Rectified Linear
Unit (ReLU) function is selected as the activation function, defined
as Eq. 13.

f x( ) � max 0, x( ). (13)

To optimize the neural networks, both N1 and N2 employ the
Adam optimizer [55]. For N1, the learning rate is set to 5 × 10−5,
and L2 regularization is applied with a regularization coefficient
λ = 1 × 10−5. For N2, the learning rate is set to 1 × 10−4, with
L1 regularization in use with a regularization coefficient λ =
1 × 10−5.

The implementation of N1 and N2 is carried out using the open-
source neural network framework, PyTorch [56], owing to its
outstanding flexibility and user-friendly interface. As training and
prediction are separate processes, N1 and N2 are trained
independently outside OpenFOAM. The trained neural networks
are saved as TorchScript models, which provide an intermediary
representation of the PyTorch model capable of execution in C++
code. By importing the TorchScript model into OpenFOAM, the
trained neural networks can be invoked within the RANS solver.
This separation of training and prediction significantly enhances
work efficiency and facilitates the integration of the data-driven
model into the computational framework.

3.2 Features for neural networks

Throughout the history of data-driven turbulence model
development, the selection of input features has remained a
pivotal concern during the model training phase. Input features
are instrumental in recognizing and characterizing the flow field and
its associated structures. Turbulence properties are highly complex,
involving the interaction and evolution of multiple physical
quantities. Therefore, for an accurate prediction of turbulent field

FIGURE 4
Computational domain for 2D periodic hill flows. The hill height is represented by h. The x and y coordinates correspond to the streamwise andwall-
normal directions, respectively.

FIGURE 5
The profiles for different periodic hills considered in the current study, with their scaling factors α = 0.5, 0.8, 1.0, 1.2, 1.5 (from left to right).
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behavior, the selection of input features must incorporate
considerations of flow variables and their physical implications.

However, from a data perspective, acquiring and processing
certain physical quantities can be expensive and computationally
intensive. Hence, considerations of data availability and
computational efficiency must guide the selection and extraction
process of input features. Additionally, the concept of generalization
performance is essential, as it ensures the model’s ability to
generalize to unfamiliar data. It is crucial to establish a consistent
form of input features that can be obtained across diverse datasets.
While increasing the number of input features can enhance
prediction performance, it may also lead to training complexities
and excessive consumption of computational resources. Therefore,
feature selection should strike a balance between physical relevance,
data availability, interpretability, and computational efficiency.

In this study, two types of input features have been utilized. One
type is derived from Ling et al. [57], where inputs with invariance are
generated by constructing integrity bases. The other type is based on
empirical knowledge and constructed from mean flow quantities.
Inspired by Wu et al. [27], we adopt the minimal integrity basis for
constructing the input features. To simplify the model and facilitate
trailing, we choose to utilize only the strain rate tensor S and rotation
rate tensor Ω to construct the minimal integrity basis, resulting in a
reduced number of invariant bases (6 in total). The input features for
N1 and N2 are delineated in Table 1.

The features q1-q6 listed in Table 1 satisfy Galilean invariance,
where Ŝ � 1

2
k
ϵ (∇U + (∇U)T) and Ω̂ � 1

2
k
ϵ (∇U − (∇U)T) represent

the dimensionless strain rate tensor and rotation rate tensor,
respectively. In the two-dimensional flow setting, the first
invariants of tensor bases B2, B4 and B6 are equal to zero, leading
us to adopt the second invariants as the input features. The
occurrence of both separation bubble and reverse flow can be
attributable to the pressure gradient, which is incorporated into
q10 and q11. Additionally, turbulence kinetic energy is a crucial
parameter for describing turbulent properties. To enhance the

precision of flow separation prediction, turbulence kinetic energy
is included in q7, q8, and q12. As we have observed in the previous
discussions, the linear and nonlinear terms close to the lower wall
significantly impact velocity prediction. Therefore, the inclusion of
wall distance in q8 is expected to play a significant role in near-wall
prediction. Furthermore, considering that the “improvement” is
targeted at the k-ω SST model, we introduce the specific
dissipation rate ω into q9 and q12. Compared to the research
conducted by Wu et al. [27], the minimal integrity basis no
longer includes pressure gradient and turbulence kinetic energy,
effectively reducing the total number of input features to 12, thereby
simplifying the task for neural networks.

3.3 Normalization of input features

The input features outlined in Table 1 exhibit significant
variations that span multiple orders of magnitude, potentially
impeding the training process. This wide range of magnitudes
among the features results in an unequal influence on prediction
outcomes, causing the neural network to be more biased towards
features with larger weights during training. Since neural
networks rely on the gradient descent method for training, the
presence of features with diverse magnitudes requires more
iterations to update network parameters effectively. Moreover,
the distribution of input features also impacts model
performance, and data scaling can assist algorithms in
discovering more effective patterns within the data while
mitigating interference from anomalous values. Therefore,
about the work completed by McConkey et al. [46], the
features listed in Table 1 will undergo normalization.

The tensor bases of q1-q6 are normalized using the turbulent
time scales k/ϵ, while no processing is necessary for q8 and q12. The
remaining four features are normalized using â � a/b, where a is
derived from the raw input and b is obtained from the normalization
factor outlined in Table 1. It is important to note that these
normalization factors are specific to local quantities obtained
from grid points. To reduce sensitivity to magnitude differences
in the data, the normalized features â are compressed using
q* � log(|â| + 1). Here, â encompasses both the raw inputs q1-q6,
q8, q12 and the normalized inputs. Subsequently, all features are
transformed to a range of [0,+∞). The final step involves
converting q* into the range [0, 1] using the MinMaxScalar
method. The actual input feature obtained through
MinMaxScalar is given by Eq. 14.

qi � qi* −min qi*( )
max qi*( ) −min qi*( ). (14)

3.4 Labels for neural networks

In the preceding discussions, it has been ascertained that the
learning targets encompass both the linear and nonlinear
components of the closure term. Network N1’s label is identified
as ]t*, while network N2’s label is identified as a⊥. The nonlinear term
comprises four non-zero components; however, due to the

FIGURE 6
The trend of the mean square error of velocity with the scaling
factor γ. The curves represent the variations under five different
geometric structures.
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approximation a⊥11 + a⊥22 + a⊥33 ≈ 0, only three components need to
be determined.

The term ]t* is computed using Eq. 9. Upon obtaining ]t*, the
term a⊥ can be calculated through a⊥ � a − 2]t*S. ]t* is normalized by
the molecular kinematic viscosity ] from DNS. The maximum value
of the normalized term ]t*/] remains on the order of several
thousands, necessitating compression treatment with
]labelt � log(]t*/] + 1). Subsequently, the term ]labelt processed using
the MinMaxScalar method is employed as the label for N1.

The normalization of a⊥ differs slightly in that the compression
treatment log (|x| + 1) is no longer required. This is because the
nonlinear term signifies the discrepancy between the linear term and
the Reynolds stress anisotropy tensor, requiring accurate
quantification of both positive and negative values. a⊥ is
normalized by the bulk velocity Ub, which serves as an artificially
assigned initial condition for driving periodic hills flows. The
resulting normalized nonlinear term is expressed as a⊥/(12UbUb),
subsequently serving as the label for N2 after undergoing the
MinMaxScalar process. In practice, the three components of a⊥

are treated separately, just like the process for ]t*.

3.5 Dataset

The propagation tests and training of the neural network
discussed above are conducted with the flow over 2D periodic
hills. The computational domain and boundary conditions for
this specific flow configuration are illustrated in Figure 4. Cyclic
boundary conditions are applied to the inlet and outlet boundaries,
and the flow is driven by a constant applied body force. The height of
the periodic hills, denoted as h, is chosen as the characteristic length
scale, and the Reynolds number is defined as Re = Ubh/], where Ub

represents the bulk velocity attained through the controlling body
force. The height of the computational domain is set to 3.06h. The
length of the computational domain is determined by the scaling
factor α, representing the steepness of the hills.

Figure 5 presents a range of geometries for the flow over periodic
hills. The data corresponding to α = 1.5 and α = 1.0 are utilized for
training the neural networks, while those associated with α = 1.2 and
α = 0.8, 0.5 serve for interpolation and extrapolation tests,

respectively. Baseline RANS simulations are conducted for each α

to extract the 12 input features from the mean flow field. These
baseline simulations employ the steady-state solver “simpleFoam”

with the open-source platform OpenFOAM v2112.
The high-fidelity data with varying α are provided by Xiao et al.

[58]. Both RANS and DNS simulations are performed at a fixed
Reynolds number of Re = 5600. In the dataset by Xiao et al. [58],
DNS simulations are carried out on a more refined grid, and the
obtained results are subsequently mapped onto a coarser RANS grid
with an identical geometry. Throughout the simulation of these four
distinct geometries, an equal number of grid cells is employed, with
each grid containing 14,751 cells (99 × 149), which have been
validated by Xiao et al. [58]. During the training phase, the labels
are calculated using the velocity and Reynolds stress fields extracted
from the DNS dataset.

In the derivation of Eq. 11 in Section 2.3, we introduce a scaling
factor γ as a modulation parameter. As discussed above, the
inclusion of the nonlinear term serves the crucial role of
modulating the discrepancies introduced by the linear term. It is
observed that the modulation effect can be controlled through the
manipulation of the scaling factor γ, leading to better predictions.
The determination of an appropriate range for γ involves
comprehensive assessments on flow characteristics over varying
geometries of periodic hills. A comprehensive suite of
55 simulations is conducted, encompassing a spectrum of γ

values spanning from 1 to 2. These simulations are performed
across diverse flow scenarios over periodic hills characterized by
different α values. The efficacy of the approach is evaluated using the
momentum Eq. 11, and the Mean Squared Error (MSE) of the
velocity field serves as the primary criterion for evaluation,
defined as

UMSE � 1
n
∑n
i�1

U − UDNS( )2, (15)

where, n represents the number of grid points.
The results of the tests are presented in Figure 6. Across the five

distinct test sets, a consistent trend is evident—initial reduction
followed by subsequent elevation of MSE with increasing γ. The
extent of MSE variation is more pronounced for higher α values. As
an illustrative example, for α = 0.5, MSE varies within the confined

FIGURE 7
The progression of losses during the training process for N1 and N2.
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range of 0.5 × 10−6 to 0.8 × 10−6. Notably, within the γ interval of
1.0–1.4, a marginal yet consistent decrement in MSE is observed,
though with relatively modest magnitudes. In contrast, for α = 1.5,
the MSE spans a broader spectrum of 0.1 × 10−6 to 1.7 × 10−6. This
divergence underscores the heightened sensitivity of calculations to
γ when the hill slope diminishes. Drawing from the comprehensive
analysis of the 55 cases, an optimal γ range is determined to be
[1.4, 1.6]. Within this interval, the velocity computed through Eq. 11
exhibits the least deviation in comparison to DNS. Deliberating
upon both training and testing scenarios, we opt for a value of γ = 1.5
in the present study.

4 Numerical results

4.1 Training of neural networks

The two neural networks, N1 and N2, are trained using a dataset
that encompasses both the baseline RANS data and the high-fidelity
DNS data. During the training process, optimization algorithms are
employed to adjust the weights and biases in the neural network with
a batch size of 1,024. The Adam optimizer, based on the gradient
descent method, is utilized. Its primary concept is to employ the
mean and squared mean of the gradient to estimate an adaptive
learning rate. Before training, the data associated with α = 1.0 and
1.5, designated for training, are randomly shuffled. Subsequently,
approximately 90% the shuffled data is allocated to the training set,

while the remaining 10% forms the validation set. In addition, the
data associated with α = 0.5, 0.8, 1.2 are used for testing.

A regularization strategy is employed during training to mitigate
multicollinearity. The L2 regularization strategy is applied to
N1 during training, which entails a loss function defined as Eq. 16.

Loss � 1
n
∑n
i�1

ŷi − yi( )2 + λ

2n
∑n
i�1

ωi| |2, (16)

where n is the total number of neurons, ŷi denotes the predicted value,
and yi represents the label. ω corresponds to the weight of each neuron,
and λ represents the regularization coefficient. Initial values of neural
network weights and biases are assigned randomly, which satisfy the
normal distribution with the expected value of zero. Both N1 and
N2 undergo multiple training cycles using the aforementioned method,
with the best-performing model being selected. The losses of N1 and
N2 during the training process are illustrated in Figure 7.

The trend in Figure 7 confirms that the training of N1 has
successfully converged. Notably, the decline in loss is synchronized
between the training and the validation sets, a phenomenon that
persists even beyond 25,000 epochs. However, it is crucial to
recognize that pursuing further epochs could introduce the risk
of overfitting. Consequently, a judicious decision is made to
conclude the training process at the 25000th epoch. Similarly, we
note that N2 reaches convergence around the 30000th epoch,
beyond which the loss on the validation set stabilize, indicating a
prudent halting point for training. While the loss curve for the
validation set frequently dips below that of the training set during

FIGURE 8
Statistical evaluations of N1 and N2 predictions for the α = 1.2 testing case.
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the training process, further evaluations reveal that stopping
training around the 25000th epoch yields superior predictive and
generalization capabilities.

4.2 Predictive performance of
neural networks

4.2.1 Predictive performance of closure term
A critical metric for assessing the performance of machine

learning models is their generalization capability. While achieving
accurate predictions on the training set is imperative, the true value
of these models lies in their ability to perform effectively on
previously unseen data. We have utilized cases with α = 1.0, 1.5
for training. In this section, we will proceed to evaluate the model’s
performance when applied to the case with α = 1.2.

The statistical assessment of the testing case with α = 1.2 is
depicted in Figure 8. The resemblance in distribution trends between
the predicted and true values is evident, and the symmetry of the
error distribution underscores the absence of indications pointing
towards overfitting within the two models. Notably, a⊥12 displays a
distribution with a heightened concentration and a reduced
prediction error, relative to the other two components. This
observation indicates N2’s enhanced capacity for reliable shear
stress predictions, with the 12 chosen input features evidently
demonstrating a more robust correlation with shear stress.

As the ML is used to predict linear and nonlinear terms of the
Reynolds stress anisotropy tensor, the sum of both must match to a
certain extent. To facilitate a more intuitive comprehension of the
closure term, we combine the linear and nonlinear terms to
constitute the Reynolds stress anisotropy tensor, as presented in
Figure 9. This visual representation elucidates that the performance
of the k-ω SST model in approximating the closure term is
dissatisfactory. Among the three components depicted, the k-ω
SST model manifests trend-consistent outcomes with the DNS
data solely in the context of a12. Regarding a11 and a22, the k-ω
SST model computes extreme values that are antithetical to those

observed within the DNS data. In contrast, our ML model delivers
accurate predictions, notably in the middle region of the
computational domain. Within the vicinity of flow separation,
the ML model demonstrates a heightened accuracy in predicting
the Reynolds stress anisotropy tensor. While specific areas within
the predictions might experience overestimation, they persist within
an acceptable range. However, we note that predictions of network
are grid-specific, and when considering the entirety of the flow
domain, certain instances of discontinuity may arise. This
phenomenon is a prevalent challenge in the application of
machine learning to physical modeling. Thankfully, when we
propagate the Reynolds stresses to the mean velocity field, this
discontinuity does not exert a significant impact on the velocity
predictions, just as shown in Section 4.2.2.

4.2.2 Predictive performance of mean field
It remains to be tested whether the Reynolds stress predicted by

the neural networks is effective when integrated to predict the
mean field.

Figure 10 presents the computed mean velocity field, Utilizing
Eq. 11. Figure 10A specifically illustrates the substantial
enhancement in the streamwise velocity component. As
previously mentioned, the outcomes featured in Figure 1A can be
regarded as an upper-bound prediction limit. The current velocity
profiles eloquently illustrate the proximity of the generalization test
outcomes to this upper limit. Noteworthy differences emerge in the
upper region of the computational domain, wherein the k-ω SST
model generates overestimated velocity predictions, subsequently
rectified by the ML model’s corrections. In the flow separation
region, the k-ω SST model yields underestimated velocity
predictions, whereas the ML model’s predictions more aptly align
with the DNS data. Near the lower wall, the k-ω SST model predicts
an elongated reverse flow in the streamwise direction, a shortcoming
not evident in the ML model’s predictions. Along the right slope,
characterized by a narrowing channel width, the ML model exhibits
a commendable prediction performance. Particularly noteworthy is
its capacity to accurately predict the rapid velocity escalation near

FIGURE 9
Comparison of the Reynolds stress anisotropy tensor a for the α = 1.2 testing case among DNS, ML, and RANS data. The predicted value is a
combination of linear and nonlinear terms predicted bymodels N1 and N2. RANS data is extracted from the baseline simulation using the k-ω SSTmodel.
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the apex (x/h = 0), wherein the ML model distinctly surpasses the
predictive performance of the k-ω SST model.

The ML model also performs well for the normal velocity, as
depicted in Figure 10B. The k-ω SST model exhibits under-prediction
across the entirety of the computational domain. Although the k-ω SST
model correctly captures the direction of the normal velocity,
discernible disparities arise in terms of magnitude. This discrepancy
is effectively rectified by the ML model, which mitigates the error and
enhances the overall conformity to the reference data. For a quantitative
assessment, we have conducted MSE computations of velocity for both
models, as outlined in Eq. 15. The ensuing results unveil an error
magnitude of 3.98 × 10−7 for the ML model and 1.14 × 10−5 for the k-ω
SST model.

In addition to velocity, we also examine derived quantities, such
as the wall shear stress, an entity tightly correlated with flow
separation. The computation of wall shear stress derives from the
velocity gradient of the first layer grid near the wall. Figure 11
displays the skin friction coefficient along the lower wall,
characterized as the ratio of the wall shear stress to the dynamic
pressure of the free flow. As observed in this figure, the ML model
provides predictions closely aligned to the DNS data, thereby
offering additional affirmation for its adeptness in predicting
separation bubbles. Another derived quantity of the mean
velocity gradient, y+, is also calculated. The mean y+

corresponding to DNS, ML and k-ω SST model are 0.370, 0.362,
and 0.353 respectively. Clearly, in contrast to the k-ω SST model, the
ML model consistently delivers precise prognoses for flow
separation and reattachment points.

FIGURE 10
Mean velocity profiles for the α = 1.2 testing case. The profiles are shown at nine streamwise locations x/h = 0, 1, 2, . . ., 8. Baseline RANS simulations
and DNS results are also included for comparison. (A) Mean streamwise velocity. (B) Mean normal velocity.

FIGURE 11
Skin friction coefficient along the bottom wall for the α = 1.2
testing case.
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4.3 Extrapolation test

The ML model has exhibited favorable performance in the
testing case with α = 1.2, wherein the geometry can be regarded
as an interpolation within the training set. However, a critical aspect
is to evaluate the ML model’s performance when applied to cases
that deviate from the training set. The examination in this section
involves the extrapolation tests performed on the α = 0.8, 0.5 cases.

As depicted in Figure 5, the α = 0.8 case presents shorter
computational domain lengths and steeper hills. By integrating the
closure terms predicted by N1 and N2 into the velocity field, the
resultant streamwise velocity profiles are depicted in Figure 12A. The
MLmodel displays superior predictive capabilities compared to the k-ω
SST model. Specifically, along the windward side of the right hill, the
ML model provides accurate predictions as expected. This includes the
hill crest at x/h = 0, where the MLmodel remarkably predicts the rapid
growth rate. Furthermore, in the upper part of the computational
domain, the ML model demonstrates enhanced accuracy, consistent
with earlier observation. The MSE values of velocity have been
computed for both models using Eq. 15, resulting in 9.34 × 10−7 for
the ML model and 4.79 × 10−6 for the k-ω SST model. Overall, in the
unfamiliar case, the ML model delivers satisfactory predictions,
indicating that N1 and N2 can adeptly assimilate limited data and
generate reasonable inferences.

Figure 13 provides insight into the error distribution of the ML
model and the k-ω SST model, wherein the error is defined as
UDNS

x − Ux. Evidently, the k-ω SST model tends to over-predict,

resulting in errors primarily concentrated on both sides away from 0.
In contrast, the ML model exhibits a more symmetric distribution
around 0, signifying that the machine learning errors exhibit
randomness. This suggests that by increasing the amount of
training data, these errors can be further minimized.

Furthermore, the α = 0.5 case represents a more challenging
scenario, with the resultant prediction illustrated in Figure 12B.
Notably, the distinctions among the three curves presented in this
figure are mitigated in comparison to the preceding cases. Directing our
attention solely to the predictions of the ML model, it demonstrates a
favorable concordance with the DNS data. Within this geometric
configuration, the k-ω SST model also exhibits proximity to the
DNS data, although this proximity should not be misconstrued as a
precise prediction of flow separation. Extensive calculations have
unveiled the inadequacies of the k-ω SST model in the context of
complex flows, despite its capacity to yield approximate outcomes
under specific circumstances.

Figure 14 presents the streamwise velocity contours of the entire
flow field for three testing cases, accompanied by streamlines that offer
visual comparison of flow characteristics. The k-ω SSTmodel engenders
an excessively expanded separation bubble, with its center located
further downstream. In contrast, the ML model accurately captures
the dimensions of the separation bubble, closely aligning with the DNS
data, and positions its center closer to the slope. However, as observed in
this figure, the k-ω SST model tends to overestimate the extent of
separation bubbles when the dimensions of these bubbles are smaller
than the intervals between the periodic hills. As the α decreases, thereby
steepening the slope, the separation bubbles exhibited by the DNS data
show a tendency for grow. Coinciding with the diminishment of the
channel length, the disparity between the DNS and k-ω SST models
decreases with the decrease in α. Consequently, in this particular
instance, the disparities between the k-ω SST model and DNS are
relatively modest.

We designate the situation where α = 0.5 as “challenging,” given
its manifestation of attributes that extend beyond the scope of the
training cases. As depicted in Figure 14, the separation bubble in this
instance connects two hills, a phenomenon not previously

FIGURE 12
Mean streamwise velocity profiles for the α = 0.8, 0.5 testing
case. The profiles are shown at nine streamwise locations x/h = 0, 1, 2,
. . ., 8. Baseline RANS simulations and DNS results are also included for
comparison. (A) Mean streamwise velocity for α = 0.8. (B) Mean
streamwise velocity for α = 0.5.

FIGURE 13
Prediction error ΔUx � UDNS

x − Ux of the ML and the RANSmodels
for the α = 0.8 testing case.
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encountered in the training cases. A diminutive reverse vortex
structure becomes discernible between the separation bubble and
the left slope, presenting a hurdle for the accurate prediction of the
near-wall region. Regrettably, the ML model’s prediction in
Figure 12B fares poorly at this location. Nevertheless, remarkably,
the ML model’s prediction extends beyond the confines of the
training set to a certain degree. Noteworthy is the presence of a
smaller separation bubble in the DNS data of Figure 14, shed off
from the tail of the larger bubble, a feature absent from the training
set. However, the ML model captures a similar configuration,
thereby substantiating its capacity for extrapolation. In
summation, the predictive efficacy of the ML model can be
deemed satisfactory.

The extrapolation test undertaken in this section demonstrates
the potential of the current ML model, which delivers accurate
predictions even for challenging cases. While residual errors persist,
it is posited that expanding the training dataset and incorporating a
wider spectrum of geometric structures during the training phase
will lead to further attenuation of these errors to a negligible level.

5 Conclusion

In this work, machine learning is employed to enhance
turbulence modeling, aiming to refine the prediction capabilities
of the RANS model while maintaining its computational efficiency.
The widely adopted k-ω SST model serves as the foundational
framework, and a data-driven approach is introduced to
reconstruct the closure term. This reconstruction is achieved
through neural network algorithms, leveraging high-fidelity data.
The closure term is decomposed into linear and nonlinear
components. The optimal eddy viscosity, denoted as ]t*, is
derived by minimizing the difference between the Reynolds stress
anisotropy tensor a and the linear term, based on the Boussinesq
assumption. The disparity between the linear term and a, designated
as a⊥, as a nonlinear correction, is incorporated into the momentum

equation through an appropriate scaling factor. The determination
of the appropriate scaling factor hinges on 55 simulation sets.
Notably, propagation tests confirm the efficacy of the
reconstructed closure term in enhancing the prediction of
mean velocity.

We identify 12 key features from the minimal integrity basis
and mean flow. These features facilitate the prediction of labels ]t*

and a⊥. Input features and labels are normalized to train the
neural networks N1 and N2, which are designed to predict the
linear and nonlinear terms, respectively. Data from periodic hills
flows with different α values, signifying hill steepness, are
employed. For training purposes, approximately 90% of the
data with α = 1.0 and α = 1.5 are utilized, revering the
remaining 10% for validation. The model’s generalization
capability is gauged through interpolation tests employing the
data with α = 1.2, and extrapolation tests utilizing the data with
α = 0.8 and α = 0.5.

The ML model demonstrates notable precision in the α = 1.2
testing case. N1 and N2 exhibit satisfactory performance without
showing a significant overfitting trend. The reconstructed closure
term, a synthesis of the linear and nonlinear components,
achieves augmented congruence with high-fidelity data in
contrast to the k-ω SST model. By propagating this improved
closure term to the mean field, the predictions correct the over-
prediction anomalies associated with the k-ω SST model, thereby
effectively containing the velocity error to an approximate
margin of 1%. In the domain of flow separation, the ML
model predicts a separation bubble that closely aligns with the
high-fidelity data, whereas the k-ω SST model tends to exhibit an
overestimation of its dimensions. Moreover, the ML model
furnishes more precise prognostications of the flow
reattachment point and showcases improved conformity with
the lower wall skin friction coefficient.

The ML model consistently exhibits promising performance
in extrapolation tests. In the case of α = 0.8, the ML model’s
prediction aligns with DNS data, effectively rectifying the

FIGURE 14
Contours ofmean streamwise velocity for the α= 1.2, 0.8, 0.5 testing case. The distinct separate bubbles fromDNS, MLmodel, and RANS simulations
are represented by streamlines.
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tendency of the k-ω SST model to overestimate. Similarly, in the
more challenging α = 0.5 scenario, the ML model provides adept
extrapolations. Although slight disparities between the k-ω SST
model and DNS arise due to coincidence, the ML model adeptly
anticipates the emergence of minor bubbles detaching from the
primary separation bubble—a phenomenon not foreseen by the
k-ω SST model.

The results presented herein underscore the efficacy of the
current data-driven turbulence model, offering a refined closure
term. This enhancement translates into improved predictions of
velocity and its derived parameters, a critical aspect in engineering
applications. This study extends the achievements of Wu et al. [27],
wherein the PIML method demonstrated commendable predictive
outcomes, accounting for intricate physical considerations. Here, we
attain comparable achievements through a more concise neural
network architecture, yielding superior velocity predictions within
specific regions during both interpolation and extrapolation tests. In
the future, the model’s accuracy and generalization potential can be
further elevated through the augmentation of training data and
expansion of the spectrum of flow geometries encompassed within
the training regimen.
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