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The symmetry features of fractional differential equations allow effective
explanation of physical and biological phenomena in nature. The generalized
form of the fractional differential equations is the variable-order fractional
differential equations that describe the physical and biological applications.
This paper discusses the closed-form traveling wave solutions for the
nonlinear space–time variable-order fractional modified Kawahara and (2 +
1)-dimensional Burger hierarchy equations. The variable-order fractional
differential equation has a derivative operator in the Caputo sense that is
converted into the integer-order ordinary differential equation (ODE) by
fractional transformation. The obtained ODE is solved by the exponential
rational function method, and as a result, new exact solutions are
constructed. Two problems are proposed to confirm the solutions of the
space-time variable-order fractional differential equations.
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1 Introduction

The non-linear fractional differential equations (NFDEs) have broad acceptability
across numerous fields, such as control theory, signal processing, system identification,
medicine, and probability [1, 4]. For the first time, the soliton theory was described by the
Scottish scientist Jon Scott Russel [2]. This study received the attention of researchers, who
found the soliton solution for various types of nonlinear partial differential equations. [3]
considered the improved Bernoulli sub-equation function for the well-known nonlinear
Schrödinger equation. They obtained trigonometric, exponential, and hyperbolic-type
solutions with differential shapes of solitons. [4] studied three effective methods for the
system of ion sound and Langmuir waves. They constructed seven sets of traveling wave
solutions in kink bright solitary, periodic solitary, and dark solitary solitons. [5] explored the
new exact traveling wave solutions for the simplified modified Camassa–Holm equation by
the new auxiliary equation method. They discussed the stability analysis and presented the
solutions in trigonometric, hyperbolic, exponential, and rational functions. They also
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compared their results with those of the existing literature. The (2 +
1)-dimensional Vakhnenko–Parkes equation is solved by the three
high potential techniques by [6]. They constructed a variety of new
exact solutions expressed by the exponential, hyperbolic,
trigonometric, tanh, coth, sech, cosh, cot, cosech, tan, and their
combinations. The obtained solutions are presented in 2D and 3D
with their physical behavior. In another survey, [7] investigated the
high-dimensional Boiti–Leon–Manna–Pempinelli equation by the
generalized exponential function and Kudryashov method. They
reported that the proposed methods are highly recommended in this
field of research. [8] considered the Boussinesq equation and
formulated their solutions by the Sardar subequation method.
The results are plotted to demonstrate the efficiency and
effectiveness of the method for such types of mathematical
problems. [9] produced the shock-type traveling waves for the
schema Burger’s equation by using the two analytical methods.
The proposed problem confirms the shock dynamical structure. [10]
used the modified exp-function method for the nonlinear strain
wave equations. They reported new exact solutions in the form of
hyperbolic and complex functions. [11] implemented the improved
exponential expansion method on the Novikov–Veselov equation.
They discussed the stability and accuracy and confirmed that the
solution was convenient. [12] studied three different techniques:
Adomian’s decomposition method, the modified extended tanh
function method, and the improved F-expansion method for the
nonlinear Benjamin–Bona–Mahony equation. They compared their
results with those of the existing literature, discussed the stability,
and plotted the result graphically, which demonstrated the efficiency
of the methods. The Lonngren wave equation, which describes the
electrical signals in a semiconductor, was solved analytically by [13].
They explained the results and compared with the existing results in
the literature. Many other related literatures can be studied
in [14–18].

In the above-cited literature, the researchers have found the exact
traveling wave solutions for the nonlinear partial differential equations.
However, in the last decade, researchers have focused on nonlinear
fractional-order differential equations obtained by replacing fractional-
order α ∈ (0, 1) and have successfully found the exact traveling wave
solutions by various methods because such problems describe real-
world phenomena. Some of them are as [19], who found the closed-
form solution for the fractional-order evaluation equations by the two
analytical techniques; reported different shapes of solitons including
bell-shaped, multi-soliton, single soliton, anti-bell-shaped, and periodic
solitons; and demonstrated that the said methods are more efficient and
straightforward for investigating the complex phenomena. [20]
produced a generalized (Dα

ξG/G)-expansion method and
implemented it on different evolution equations successfully. They
are converting the fractional-order evolution equations into
fractional-order ordinary differential equations, and the derivative
operator is in the conformable fractional derivative sense. The
generated results described the importance of the complex
phenomena. [21] discussed two fractional-order models in the
manuscript and implemented the extended tanh-function method.
They discovered various new soliton solutions in the form of kink,
bell, and other shapes and proved that the proposed method is more
trustworthy. [22] formulated the closed-form solution for the nonlinear
fractional-order (2 + 1)-dimensional breaking soliton equations. The
fractional-order derivative is in the local fractional derivative sense.

They formulated the new exact solution by the Khater method, and the
results are plotted in 3D and 2D graphs, which showed that the method
is more convenient. The tanh–coth method is considered for the three
different fractional-order equations as fractional-order Burger’s,
regularized long wave, and Boussinesq involving Riemann–Liouville
fractional derivatives [23]. The method has provided abundant
numbers of new solutions. [24] found many soliton solutions as
kink, singular, and dark of the governing equation through the
generalized projective Riccati equation method. The considered
method is very concise and straightforward. [25] worked on the
ansatz method and found the solution for the complex fractional
Kundu–Eckhaus equation. The fractional derivative is in the sense
of a truncated M-fractional derivative. They obtained new types of
solutions as kink and solitary waves through the proposed method,
which is more reliable. Local fractional derivative theory has been used
in the bidirectional wave equation and proved that it describes the
interaction of the fractal wave [26]. [27] contributed a new technique
and found the new closed-form optical solutions for the
Ginzburg–Landau equation, and they claim that the said method is
very simple and reliable. [28] investigated the symmetric soliton
solution for the fractional-order PDEs known as the coupled
Konno–Onno system by the two modified forms of the extended
direct algebraic method. The proposed method confirmed a
symmetric soliton solution for such types of complex models. In
another survey, [29] worked on the perturbed Gerdjikov–Ivanov
equation, which discussed the optical pulses during propagation.
They utilized the Riccati–Bernoulli sub-ODE method with the
Backlund transform. The obtained results are in the form of
trigonometric and rational functions that confirm the efficiency and
feasibility of the proposed method. [30] introduced the optimal
auxiliary function method and found out the system of coupled
Schrödinger–KdV equations. They obtained the approximate
solution of the coupled system of equations that clarifies the
theoretical foundations, investigates its benefits, and provides
information about its real-world implementation. [31] worked on an
important mathematical model known as the conformable stochastic
Kraenkel–Manna–Merle system and used the modified version of the
extended direct algebraic method. The obtained soliton solution
describes the magnetic field phenomena in zero conductivity
ferromagnets and successfully plots the solution in 2D and 3D
graphs. Many techniques have been used by different researchers for
the nonlinear fractional-order evolution equations, such as the exp-
function method [32], the exp (−Φ(ξ)) method [33], the extended
F-expansion [34], the new Kudryashov technique [35], the
G′/G-expansion method [36], (G′/G, 1/G)-expansion method [37],
the extended tanh technique [38], the ϕ6-expansion technique [39], and
sine–cosine method [40]. The more comprehensive studies can be
found in [41–46].

The fractional-order derivatives sometimes vary with time, and
in that case, it is more suitable to describe the complex phenomena
as in the porous medium or medium in structure [47, 48]. In a
variable-order operator, the order may vary with time or space or
space–time. [49] explained the real-world phenomenon, which
shows that fractional-order behavior may vary with time and
space. In the review paper, [50] discussed the details of the
memory characteristics of variable-order operators such as
memory property, fading memory, order memory, and non-local
property. The variable-order fractional derivative can be defined as
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α(x, t), which is the function of the independent variables x and t.
Most of the researchers have worked on variable-order fractional
differential equations numerically, and no one has worked on
analytical methods. Furthermore, the comprehensive study can be
found in [51–54]. This study focused on finding the closed-form
traveling wave solution of the nonlinear variable-order fractional
partial differential equations to cover the abovementioned gap. The
considered equations are the nonlinear variable-order fractional
modified Kawahara equation and (2 + 1)-dimensional variable-
order fractional Burger’s hierarchy equation solved by the
exponential rational function method. The constructed new
closed-form solutions are plotted in 3D form, which confirms

that the closed-form traveling wave solutions can also be found
successfully for the nonlinear variable-order fractional partial
differential equations.

The rest of the paper is organized as follows; Section 2 explains
the basic Caputo fractional formula of variable order and discusses
the methodology of the exponential rational function method.
Similarly, Section 4 implements the proposed method to the
VOF-MKE and VOF-BHE. Section 5 consists of results and
discussion. Section 6 presents the conclusion.

2 Caputo fractional derivative

This section presents Caputo’s fractional derivative of variable
order and their properties. Let the function u(x, y, ..., t) of variable-
order derivative be γ(x, y, ...t) and their values varying between
0 and 1 are defined as follows (Eq. 1): [50].

c
0D

γ x,y,...t( )
t u x, y, ... , t( )

�
1

Γ 1 + γ x, y, ...t( )( )∫t

0

u′ x, y, .., t( )
Γ t − ξ( )γ x,y,...t( ) dξ, 0< γ x, y, ...t( )< 1,

u′ x, y, ..., t( ), γ x, y, ...t( ) � 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1)

The properties are as follows (Eq. 2):

c
0D

γ x,y,...t( )
t tβ � Γ 1 − β( )

Γ 1 − β + γ x, y, ...t( )( )tβ−γ x,y,...t( ), 0< γ x, y, ...t( )< 1.
(2)

3 Exponential rational function method

Consider that the following nonlinear VO-FDE of variable-
order γ(x,y, ... ,t) is given as

F u,D
γ x,y,...t( )
t u, D

2γ x,y,...t( )
x u, D

γ x,y,...t( )
t D

γ x,y,...t( )
x u,D

2γ x,y,...t( )
y u, ...( ) � 0.

(3)

Here, F is a polynomial in u and γ(x,y, ... t) represents the
fractional variable order. Moreover, the variable-order fractional
transformation is as follows [17]:

u x, y, ... , t( ) � U ξ( ), ξ � kxγ x,y,...,t( ) + lyγ x,y,...,t( ) + ... − ωtγ x,y,...,t( )
Γ 1 + γ x, y, ..., t( )( ) .

(4)
Reduce Eq. 3 into the nonlinear ODE as follows:

F U,ωU′, k2U″,ωkU″,ω2U″...( ) � 0. (5)
Here, l,ω, and k are the constants, and let the solution for the above
equation be in the form of

U ξ( ) � ∑M

k�0
ak

1 + e ξ( )( )k. (6)

Here, M can be calculated by equating the highest-order linear
term with the highest-order nonlinear term.

FIGURE 1
Graph for the solution u1(x, t) at ω � −1

2, k � 2, a0 � −1
3, a1 � − 1

4,
L � −1

3, a2 � 5, γ(x, t) � cos(xt + 1
100).

FIGURE 2
Graph for the solution u1(x, t) at ω � −1

2, k � 2, a0 � −1
3, a1 � − 1

4,
L � −1

3, a2 � 5, γ(x, t) � (xt)−(xt)3
120 .
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By substituting Eq. 6 into Eq. 5, the obtained result is an
exponential function. The similar power of the exponential term
is equated, and the obtained system of equations is solved
simultaneously. The values of the unknown parameters in Eq.
6 are substituted and then Eq. 6 is put into Eq. 5. The obtained
equation is put into Eq. 4, and the resultant equations are the series
of the exact solution for Eq. 3.

4 Applications

In this section, the nonlinear space-time VO-FDEs, namely, the
modified Kawahara equation and (2 + 1)-D VOF-BHE, is solved
using the exponential rational function method as follows.

4.1 The variable-order fractional modified
Kawahara equation

Consider the nonlinear space-time VOF-MKE as

Dγ x,t( )
t u + 6u2Dγ x,t( )

x u +D3γ x,t( )
x u −D5γ x,t( )

x u � 0, t> 0, 0< γ x, t( )< 1.

(7)
The variable-order transformation ξ � kxγ(x,t)−ωtγ(x,t)

Γ(1+γ(x,t)) is used to
reduce Eq. 7 into the ODE [17], as follows

−ωU + 2kU3 + k3U″ − k5U iv( ). (8)
The high-order linear term with the nonlinear term was

balanced to find the value of M as

M + 4 � 3M,

and M � 2.
Substituting the value of M in Eq. 6, we obtained the trial

solution for Eq. 8.

U � a0 + a1
1 + e ξ( )( ) + a2

1 + e ξ( )( )2, (9)

By substituting Eq. 9 into Eq. 8, the algebraic equation is
obtained in terms of (eξ)m where (m � 0, 1, 2, ....), and by
separating the same power of (exp(ξ))n, we obtain

eξ( )0: 12ka0a1a2 − ω a0 + a1 + a2( ) + 2k a30 + a31 + a32( )
+ 6ka0 a0a1 + a21 + a22( ) + 6ka2 a20 + a21 + a22( ) � 0,

eξ( )1: 24ka0 a21 + a0a2( ) + 30ka20a1 + 12ka2 a0a2 + a2( ) + 6ka1a
2
2

− k3 a1 + 2a2 − k2a1 − 2k2a2( ) + 36ka0a1a2

−ω 6a0 + 5a1( ) − 4ωa2 + 6k 2a30 + a31( ) � 0,

eξ( )2: 36ka0 a21 + a0a2 + a1a2( ) + 60ka1a
2
0 + 6k a0a

2
2 + a21a2 + a31( )

− 2k3 a1 + 5k2a1 + 18k2a2( ) − 3ω 5a0 + 2a2( )
− 10 ωa1 − 3ka30( ) � 0,

eξ( )3: 60ka20a1 + 24ka0 a21 + a0a2( ) + 2ka31 + 6ka2 k2 + 11k4(
+2a0a1) + 40ka30 − 2ω 10a0 + 5a1 + 2a2( ) � 0,

eξ( )4: 6ka0 a21 + a0a2( ) + 2k3 a1 + 2a2( ) + 2k5 5a1 − 8a2( )
− 15a0 ω − 2ka20( ) − ω a2 + 5a1( ) + 30ka20a1 � 0,

eξ( )5: 6ka20 a1 + 2a0( ) + k3a1 1 − k2( ) − ω 6a0 + a1( ) � 0,

eξ( )6: 2ka30 − ωa0 � 0.

The above system of equations is solved simultaneously, and the
obtained values are given as follows:

FIGURE 3
Graph for the solution u1(x, y, t) atω � −0.5, k � 2, a0 � −1

3, a1 � −1
4,

γ(x, y, t) � (xt)3−xt
120 ,Ψ � 5,Ω � 2, ρ � 2, y � 1.

FIGURE 4
Graph for the solution u1(x, y, t) at ω � −1

2, k � 2, a0 � −1
3, a1 � 1,

γ(x, y, t) � cos 2(xt + 1
100),Ψ � 2,Ω � 2, ρ � 3, y � 5.
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Set. 1: a0 � 0, a1 � 2
�
3

√�
5

√ , a2 � −2
�
3

√�
5

√ ,ω � 4
25

�
5

√ , k � 1�
5

√ .

Set. 2: a0�
���������
11−3i ��

15
√

40

√
,a1�5

���������
11−3i ��

15
√

40

√ (−5+i ��
15

√
20

−5
2
),a2�−5 ���������

11−3i ��
15

√
40

√
(−5+i ��

15
√

20
−5
2
),ω�− 1

200
(−11+3i ��

15
√

4
) ����������

−25+5i ��
15

√√
,

k� 1
10

����������
−25+5i ��

15
√√

.

Case. 1: u1(x, t) � 2
�
3

√
e

kxγ(x,t)−ωtγ(x,t)
Γ(1+γ(x,t))( )�

5
√

1+e
kxγ(x,t)−ωtγ(x,t)

Γ(1+γ(x,t))( )( )2.

Case. 2: u2(x,t)�− 1

80(1+e(kxγ(x,t)−ωtγ(x,t)
Γ(1+γ(x,t)) ))2⎛⎝(5i−3 ��

15
√ )⎛⎝2−11e

(kxγ(x,t) −ωtγ(x,t)
Γ(1+γ(x,t)) )

+2e2(kxγ(x,t) −ωtγ(x,t)
Γ(1+γ(x,t)) )+i ��

15
√

e(kxγ(x,t)−ωtγ(x,t)
Γ(1+γ(x,t)) )⎞⎠⎞⎠.

4.2 The variable-order fractional
(2 + 1)-dimensional Burger
hierarchy equation

Consider the nonlinear (2 + 1)-D VOF-BHE to study the traveling
wave solution using the exponential function method.

D
γ x,y,t( )
t u + ΨD2γ x,y,t( )

x u + 2ΨuDγ x,y,t( )
x u

+Ω D
γ x,y,t( )
x u +D

γ x,y,t( )
y u( ) � 0,

0< γ x, y, t( )< 1. (10)

The variable-order transformation ξ � kxγ(x,y,t)+ρyγ(x,y,t)−ωtγ(x,y,t)
Γ(1+γ(x,y,t)) is

used to reduce Eq. 10 into the ODE [17] as follows:

−ωU + Ψk2U′ + ΨkU2 +Ω kU + ρU( ) � 0. (11)

The high-order linear term with the highest-order nonlinear
term is balanced to find the value of M. as follows:

M + 1 � 2M,

and M � 1.
By substituting the value of M in Eq. 6, we obtained the trial

solution for Eq. 11.

U � a0 + a1
1 + e ξ( )( ), (12)

By substituting Eqs 12 into Eq. 11, the algebraic equation was
obtained in terms of (e(ξ)), and by separating the same power of
(exp(−ϕ(ξ))), we obtain

e ξ( )( )0 � −ωa0 − ωa1 + Ψka20 + 2Ψka0a1 +Ωa0k

+Ωa0ρ +Ωa1k +Ωa1ρ � 0,

e ξ( )( )1 � −2ωa0 − ωa1 − Ψk2a1 + 2Ψka20 + 2Ψka0a1
+ 2Ωa0k + 2Ωa0ρ + Ωa1k +Ωa1ρ � 0,

e ξ( )( )2 � −ωa0 + λka20 +Ωa0k +Ωa0ρ � 0.

The above system of equations is solved simultaneously, and the
obtained values are given as follows:

Set 1. a0 � −a1,ω � Ψa1 −Ωa1 +Ωρ, k � −a1.
Set 2. a0 � 0, a1 � −k,ω � −Ψk2 + Ωk + Ωρ.
Substituting values from sets 1 and 2 in Eq. 12, we obtained the

following solutions:

u1 x, y, t( ) � − a1e
kxγ x,y,t( )+ρyγ x,y,t( )−ωtγ x,y,t( )

Γ 1+γ x,y,t( )( )

1 + e
kxγ x,y,t( )+ρyγ x,y,t( )−ωtγ x,y,t( )

Γ 1+γ x,y,t( )( )
.

and

u2 x, y, t( ) � − k

1 + e
kxγ x,y,t( )+ρyγ x,y,t( )−ωtγ x,y,t( )

Γ 1+γ x,y,t( )( )
.

5 Discussion

In this segment, the graphical representation of various kinds
of exact traveling wave solutions was discussed for the proposed
VO-FDEs solved by the exponential rational function method.
Some closed-form traveling wave solutions are generated to the
recommended equations as variable-order fractional modified
Kawahara and variable-order fractional (2 + 1)-dimensional
Burger hierarchy equations. Figures 1, 2 represent the 3D
graphical solution for the space–time variable-order fractional
modified Kawahara equation. Figure 1 shows the periodic soliton
solution for the fixed values of the parameters as ω � −1

2, k � 2, a0 �
−1
3, a1 � −1

4, L � −1
3, a2 � 5, and the variable-order as γ(x, t) �

cos(xt + 1
100). Figure 2 shows the shape of the soliton solution

at ω � −1
2, k � 2, a0 � −1

3, a1 � −1
4, L � −1

3, a2 � 5, γ(x, t) � (xt)−(xt)3
120 .

Figures 3–5 represent the 3D plots for the nonlinear space–time
variable-order fractional (2 + 1)-dimensional Burger hierarchy
equation. Figure 4 shows the periodic shape soliton atω � −1

2, k � 2, a0 �
−1
3, a1 � 1, γ(x,y, t) � cos 2(xt + 1

100), Ψ � 2,Ω � 2, ρ � 3, y � 5.

FIGURE 5
Graph for the solution u2(x, y, t) at ω � −1, k � 2, a0 � 5, a1 � −1,
γ(x, y, t) � ( xt

50 + 2π
5 ),Ψ � 5,Ω � 2, ρ � 2, y � 0.5.
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Figures 3, 5 represent other shapes of solitons at ω � −0.5, k � 2, a0 �
−1
3, a1 � −1

4, γ(x,y, t) � (xt)3−xt
120 ,Ψ � 5,Ω � 2, ρ � 2, y � 1 for the

closed-form solution u1(x, y, t) and at ω � −1, k � 2, a0 � 5, a1 �
−1, γ(x,y, t) � (xt50 + 2π

5 ),Ψ � 5,Ω � 2, ρ � 2, y � 0.5 for the closed-
form solution u2(x,y, t), respectively. The discussion confirmed that
the closed-form traveling wave solution can be found for any type of
nonlinear space–time variable-order fractional evolution equations.

6 Conclusion

In this article, we studied the closed-form solution for the
nonlinear variable-order fractional evolution equation. The
exponential rational function method is considered for VOF-MKE
and VOF-BHE, and various new exact traveling wave solutions are
successfully obtained for the arbitrary values of the parameters. The
closed-form traveling wave solutions are in the form of periodic and
other shapes of solitons. The obtained solution might be further
beneficial and more achievable on the contrivances of the complex
physical phenomena that occur in different fields. The result confirms
that the variable-order FDEs are more efficient and feasible. Finally,
the considered approach is a more powerful tool to obtain the closed-
form traveling wave solutions to VOF-DEs.
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