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Somatic transformations in the key catalytic residues of the Isocitrate
Dehydrogenase (IDH) enzyme assist in the onset of distinct malignancies
including glioma. Currently, enasidenib is the FDA-approved drug used to
target IDH2 protein. However, the use of enasidenib as a plausible
mIDH2 inhibitor is constrained by poor brain penetrating capability and dose-
limiting toxicity. Thus, the present study aimed to explore the potential of
nutraceuticals to synergistically elevate the efficacy of the existing drugs
available for glioma management. The binding affinity and free energy of the
nutraceuticals were evaluated using molecular docking and MM-GBSA analysis.
The resultant 14 compounds were subjected to machine learning-based
rescoring strategies to distinguish binders from nonbinders. The
pharmacokinetic and toxicity analysis was also implemented alongside virtual
cell line assay. The results of our study identified DB14002 (D-alpha-Tocopherol
acetate, analog of Vitamin E) as the potential hit compound with appreciable
binding affinity, brain penetrating capability and antineoplastic activity against
glioma cell lines. In the end, the conformational stability and dynamic
characteristics of DB14002 were examined for a stipulated time frame of
250ns. Indeed, the outcomes of our study culminate the use of DB14002 as a
synergistic drug-like candidate which could be translated as a plausible inhibitor
of mIDH2 in the forthcoming years.

KEYWORDS

mutated isocitrate dehydrogenase 2 (mIDH2), molecular docking, MM-GBSA
calculations, machine learning, molecular dynamic simulation

1 Introduction

Gliomas are the most prevalent adult-onset primary malignant brain tumor, which has
an average yearly incidence of 5 cases per 100,000 people [1, 2]. The metabolic
reprogramming in glial cells has been perceived as an important hallmark for the onset
of glioma progression [3]. Notably, the mutations in the key metabolic pathway enzymes are
the primary cause of abnormal metabolism [4]. Further, the accumulation of tumor
metabolites imposed by genetic changes in metabolic genes lends more evidence to the
significant development and survival of cancer cells [5].

Isocitrate Dehydrogenase (IDH) are the crucial rate-limiting enzymes involved in the
tricarboxylic acid cycle which mediate the conversion of isocitrate to α-ketoglutarate (α-
KG) through oxidative decarboxylation. It is worth mentioning that IDH also plays a part in
a few cellular functions, such as glucose sensing, lipogenesis, glutamine metabolism,
mitochondrial oxidative phosphorylation, and control of cellular redox status [6–8].
Recently, mutations in the genes of IDH enzymes were observed in various malignant
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tumors including gliomas, acute myeloid leukemia (AML),
cholangiocarcinoma, chondrosarcoma, pancreatic, colon and
prostate cancer to varying extents. The IDH mutations cause the
neomorphic enzyme to transform α-KG into the oncometabolite D-
2-hydroxyglutarate, which has significant effects on cellular
epigenetics and metabolism. Intriguingly, IDH mutations were
reported in >80% of WHO grade II and III patients and 73% of
grade IV (secondary glioblastoma) cases [9]. Thus, IDH1 and
IDH2 gene mutations are important biomarkers with diagnostic,
prognostic, and predictive value as they constitute the earliest driver
mutations occurring during gliomagenesis and a reliable molecular
signature of low-grade gliomas.

The mutations in the IDH2 gene were observed to exhibit few
discrete biochemical properties. Firstly, the mutations in the IDH
gene are largely somatic and heterozygous. Further, all the mutations
occur due to substitution with a single amino acid residue. For
instance, the commonly identified mutation in IDH2 is at R140 or
R172 residue. These residues are most likely to be substituted with
either Q orW for R140 and one of the four amino acids such as K, G,
W and M for R172 respectively [10]. Importantly, these point
mutations restructure numerous important residues in the active
site of IDH. As a result, the affinity for isocitrate and NADP
decreases and the affinity for α-KG and NADPH increases,
resulting in the formation of the new metabolite D-2HG, which
further promotes oncogenesis.

Several investigations have been conducted using in vitro and in
silico methods to identify potential inhibitors against the
mIDH2 protein. One of the earliest known mIDH2 inhibitors
that target acute myeloid leukemia (AML) cells with R140Q
mutations is AGI-6780 [11]. However, the in vitro experiments
of this study reported a decrease in the activity of both intracellular
and extracellular 2-HG levels due to its poor target selectivity.
Recently, Enasidenib (AG-221) was also discovered to be a
potent and highly targeted inhibitor of IDH2 (R140Q), with an
IC50 value of 100 nM. The U.S. Food and Drug Administration
(FDA) subsequently approved AG-221 as a potential inhibitor
against relapsed or refractory AML with an IDH2 mutation in
2017 [12]. Despite its effective inhibition, some patients in phase
trials experienced unfavorable side effects [13]. In addition, evidence
from the literature suggests that secondary mutations (Q316E and
I319M) in the allosteric site of the mIDH2 protein cause therapeutic
resistance against enasidenib in AML patients [14–16]. Despite
significant progress in the molecular characterization of gliomas,
clinicians still have difficulty due to the limited benefits of standard-
of-care options for survival along with the risk of long-term
toxicities, including cognitive decline. Recently, to subdue these
challenges, the application of nutraceutical interventions was
implemented with an aim to develop and design precision
medicine strategies that synergistically act with the existing anti-
cancer agents and minimize the burden of chemotherapy-related
toxicities [17, 18]. For instance, a study on tea polyphenols was
reported to modulate various molecular signatures in prostate
cancer patients and thereby aid in elevating the effectiveness of
the treatment modality [19]. The use of fucoidan (polysaccharide
derived from seaweed) in human clinical trials, and animal models,
as complementary therapy has been reported to minimize the side
effects of anti-cancer chemotherapy and increase the treatment
efficacy [20]. Thus, in the present study, an attempt has been

made to exploit the nutraceutical subset of the DrugBank
database against mIDH2 protein to discover mutation-specific
inhibitors to efficiently manage gliomagenesis.

2 Methodology

2.1 Dataset preparation

In the first instance, the crystal coordinates of the
mIDH2 protein (PDB code 6VFZ) were extracted from the
Protein data bank repository [21]. Further, the small molecule
library was created by retrieving the nutraceutical subset
(135 compounds) from the DrugBank database. Of note, it is
critical to ensure the quality of the structural data to avoid
inaccurate predictions. Thus, the “Protein Preparation Wizard”,
and “LigPrep” modules of the Schrödinger interface were utilized
to perform structural refinement analysis [22]. At the time of
preprocessing, the structures of the protein and ligand molecules
were verified for chemical correctness by eliminating the bad
molecules, unclear bond-order assignments and recognizing
atomic clashes, and ambiguous stereo assignments. The pre-
processed structures were minimized using the OPLS3e
force field [23].

2.2 Molecular docking

On the forehand of molecular docking, the grid parameters
were set around the active site of the target protein with the aid
of the “Receptor grid generation” wizard of the Schrödinger
suite. The catalytic site of the mIDH2 protein comprises the
following residues, namely, V161, W164, V294, V297, L298,
W306, E316, I319, L320 and G323 [24, 25]. Subsequently, the
pre-processed ligand molecules from the nutraceutical subset of
the DrugBank database were subjected to an extra precision
(XP) docking process. The advantage of XP docking is that it
uses a unique and sophisticated scoring function to identify the
key structural moiety required for target binding [26]. In order
to screen the hit molecules, the compounds with the lowest XP
GScore were identified. The score corresponding to enasidenib
was set as a threshold throughout our analyses [27].

2.3 Binding energy analysis

The pose with the lowest Glide score for each ligand was
rescored using the Prime/MM-GBSA method to predict the
binding free energy of a group of ligands to a receptor. The
energies of the complex were determined using the OPLS3e force
field and generalized-born surface area (GBSA) continuum
solvent model, and the docked poses were minimized using
Prime’s local optimization feature [28]. In addition to the
binding free energy, the interaction energy components of the
ligands that contribute to the protein binding were also validated.
The following equation is used to calculate the binding free
energy (ΔGbind) of the ligand in the active site of the
mIDH2 protein.
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ΔGbind � ΔEMM + ΔGsolv + ΔGSA (2)
Where ΔEMM signifies the energy variation in the complex of

protein and ligand and the energy summation of ligand-bound and
unbounded mIDH2 protein, ΔGsolv denotes the energy variance in
the protein-ligand complex’s solvation energy and the energy
summation of ligand-bound and unbounded protein, ΔGSA

denotes the energy variance and total energy of the surface area
of the ligand-bound and unbounded mIDH2 protein.

2.4 Machine learning-based scoring
function analysis

Machine learning-based scoring functions (ML-SF) have been
extensively employed in recent years to investigate the binding
mechanism of small molecules [29]. Indeed, numerous literature
evidence has emphasized the extent to which machine-learning
SFs have outperformed traditional SFs at predicting binding
affinity [30–32]. For instance, a retrospective study by Li
et al., demonstrated that ML-based scoring functions
outperformed classical SF such as ChemScore, GoldScore and
Glide when tested against HIV infection [33]. Another study by
Durrant et al., highlighted that neural network-based SF had
outperformed AutoDock and Glide docking [34]. Notably, the
BINANA algorithm employed in NN delves into the intricate
interactions between proteins and ligands, considering
12 distinct characteristics including hydrophobic contacts and
active-site flexibility. This comprehensive analysis increases the
accuracy of the NNScoring function. Similarly, Gnina, GLM-
Score and X-Score showed satisfactory accuracy in recognizing
effective antagonists against Nipah virus, Psoriasis, and non-
small cell lung cancer [35–37]. Therefore, in the present study, a
few ML-based scoring functions such as RF-Score-VS, GNINA,
KDEEP, NNScore, SF-CNN and X-Score were adopted to
revalidate the mechanism of binding of small molecules.

2.5 In-silico drug-likeliness prediction

The growing body of research shows that deviations from
Absorption, Distribution, Metabolism, Excretion (ADME) and
toxicity properties were primarily accountable for the rising
failure rate of screened molecules in clinical trials [38]. As an
effort to assess the drug-likeness of the screened molecules, the
QikProp module of the Maestro interface was implemented. Here,
descriptors like stars, CNS, Human Oral Absorption (HOA) and
blood-brain barrier (logBB) were considered. Further, the Protox-II
algorithm was used to evaluate the potential acute toxic endpoints of
the screened lead molecules. The server assesses a range of
toxicological endpoints, including organ toxicity, oral toxicity,
and toxicity targets [39]. In addition, the biological activity of the
screened molecules was quantified using Pa and Pi values obtained
from the PASS prediction server. This software forecasts the
pharmacological effect and biological activity spectrum of the
lead compounds based on the chemical structure of the
respective compounds [40]. Thus, the employed in silico
prediction platform is believed to improve the process of hit

selection and optimization and also provide additional insights
into the mechanism of toxicity [41].

2.6 Deep learning-based bioactivity
prediction

The anticancer drug sensitivity of the reference and the hit
molecules was evaluated using the Paccmann tool. It is a multimodal
deep learning framework that integrates three primary sources of
data such as 1) the structure of the compound in the form of a
SMILES sequence, 2) the gene expression profiles (GEP) of tumors,
and 3) previous knowledge of intracellular interactions from
protein-protein interaction networks to anticipate drug sensitivity
determined by IC50 [42]. Shreds of literature evidence highlight that
the model performance was found to surpass state-of-the-art results
in anticancer drug sensitivity prediction [43]. In addition, the web
service can be used to repurpose drugs and offer insightful
information about the mechanism of action of the drug molecules.

2.7 Molecular dynamics simulation

The internal motions of proteins hold the key to unlock many of
their mysterious biological functions and profound dynamic
mechanisms. The molecular dynamics simulation was utilized to
understand the flexibility and dynamic characteristics of the
macromolecules at the molecular level [44, 45]. Thus, in the
present study, MD simulations were performed for the mIDH2-
enasidenib and mIDH2-hit complex using the GROMACS version
2020.2. The docked ligands were procured and used for ligand
topology generation using CHARMM General Force Field
(CGenFF). Similarly, the topology of the protein was generated
by employing CHARMM36 forcefield [46]. Subsequently, the
systems were enclosed within a dodecahedron box solvated with
a Simple Point Charge (SPC) water model [47]. Counter-ions were
introduced to ensure an overall neutral charge by replacing the water
molecules in the system. The steepest descent algorithm-based
energy minimization was first performed for 50,000 cycles to
eliminate the steric clash. The system was further minimized and
equilibrated into the NVT and NPT steps for 1000 ps. The system
was then kept at 300 K and 1 bar using V-rescale, a modified
Parrinello-Rahman pressure coupling method and a modified
Berendsen thermostat temperature coupling method, respectively
[48]. Eventually, the equilibrated systems were subjected to a
production run of 250 ns at 300 K and 1 bar pressure.

3 Results

3.1 Molecular docking

Molecular docking studies were performed to inspect the
plausible binding modes and the affinity of the ligand molecules
within the catalytic cavity of the mIDH2 protein [49]. In the current
investigation, a total of 135 nutraceutical compounds retrieved from
the DrugBank database were subjected to XP docking by employing
the Glide platform of the Schrödinger interface. Initially, the ligand
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library was prepared, energy minimized and subjected to molecular
docking [50]. It is to be noted that only 84 compounds were able to bind
with the target protein. The result is shown in Supplementary Table S1.
In our analysis, the FDA-approved mIDH2 inhibitor, enasidenib was
used as the reference compound throughout the virtual screening
process. For instance, the XP GScore of the reference (−6.03 kcal/
mol) was set as a cutoff to scrutinize lead molecules. The XP GScore of
the docked compounds was observed to be in the range of −7.08 kcal/
mol to −1.82 kcal/mol, representing their favorable binding
characteristics against the target protein. The remaining compounds
in our study did not bind either due to structural defects or optimization
issues. Of note, a total of 6 compounds in our docking study exhibit
better binding affinity with the lowest XP GScore ≤ −6.03 kcal/mol.
Further, all these compounds along with the reference were submitted
for binding free energy calculation.

3.2 MM-GBSA binding energy calculation

Molecular docking uncovers the binding interactions and
systematic pre-screening of chemical compounds based on shape
and energetic compatibility with target proteins. However, docking
algorithms cannot reliably predict the binding energy of the ligand
molecules, so post-docking analyses are necessary to avoid false positive
results. Here, MM-GBSA from the Prime module of the Schrödinger
suite is used to accurately predict the binding energy of a protein-ligand
complex [51]. The post-docked optimized poses of ligand molecules
complexed with mIDH2 protein showed binding energy that varies
from −50.88 kcal/mol to −8.28 kcal/mol, as depicted in Table 1. As a
result, a total of 14 compounds exhibited better binding free energy than
enasidenib with the binding free energy less than −38.54 kcal/mol.

Amongst 14 compounds with the lowest free energy, DB14002,
DB00118 and DB06750 were stabilized predominantly with the aid
of electrostatic energy, lipophilicity, solvation energy and van derWaals
energy. In contrast, covalent, lipophilicity and solvation energy were
found to be the major stabilizing forces for DB00755, DB01436 and
DB06750. A similar pattern of predominance was observed in other hits
such as DB14001, DB01892, DB00132, DB00154, DB00163, DB08887,
DB00162 and DB00169.

3.3 Machine learning-based
rescoring analysis

Machine-learning scoring functions trained on protein-ligand
complexes have recently shown remarkable potential in virtual
screening studies [32, 52, 53]. Therefore, in the current study, six
ML-based scoring functions, namely, RF-Score-VS, GNINA,
KDEEP, NNScore, SF-CNN and X-Score were used to revalidate
the binding potential of the 14 lead compounds. Ligands with lower
NNScores compared to the reference are predicted to bind the target
protein more tightly. It is evident from Table 2 that most of the
compounds, except DB00158 and DB00755, exhibit satisfactory
binding efficiency. For instance, DB00158 and DB00755 showed
higher pKd values (67.09 µM and 18.27 µM, respectively), indicating
weak binding affinities towards the target protein. This higher value
is mainly due to the lack of existence of hydrophobic contacts in the
complex structure and ultimately leads to poor binding. The number
of hydrophobic contacts is mentioned in Supplementary Table S2. It
is worth mentioning that the results from the NNScore algorithm
correlate well with available literature evidence [54, 55]. Similarly, a
lower score of GNINA, KDEEP, SF-CNN and X-Score for ligand

TABLE 1 The MM-GBSA energetics of Enasidenib and the screened molecules against mIDH2 protein.

S. No. Compounds ΔGBind Electrostatic
energy

Covalent
energy

Lipophilicity Solvation
energy

Van der Waals
energy

1 Enasidenib −38.54 −10.94 3.69 −11.66 13.95 −32.42

2 DB14002 −50.88 −7.29 4.54 −24.10 13.69 −36.83

3 DB00118 −48.76 12.20 −0.68 −11.77 −14.29 −32.50

4 DB14001 −47.99 −6.56 10.17 −24.54 14.72 −40.91

5 DB01892 −47.72 −0.56 4.34 −22.91 11.01 −39.57

6 DB06750 −45.23 −15.70 4.70 −19.09 23.40 −36.30

7 DB00132 −44.79 −7.89 3.38 −20.60 14.18 −32.87

8 DB00154 −44.32 −9.05 5.05 −21.25 15.20 −33.26

9 DB00163 −43.95 −4.46 2.91 −23.18 19.11 −38.14

10 DB01436 −42.85 −8.22 1.37 −20.38 13.75 −28.85

11 DB00755 −41.14 −6.25 1.81 −19.12 10.60 −27.62

12 DB00162 −40.90 −5.21 4.48 −22.20 13.37 −30.54

13 DB08887 −40.83 0.01 8.05 −23.44 13.00 −38.44

14 DB00158 −40.61 −24.60 5.24 −8.13 31.17 −41.29

15 DB00169 −38.56 −4.63 6.11 −20.61 10.73 −29.32

The energy values are depicted in kcal/mol.
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compounds when compared to the reference indicates a higher
binding affinity for the target protein. In contrast, compounds with
greater RF Scores were considered as the lead molecules. Altogether,

nine compounds, namely, DB00158, DB00162, DB00163, DB00169,
DB01436, DB01892, DB06750, DB14001 and DB14002 outperformed
in more than four SFs (Table 2). Therefore, we considered these nine

TABLE 2 Revalidation of docking results using machine learning-based scoring functions.

S. No. Compounds RF (pK
units)

GNINA (CNN
affinity)

KDEEP
(kcal/mol)

NNScore
(µM)

SF-CNN
(kcal/mol

X-score
(kcal/mol)

1 Enasidenib 6.00 −4.58 −6.67 5.94 5.12 −5.29

2 DB14002 6.04 −5.77 −8.13 0.10 4.06 −5.03

3 DB00163 6.03 −4.82 −8.35 0.74 3.87 −5.14

4 DB14001 6.02 −5.07 −10.18 0.03 4.09 −4.95

5 DB08887 6.00 −3.21 −6.29 0.04 2.64 −5.22

6 DB00158 6.00 −5.15 −8.96 67.06 3.62 −4.88

7 DB00169 5.98 −1.15 −8.10 0.16 3.47 −5.54

8 DB00755 5.98 −3.51 −8.15 18.27 4.52 −5.42

9 DB00118 5.96 −1.83 −4.72 1.69 5.47 −4.92

10 DB01436 5.97 −4.90 −7.39 0.40 3.67 −5.68

11 DB00154 5.97 −4.06 −6.47 0.27 2.41 −4.73

12 DB06750 5.96 −8.69 −10.60 3.17 5.66 −5.87

13 DB01892 5.96 −5.36 −8.81 0.72 4.37 −5.82

14 DB00162 5.96 −3.71 −8.41 4.22 4.13 −5.34

15 DB00132 5.95 −3.47 −6.57 6.94 3.64 −4.76

TABLE 3 The ADME screening of the reference and the lead molecules.

S. No. Compounds Basic
descriptors

Absorption Distribution Metabolism Excretion

Stars Ro5 Caco2 HOA MW QPLogS QPLogKp CNS #Metab T1/2

1 Enasidenib 2 1 1304.16 100 473.38 −7.44 −1.47 −1 4 0.31

2 DB00132 2 1 275.42 90 278.43 −5.74 −1.94 −2 5 0.89

3 DB00154 2 1 258.26 94 306.48 −6.62 −1.84 −2 5 0.88

4 DB00158 4 2 0.03 0 441.40 −3.47 −8.24 −2 6 0.88

5 DB00162 2 1 4038.99 100 286.45 −5.85 −1.24 0 5 0.55

6 DB00163 6 1 4550.79 100 430.71 −9.49 −0.83 0 5 0.03

7 DB00169 5 1 3350.00 100 384.64 −6.76 −1.44 0 5 0.05

8 DB00755 1 1 252.44 88 300.44 −5.90 −2.34 −2 4 0.72

9 DB01436 1 1 1460.12 100 400.64 −6.57 −2.06 −1 5 0.05

10 DB01892 5 2 3330.60 100 536.79 −8.74 −1.19 0 14 0.14

11 DB06750 14 3 2.93 0 801.02 −4.10 −6.42 −2 13 0.65

12 DB08887 5 1 3401.00 100 330.50 −8.12 −0.76 −1 7 0.95

13 DB14001 6 2 148.26 89.69 530.78 −9.68 −2.30 −2 6 0.17

14 DB14002 4 1 4310.18 100 472.75 −10.56 −0.90 0 4 0.03

Stars - Number of property or descriptor values that fall outside the 95% range of similar values for known drugs, Ro5 - Rule of five, Caco - Predicted apparent Caco-2, cell permeability in nm/

sec, HOA, Predicted human oral absorption;MW, Molecular weight, QpLogS - Predicted aqueous solubility, QPLogKp - Predicted skin permeability, CNS, Predicted central nervous system

activity on a −2 (inactive) to +2 (active) scale, #metab- Number of likely metabolic reactions, T1/2 - Half life.
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molecules for ADMET analysis to gain insights into their
physiochemical and pharmacokinetic behaviour.

3.4 Prediction of ADMET properties

Early prediction of pharmacokinetic (PK) properties was
considered advantageous as most of the drugs in clinical trials
tend to exhibit poor PK profiles. The PK analysis identified five
compounds, namely, DB00162, DB00163, DB00169, DB01892 and
DB14002 with appropriate CNS activity. These compounds were
also observed to show human oral absorption greater than 80%. The
star value of the ligands emphasizes the violation of chemical
descriptors from the desirable range. From the results, it is
evident that compounds such as DB00162, DB01892 and
DB14002 were found to have star values less than 5, highlighting
the lower probability of outliers. Table 3 shows the molecular
characteristics of the hit molecules, including their molecular
weight (MW), skin permeability (QPlogKp), solubility (QPlogS),
permeability to the Caco2 cell (QPPCaco), and metabolite (#metab),
were found to be within acceptable limits. Altogether, it is evident
from the table that the above-mentioned lead molecules showed
satisfactory PK properties.

3.5 In-silico drug sensitivity prediction

The primary challenge of lead optimization is to distinguish
drug-like compounds from non-drug compounds. The significant

toxicological endpoints, namely, immunotoxicity, hepatotoxicity,
carcinogenicity, cytotoxicity and mutagenicity were investigated
for the reference and the lead molecules. Figure 1 depicts the
toxicity profile of the reference and the lead molecules. The
reference compound, enasidenib was observed to show
immunotoxicity, whereas all the lead molecules except
DB00162 pertain to show a nontoxic effect. Due to its mutagenic
properties, DB00162 was excluded from antineoplastic activity
prediction. Further PASS analysis predicted that compounds such
as enasidenib, DB01892 and DB14002 were also found to exhibit
antineoplastic activity (Table 4). In essence, the virtual cell line assay
analysis portrays that DB14002 showed a lower IC50 of 0.413 µM
than enasidenib (4.233 µM) [45]. In line with these results,
DB14002 was identified as a hit compound and subjected to
binding interaction analysis and scaffold hopping studies.

3.6 Interaction profiling

The binding orientation and the key catalytic pocket residues of
the target protein were explored to understand the mechanism of
action of the reference and hit molecule. The interaction scheme of
enasidenib and DB14002 with mIDH2 protein is depicted in
Figure 2. The predominant interactions such as hydrogen bonds
and hydrophobic interactions were represented with distinct color
codes. For instance, blue-colored lines indicate hydrogen bond
interactions and grey color line signifies hydrophobic
interactions. The result from interaction profiling highlights that
the enasidenib extends its binding affinity towards the target protein

FIGURE 1
Toxicity endpoint analysis for Enasidenib, DB00162, DB01892 and DB14002 using ProTox-II server.
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by establishing two hydrogen bonds with GLN 361 residue at the
distance of 1.97 Å and 2.08 Å respectively. In addition, the
enasidenib was found to exhibit hydrophobic interactions with
ILE 290 and VAL 315 residues of mIDH2 protein. Similarly,
DB14002 exhibits two hydrogen bond interactions with TYR
311 and GLN 316 at a distance of 1.91 Å and 2.60 Å respectively.
Interestingly, the hit molecule manifests a firm binding by extending
hydrophobic interactions with the key scaffolds of the ligand
molecule. Of note, the key residues of mIDH2 protein, namely,
LEU 160, ILE 319 and GLU 322 were interacting with the
tetramethyl scaffold of DB14002 through hydrophobic contacts.
The benzopyran group of DB14002 establishes three hydrophobic
interactions with residues such as ILE 290, TYR 311 and GLN 316.
Another group of residues like TRP 164, VAL 294 and LEU 298 was
forming hydrophobic contacts with trimethyl tridecyl moiety of the
ligand molecule [56].

The structural backbone of the screened molecule was explored
to gain insights into the mechanism of inhibition and efficacy
against the mIDH2 protein. The 2D carbon skeleton of
DB14002 is commonly known as D-alpha-Tocopherol acetate
which is the primary form of vitamin E. Of note, the RRR-alpha-
tocopherol stereoisomer is thought to be the natural form of alpha-
tocopherol and typically has the highest bioavailability and stability
of all the alpha-tocopherol stereoisomers. Due to the biological
action of vitamin E, research into its potential to aid in the
prevention or treatment of a variety of conditions such as
diabetes, ocular conditions, cardiovascular disease and cancer is
ongoing. Intriguingly, early studies on vitamin E as a synergistic
component with the chemotherapeutic agent were reported to
increase the growth inhibitory potential of tumor therapeutic

agents on glioma cells and neuroblastoma cells [57]. Given this
evidence, we postulate that DB14002 could be a promising drug-like
candidate that can be synergistically used with the existing drugs to
increase the treatment modality.

3.7 Molecular dynamic simulation studies

3.7.1 RMSD
The simulation studies were implemented to investigate the

molecular characteristics and conformational stability of the
mIDH2-ligand complex. Throughout the simulation study, the
mIDH2-enasidenib complex and mIDH2-DB14002 complex are
represented as black and blue trend lines respectively. In the
beginning, the enasidenib bound system was found to fluctuate
and reach a maximum RMS deviation of 0.45 nm between 0 ns and
40 ns. From 40 ns to 100 ns, the deviation of the trendline was
minimized and found to reach a plateau. However, the system
attained a state of equilibrium from 100 ns and was observed to
maintain the trendline until the end of the 180 ns simulation period.
The average RMSD of the enasidenib bound complex was found to
be 0.45 ns. In contrast, the DB14002 bound complex was initially
found to exhibit a lower RMS deviation of 0.32 nm between 0 ns and
25 ns. Further, the system was found to show fluctuation from 25 ns
to 60 ns. Nevertheless, after 60 ns, the DB14002 complex acquired
an equilibrium state and prolonged until 150 ns with an RMSD value
of 0.35 nm. Further, there was a slight increase in the RMSD trend
from 160 ns to 190 ns which might be due to the change in the
conformational orientation of the DB14002. Within the
200 ns–250 ns window, both complexes exhibited a recurring

TABLE 4 The predicted anticancer activity of DB14002 using PASS and PaccMann server.

S. No. Compounds Pa Pi Activity IC50 (µM)

1 Enasidenib 0.14 0.10 Antineoplastic (glioma) 4.23

2 DB01892 0.68 0.02 Antineoplastic 4.96

3 DB14002 0.22 0.17 Antineoplastic (solid tumors) 0.41

FIGURE 2
The binding scheme of (A) Enasidenib (B) DB14002 within the active site of mIDH2.
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deviation from the trendline for every 10 ns. These deviations were
characterized by minimal fluctuations, estimated in the order of
0.01 nm–0.02 nm. At the end of 250 ns, DB14002 showed a lesser
deviation than the enasidenib (Figure 3). The average RMSD of the
reference and hit complex was observed to be 0.45 nm and 0.41 nm
respectively. Overall, we observe a similar pattern of the RMSD
trend for both the reference and DB14002 highlighting the stability.

3.7.2 RMSF
To understand the overall flexibility of the mIDH2 structure

upon ligand binding, the atomistic fluctuations of each residue were
evaluated. The residual fluctuations of mIDH2 active site residues
are shown in Figure 4. It is noteworthy that all the conserved
catalytic residues such as V161, W164, V294, V297, L298, W306,
E316, I319, L320 and G323 of both the complex were observed to
have lesser residual fluctuation. Thus, it is evident that the
DB14002 is unambiguously stable throughout the simulation
period of 250 ns.

3.7.3 Hydrogen bond interaction
The binding mechanism of the protein-ligand system was

evaluated by analyzing the inter-molecular hydrogen bond
interactions generated within the stipulated time bound of
250 ns. From Figure 5, it is observed that the enasidenib could
interact with mIDH2 protein via 3 hydrogen bonds. In the case of
the mIDH2-DB14002 system, the ligand was observed to exhibit
1 hydrogen bond interaction. The result correlates well with the
interaction profiling analysis, as it clearly depicts the dominance of
hydrophobic interaction in the binding [58].

3.7.4 Structural compactness analysis
The structural compactness and stability of the ligand-bound

systems were assessed by measuring the radius of gyration (Rg) and
Solvent Accessible Surface Area (SASA). The radius of gyration
accounts for the mass-weighted root mean square distance of atoms
from the centre of mass. Figure 6 displays the variation in gyration
radius for both systems as a function of time. The Rg of the docked
complexes exhibited a stable trend with very small fluctuations in the
order of 0.01 nm. The average Rg values for the docked complex
systems of mIDH2-enasidenib and mIDH2-DB14002 were found to
be 2.26 nm and 2.25 nm respectively.

In addition, the accessibility of the mIDH2 surface area for the
solvent interaction was inspected using SASA analysis. The average
SASA value of mIDH2-enasidenib and mIDH2-DB14002 was
observed to be 236.01 nm2 and 235.71 nm2 respectively
(Figure 7). The free energy of solvation of mIDH2-enasidenib
and mIDH2-DB14002 was found to be 1579.98 kJ/mol/nm2 and
1577.96 kJ/mol/nm2 respectively.

3.7.5 Essential dynamics
Essential dynamics analysis was performed to gain insights into

the overall expansion of the protein-ligand complexes for the

FIGURE 3
The RMSD plot of the Enasidenib (black) and DB14002 (blue)
within the time boundary of 250 ns.

FIGURE 4
The root means square fluctuation (RMSF) plot of the Enasidenib
(black) and DB14002 (blue) within the time boundary of 250 ns.

FIGURE 5
The inter-molecular hydrogen bonding scheme of the
mIDH2 complexed with Enasidenib and DB14002 within the time
frame of 250 ns.
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simulation time frame of 250 ns [59]. In the present study, gmx_covar
and gmx_ anaeig modules of gromacs were explored to find the
concerted motion of atoms in the protein. Firstly, the atomic
fluctuations of the c-alpha atom were recorded to construct the
covariance matrix which includes eigenvalues. The sum of
eigenvalues represents the overall movement of ligand-bound
systems. Then, the eigenvectors were obtained by diagonalizing the
covariance matrix. In the end, principal components were constructed
and the first two PCs were projected along their phase space to
investigate conformational changes. It is evident from Figure 8A that
DB14002 was found to enclose smaller conformational space when

compared to the enasidenib complex. The trace covariancematrix of the
above-mentioned complexes was found to be 9.48 nm2 and 9.84 nm2

respectively. The covariance matrices of the mIDH2-enasidenib and
mIDH2-DB14002were depicted in Figures 8B, C respectively. From the
figure, it is clear that the fluctuations between the atoms of enasidenib
and DB14002 were between −0.07–0.30 nm2 and -0.20–0.63 nm2

respectively. The larger fluctuation range in the overall movement of
the atoms of DB14002 was due to the change in the conformation of the
complex structure.

3.7.6 Free energy landscape analysis
The interaction energy for the first two principal components was

computed to assess the contribution of individual amino acids to the net
free energy profile within a simulation time of 250 ns. The red region
denotes the minimum in free energy, whereas the cyan and green
regions represent metastable conformational states of the complex
system. Figure 9 depicts the FELs of enasidenib and
DB14002 showing several metastable states linked by energy
barriers. The enasidenib and DB14002 systems exhibit two different
minimum energy basins corresponding to their conformational states.

4 Discussion

For a long time, cancer researchers aimed to identify novel
compounds either from natural sources or other synthetic libraries
for the management of disease burden. In contrast, the present study
addresses the role of nutraceuticals in disease management
particularly against glioma. The results from molecular docking
suggest that all the 135 investigated compounds exhibit appreciable
binding characteristics toward the mIDH2 protein. In contrast,
14 compounds were found to possess better binding free energy
from MM-GBSA analysis. Note that van der Waals interaction and
the lipophilicity of the ligands were the major driving forces for the
increased overall binding free energy (ΔGbind). Indeed, ML-SF
highlights the enhanced binding potential of the nine lead
molecules towards the target protein. Subsequent drug likeliness,
toxicity endpoint and virtual cell line assay revealed the plausible
application of DB14002 (Vitamin E) as an effective drug-like
candidate. For instance, deep-learning-based drug sensitivity
prediction tools also affirm that DB14002 possesses a lower IC50

of 0.413 µM than enasidenib.
Molecular dynamics simulations were carried out to ascertain

the sturdiness of DB14002. It is evident from the RMSD plot that the
observed unstable fluctuations in the MD trajectories of both
systems might be due to the orientation change of respective
ligands in the active pocket of mIDH2. Overall RMSD analysis
showed that no significant fluctuations were observed for any of the
systems, indicating that there are minimal structural deviations or
conformational changes upon compound binding. In addition, the
RMSF plot demonstrates that the active site residues primarily
contributed to the binding of DB14002 to the target protein and
thus exhibited fewer fluctuations than the reference compound. The
hydrogen bond analysis was found to be consistent with MM-GBSA
and interaction analysis, as the hydrophobic contacts were the
primary contributors to the lower binding free energy of the hit
complex. The results from structural compactness analysis
demonstrated that the orientation of the protein structure does not

FIGURE 6
Radius of gyration (Rg) plot of the mIDH2 complexed with
Enasidenib (black) andDB14002 (blue) within the time frame of 250 ns.

FIGURE 7
The Solvent Accessible Surface Area (SASA) plot of the
mIDH2 complexed with Enasidenib (black) and DB14002 (blue) within
the stipulated time of 250 ns.
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alter after ligand binding. Additionally, the lower free energy of
solvation for mIDH2-DB14002 also suggests that the system is more
compact than the enasidenib-bound complex. Collectively, from
essential dynamics, we culminate that the DB14002-bound complex
was occupying smaller conformational phase space along with
equivalent trace covariance value highlighting its stability. The
energy distribution from the FEL of enasidenib and DB14002 bound
systems was explored to acquire information about the overall
conformational variability of the system. It is worth mentioning that
the DB14002 system was found to possess a wider energy basin
signifying greater thermodynamic stability than the enasidenib
bound system. Collective simulation results highlight that Alpha-
tocopherol (DB14002), a Vitamin E-based analog could be utilized
as a potential agent for the management of glioma.

In light of vitamin E’s biological action, research is ongoing to
unveil its potential to treat a wide range of disease conditions, including

cancer. For instance, preclinical studies in animal models have shown
that tocopherol isomers inhibit the progression of cancer growth in
breast, lung and liver carcinogenesis by inducing cell cycle arrest
[60–62]. A study by Lawson et al in 2004 reported that α-TEA
(Alpha-tocopherol ether-linked acetic acid analog) was effective in
decreasing the metastasis and tumor burden in many mice models
as the attached acetic acid moiety to the phenolic ring is more stable
than other isomers [63]. Additionally, in a xenograft model of cisplatin-
resistant human ovarian cancer cells, combinations of α-TEA and
cisplatin also markedly decreased tumor burden and metastasis. The
shreds of literature evidence illustrate great promise for the use of α-
TEA in combination with specific chemotherapeutic drugs in the
treatment of ovarian and breast cancer [64]. Recently, a study by
Mazzini et al in 2016 emphasized the anticancer activity of vitamin
E analogs in glioma cells [65]. In light of this evidence together with our
findings, we hypothesize that the commonly available dairy supplement

FIGURE 8
(A) The 2-D projection of principal components along its phase space and covariance matrix of the mIDH2 complexed with (B) Enasidenib and
(C) DB14002.
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Vitamin E and its structural analogmay be effective againstmIDH2 as a
supportive agent that synergistically combines with existing drugs for
the implicit management of glioma in the near future.
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