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During the construction of a highway in northwest China, large deformation of
mudstone caused severe deformation of and damage to sidewalls, initial support,
and secondary lining to various extents. To reveal the causes of mudstone’s large
deformation in the tunnels of this highway, a comprehensive study was
conducted by using engineering geological survey, on-site monitoring and
measurement, indoor rock mechanics test, numerical simulation, and
macroscopic analysis. For the problem of large deformation of this highway’s
tunnel section from YK209 + 500m to YK210 + 030 m, the 3D finite difference
method FLAC3D was used to simulate the large deformation of the wall rock and
compare the deformation of the tunnel and themechanical characteristics of the
lining structure under different conditions by means of inverse analysis of the
rheological characteristics of themudstone and simulation of the softening of the
mudstone in water. The research results provide a reference and basis for the
construction design of similar mudstone tunnel projects. For the management of
tunnel deformation, it is recommended to enhance the tunnel’s drainage
measures, thereby mitigating the intensification of mudstone softening when
exposed to water.
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1 Introduction

The large deformation of tunnel rock has always been a key scientific issue in
geotechnical engineering. In recent years, scholars have conducted extensive research on
the microscopic and macroscopic mechanisms. Fan et al. [1] investigated the large
deformation patterns in multi-sectional tunnels within stratified mudstone. Liu et al. [2]
analyzed the large deformation characteristics of Tertiary soft rock tunnels. The impact of
groundwater effects on large deformations in deep-buried slate tunnels was explored by Sun
et al. [3]. Ma et al. [4] studied the drum failure mechanism in sandstone and shale rock
tunnels. The deformation and failure characteristics of weathered sandstone rock tunnels
were discussed by Wang et al. [5]. Zhou et al. [6] analyzed the destructive impact of loess
mudstone landslides on high-speed rail tunnels. A computational method for large tunnel
deformations was proposed by Wang et al. [7]. Chen et al. [8] explored the failure
mechanism in single-oblique alternating soft and hard rock tunnels. Meng et al. [9]
used D-InSAR monitoring to analyze the causes of large deformations in tunnels. The
collapse mechanism of tunnels in soft-hard interlayered rock was investigated by Liu et al.
[10]. Chen et al. [11] analyzed the squeezing deformation in high geostress stratified soft
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rock tunnels. The nonlinear deformation mechanism in high-stress
soft rock roadways was discussed by Zheng et al. [12]. Yang et al.
[13] studied the fracturing damage behavior in mudstone. The
construction technology for large-span intersections in soft rock
was explored by Li et al. [14]. Lastly, Bao et al. [15] analyzed the large
deformation mechanism in deep brittle rock tunnels based on the
evolution of microcracks. The geometric finite element simulation of
crack propagation under pressure by Chen Leilei et al. provided
some inspiration for the modeling and simulation of large
deformation in this paper [16–30]. Mainly focused on the
changes in the mechanical properties and mineral composition of
rocks after water exposure, current researches rarely devote
themselves to the relationship between soft rock deformation and
the surrounding environment to establish models and field
experiments for comparison and analysis, and study in a multi-
dimensional way to develop a systematic and in-depth research on
the relationship between the large deformation mechanism of
mudstone and the macroscopic deformation behavior of seepage
tunnels. This study extensively investigates the significance of
mudstone tunnel lining structures through finite element
analysis, particularly emphasizing the understanding and
prevention of substantial deformation in tunnels. Such an
exploration is vital for ensuring the stability and safety of
underground engineering projects. The analysis underscores the
criticality of addressing these deformations, which are pivotal in
maintaining the integrity of subterranean structures.

In this paper, we take a tunnel section of a highway in northwest
China as our research object and carry out on-site monitoring and
experiments, data analysis, model building analysis, and conjecture
and experiments of tunnel deformation mechanism. We explore the
causes of large deformation of wall rock during excavation of this
tunnel section and hope to provide references for the planning,
survey, design, construction and design of support structures for
tunnel in similar geological conditions.

2 Project overview

2.1 Basic geological conditions

The tunnel is located in an area of eroded and accumulated loess
with relatively huge variations in altitude as well as outstanding rises and
slopes. The elevation of the tunnel is about 1248–1536 m. The attitude
of rock is 44°–28°∠30°. Joint planes occur near YK209 + 734. Two
groups of relatively smooth planes occur, namely, J1: 7°∠30° and J2:
13°∠86°. Special rock and soil structures in the tunnel area are mainly
collapsible loess and expansive rock. According to the statistics of
saturated compressive strength in detailed survey, the mudstone in this
area is extremely soft rock. Boreholes made in the arch at YK209 +
650 and YK209 + 845 reveal groundwater, while groundwater is not
found in other boreholes. The water level revealed by these boreholes
shows that the distribution of groundwater in the tunnel is uneven.

2.2 Engineering issues

Large deformation was found in the YK209 + 500-YK210 +
030 section of the tunnel in 2019 as shown in Figure 1.

Such large deformation includes: 1) bulges and cracks occur in
the left foot of the invert arch. Boreholes in the invert arch found
outstanding bulges in the back-filled part of the left half of the arch,
separation in the range of 50–100 cm from the side wall, and
bending of steel bars inside the invert arch. The maximum
height of a bulge of the invert arch exceeds 60 cm. 2) intrusions
occur in the lining structure from the left arch foot to the right arch
waist. Most intrusions reaches 15 cm. The highest intrusion reaches
26.1 cm, and there are more intrusions on the left side of the line
structure than on the right side.

3 Mudstone physical and mechanical
tests and ground stress tests

The hydraulic fracturing method was used to test the initial
ground stress of the surrounding rock. The hydrofracturing method
offers several distinct advantages: It enables deep measurement
capabilities; The data compilation process does not necessitate
the inclusion of rock elasticity parameters, thereby reducing
errors caused by inaccurate parameter estimations; A wide stress
distribution on the rock walls, attributed to the lengthy pressurized
borehole section, mitigates the limitations associated with point
stress conditions and heterogeneous geological factors; The method
is characterized by its simplicity of operation and short testing
duration. The principle underlying the hydrofracturing method for
stress testing involves the use of expandable rubber packers. These
packers isolate a borehole section at a predetermined depth, into
which a liquid is then pumped to apply pressure. The in situ stress is
determined by analyzing the characteristic pressure values from the
pressure curve during the fracturing process.

The ground stress test was carried out in the section of the tunnel
where outstanding deformations occur. In the test area, the maximum
horizontal principal stress is 1.0–2.2°MPa, the minimum horizontal
principal stress is 0.7–1.8°MPa, and the vertical stress is 5.1–5.9 MPa.
On the whole, the stress field shows that the dead-weight stress is larger
than the horizontal stress, indicating that the ground stress field in this
area is dominated by dead-weight stress.

FIGURE 1
Monitoring large deformation sections.
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4 Analysis of tunnel wall rock
deformation monitoring data

As shown in Figure 2, in the YK209 + 500-YK209 + 850 section of
the tunnel, 36 observation sections are arranged with an interval of
10 m. The monitoring period commenced upon the completion of the
initial lining and ends upon the pre-application of the secondary lining.
The monitoring period of a section ranges from 18 days to 41 days.

It can be seen from Figure 3 that the settlement displacement of
the arch at a measuring point increases in an nonlinear way with
time. When the monitoring starts, the settlement displacement rate
is relatively huge. In the first 3 days, the displacement rate is
15–32 mm/d, and the value reduces slightly to about 2.5–20 mm/
d between the 4th and 20th days. As the time goes by, the value

reduces further. On the 25th day of monitoring, the settlement
displacement rate is less than 2.0 mm/d.

As can be seen from Figure 4, 5, during the secondary lining stage,
the settlement displacement of the arch top in the YK209 + 511-YK209
+ 841 section is mostly between 5 and 40mm, and the average value is
about 32.0 mm. Figure 5 reveals that the highest bulges on the invert
arch ismostly 300–650°mm, themaximumdeformation is 702°mm, the
minimum is 28°mm, and the average is 319.5 mm. After the secondary
lining is done, the settlement displacement of the arch top is still time-
dependent. On the whole, the bulges of the invert arch is larger, and the
deformation of the surrounding rock at the bottom shows strong
rheological properties. The deformation velocity of the invert arch
gradually flattens, and the displacement gradually stabilizes as the
time goes by.

FIGURE 2
Time spent watching various monitoring areas.

FIGURE 3
Variation curve of average section vault settling movement over time.
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FIGURE 4
Tunnel top arch settlement displacement curve along different pile numbers.

FIGURE 5
The temporal shift of the elevation arch process curve.

FIGURE 6
Burgers creeping viscoelastic-plastic model σ is the rock stress, EM, EK, ηM, and ηK are the rock’s elastic modulus, viscoelastic modulus, Maxwell
viscosity coefficient, and Kelvin viscosity coefficient, respectively, σf is the yield strength of the rock, and εM, εK, and εP are the strain and plastic strain of the
Maxwell body and Kelvin body.
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5 Study on the mechanism of large
deformation damage of mudstone

Considering mudstone’s water-softening property and obvious
rheological characteristic, we applied the numerical simulation to
the tunnel at different support stages by using FLAC3D to study the
deformation mechanism, structural stress characteristics and creep
development law of the tunnel’s surrounding rock, and to explore
the mechanism of their large deformation.

5.1 Rock viscous-elastic-plasticity
constitutive model

In the study, a creep-viscoplastic model, which comprises the
Burgers model and Mohr Coulomb model is used. The former,
which simulates the time-dependent creep characteristics of rock
and soil, can reflect the attenuating creep stage and stable creep
stage of a material after loading. The latter considers viscoelastic-
plastic stress deviation characteristics and the elastic-plastic volume
change of a material. It is assumed that the viscoelastic strain rate
component and plastic strain rate component act together in series. The
viscoelastic component corresponds to the Burgers model (composing
Kyle style and Magswell body in series), while the plastic component is
consistent with the Mohr-Coulombmodel. When the stress is less than
the yield stress, the viscoelastic deformation of the model equals to the
creep equation of the Burgers model, and when the stress is greater than
the yield stress, the plastic flow deformation shall also be governed by
the Mohr-Coulomb criterion.

To ensure the effectiveness of the finite element model used in
this study, a creep-viscoplasticity model was adopted, providing a
comprehensive and reliable method for simulating and analyzing
the behavior of geotechnical materials, as illustrated in Figure 6. The
validity of the model was confirmed by calibrating its parameters
using experimental data, thereby ensuring the consistency of the
model’s predictive results with actual scenarios.

The plasticity criterion uses a composite criterion combining
Mohr-Coulomb shear damage and tensile damage, where the yield
function of the Mohr-Coulomb criterion is:

fs � σt − σ3Nϕ + 2c
���
Nϕ

√
(1)

The maximum tensile stress criterion yield function is:

ft � σt − σ3 (2)

Where c is the cohesive force of the material, φ is the friction angle,
Nϕ � (1 + sin ϕ)/(1 − sin ϕ), σt is the tensile strength, σ1 and σ3 are
the minimum and maximum principal stress (pressure is negative).

5.2 Model generalization and calculation
conditions

The model’s boundary of both tunnels are 68 m away from the
center line. Its top is 60 m away from the center of the tunnel and the
bottom is 50 m away from the central point. The model’s length is
20 m along the axis of the tunnel. In the simulation, the number of
units is 151,800 and the number of nodes is 161,637 as shown in

Figure 7. The diameter of the excavation in the mudstone is 12.38m,
while its inner diameter behind the lining is 10.86m, and its buried
depth is about 237 m.

The design lining structure of this tunnel is SVb: I20a steel
I-beam, spacing 100cm, 26 cm C25 shotcrete,Φ6 double layer mesh,
3.5 m long R25 hollow grouting anchors, spacing 75 cm × 100 cm,
50 cm C30 reinforced concrete lining and 10.25 m × 5 m design
building limit of the main cavern.

The designed lining structure of the tunnel is SVb: I20a I-steel,
spacing 100cm; 26 cm-thick C25 shotcrete, Φ6 double-layer steel
mesh, 3.5 m-long R25 hollow grouting anchor, spacing 75°cm ×
100°cm; 50 cm-thick C30 reinforced concrete lining. The designed
limitation of the main tunnel is 10.25°m × 5 m.

With reference to mudstone’s laboratory test results and the values
of physical and mechanical parameters adopted in tunnel projects in
Gansu province contained in previous literature, the values of physical
andmechanical parameters of mudstone in natural and saturated states
used in this study are as shown in Tables 1–3.

5.3 Inversion of the rheological parameter
of mudstone

It is complicated to determine the rheological parameters of the
tunnel’s surrounding rock. In this paper, the numerical calculation
and on-site deformation monitoring data were used for curve fitting
to inverse the mudstone’s rheological parameters. The inversion
results of the rheological parameters of mudstone in natural state are
as shown in Table 4.

The time-based curve of mudstone’s rheological inversion and
monitoring displacement is as shown in Figure 8. The deformation
around the tunnel mostly occurs in the initial support. At first, the
maximum deformation rate around the tunnel is about 18 mm/d. In
the first 10°days, the deformation rate is relatively large, basically in
the range of 7.0–18.0 mm/d. As the time elapses, the deformation
rate decreases gradually. The rate decreased to 2.0–7.0 mm/d
between the 11th and 20th days. By the 40th day, the rate was
basically less than 1 mm/d. At this time, the deformation around the
hole tends to be stable.

After the initial lining of the tunnel is done, the second lining
will be applied after the deformation of the surrounding rock is
basically stable. As can be seen from Figure 9, the long-term
deformation of the lining structure is about 1.2–1.5 mm.
Displacements in all directions are all towards the center of the
tunnel, and these displacements and their values on both sides of the
vertical line are basically symmetrical. Both the top arch and the
invert arch deform downward under the action of dead weight. The
lining stress is small. The maximum compressive stress is about
0.6°MPa, the tensile stress is about 0.2°MPa, and the relatively large
stress appears in the arch feet on both sides of the arcs.

5.4 Deformation and stress state hole cycle
after softening of water seepage in the
wall rock

The groundwater was not exposed during tunnel excavation.
However, as the time goes by, the groundwater seeped along
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mudstone cracks after the excavation for invert arch in some
sections, and then some unstable deformations occur such as
cracks in the invert arch and convergence in the tunnel’s wall
rock. During the on-site investigation, the groundwater was also
found in the boreholes in the problematic sections and in the slots of

the invert arch, but the groundwater distribution was uneven. The
infiltration of groundwater is the root cause of problems in
the tunnel.

The development of structural planes such as joints and cracks
in the problematic section leads to the breakage of the rock mass.

FIGURE 7
Numerical model.

TABLE 1 Laboratory test results of rock physical characteristics.

Sampling depth Rocks Particle densityg/cm3 Water content/% Water filling rate/% Porosity/%

5.8 ~ 62.4 m Mudstone 2.23 7.87 8.62 17.81

2.22 8.43 9.52 19.45

2.23 8.80 7.43 15.21

Average value 2.22 8.37 8.52 17.49

8.4 ~ 71.0 m Mudstone 2.18 9.60 9.46 18.83

2.28 10.46 7.46 15.40

2.01 8.83 12.38 22.90

Average value 2.16 9.63 9.77 19.04

TABLE 2 Laboratory test results for rock mechanical properties.

Sampling depth Rocks Uniaxial
compressive
strength/MPa

Modulus of deformation/GPa Elastic modulus/GPa Poisson ratio

Nature Saturate Nature Nature Nature

5.8 ~ 62.4 m Mudstone 8.43 1.58 1.41 1.69 0.30

6.75 0.97 1.13 1.35 0.30

5.06 0.52 0.84 1.01 0.30

Average value 6.75 1.02 1.13 1.35 0.30

8.4 ~ 71.0 m Mudstone 8.44 2.23 1.41 1.69 0.30

6.42 5.42 1.07 1.28 0.30

3.80 3.35 0.63 0.76 0.31

Average value 6.22 3.67 1.04 1.24 0.30

Mudstone cores from the ground stress test for the tunnel in the project were taken and tested for physical and mechanical properties. The results are as shown as Tables 1 and Table 2.
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The groundwater in a changed environment slowly seeps into the
surrounding rock and results in the gradual immersion and
softening of the surrounding rock and its weaker strength, as
shown in Figure 10. After the completion of the tunnel structure,

the natural discharge of groundwater along the cracks is blocked,
and the groundwater is mainly concentrated in the rock pillar area
about 30 m between the left and right tunnels and at the bottom of
the tunnel. Mudstone is also a kind of rock prone to interact with

TABLE 3 Values of the physical and mechanical characteristics of mudstone.

Mudstone Modulus of
deformation/MPa

Poisson ratio Gravity
kN/m3

Cohesion/
kPa

φ/° Tensile
strength/kPa

Nature 800 0.32 22 200 30 50

Saturate 300 0.35 23 60 25 15

TABLE 4 Mudstone rheological parameters taking values.

Mudstone EM(GPa) Ek (GPa) ηk (GPa.d) ηm (GPa.d)

Nature 2.4 0.25 0.18 1,000

FIGURE 8
Monitoring and inverting the displacement time graph at measurement point A.

FIGURE 9
Long-term displacement vector of the liner after lining application.
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water. Under the action of water, the growth and expansion of
macroscopic fissures is the main reason for the rapid deterioration of
the main physical and mechanical parameters of mudstone. Under
the same confining pressure, the higher the water content of
mudstone is, the more obvious the aging characteristic is.

In order to accurately express the research results, a number of
measuring points are installed in the lining’s top arch, arch shoulder,
arch waist and invert arch. The measuring points #1 - #9 are evenly
distributed on the invert arch. The buried measuring points #10-#20
are on #3’s vertical line. The distance between #3, #10 - #19 are in an
interval of 2 m while that between #19 and #20 is 5 m. The distance
between #3 and #20 is 25 m. The layout of these measuring points
are as shown in Figure 11.

The measuring point A, on the top of the lining arch, has a
downward displacement of about 58.9 mm. The measuring points B
and C has a downward displacement of 140.1 mm and 29.3 mm
respectively and a horizontal convergence deformation of about
48 mm. The downward displacements of D and E are 173.4 mm and
23.0 mm respectively while their horizontal convergence
deformation is about 95.5 mm. Intrusions on the left side of the
second lining of the tunnel is obvious. Most of them are more than
10 cm, and the maximum intrusion is more than 20 cm. The
deformation of the tunnel in the problematic section is
characterized by the arch’s downward displacement, convergence
at the waist on both sides, and inclined bulges on the invert arch with
the ones on the left higher than those on the right. It can be seen that
the plastic flow caused by water-softening of the rock pillar
mudstone is the main factor of the large deformation of the tunnel.

As shown in Figure 12, when the mudstone on the left side of the
tunnel is saturated with and softened by water, its strength is
obviously weakened, and the surrounding rock produces a large

squeezing deformation on the left side of the supporting structure.
The deformation of the left arch foot and the left arch bottom of the
lining is about 250–470°mm, and the deformation of the left arch is
about 150–300 mm.

As shown in Figure 13, among the nine measuring points arranged
on the bottom of the invert arch, themeasuring point #3, which is about
2.0 m away from the left arch foot, has the largest bulge displacement of
383 mm. The bulge displacement of the left arch foot is about 30mm,
while the right arch foot sinks slightly, and the downward displacement
is about 12 mm. The deformation along the measuring point #3’s
vertical line shows that the upward displacement of the floor along such
line gradually decreases. The rheological effect of the shallow
surrounding rock of the invert arch is obvious, and the time-based
curve of mudstone softening and creep deformation rate increases at
first, and then decreases to zero gradually.

The lining structure as a whole is in a compressed state, and the
compressive stress concentration is high at both ends of the arch foot
and bottom plate. The maximum compressive stress near the left
and right arch feet are 17.0°MPa and 20.0 MPa respective. And it is
2.0–9.0 MPa at the bottom of the arch, 5.0–8.5 MPa at the left arch,
about 4.0–11.0 MPa at the right arch, and about 7.0–13.0 MPa at the
top of the arch.

The uneven deformation around the tunnel caused by mudstone
softening acts on the lining structure. The latter bears large
deformation pressure, and the force is unevenly distributed due
to the difference of deformation. Looking at the overall stress of the
lining structure, the stress on the arch foot and the arch top is larger,
and the tension at the lower part of the left arch waist is obvious,
which is easy to cause the tension crack and damage of the lining
structure in the stress concentration and tension stress area of
the arch foot.

FIGURE 10
Analyzing the mechanisms of tunnel displacement.

FIGURE 11
Location of tunnel lining measurement points.
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6 Conclusion

The main results of this paper are as follows:

1) The tunnel’s problematic section of large deformation
is located in the core of the wide and gentle

syncline. Due to the tectonic action, the joints and cracks
are developed and the rock mass is broken, and the
unloading of tunnel excavation leads to the opening
and expansion of the primary cracks in the left and
right rock pillars. At the same time, the pore
groundwater in the overlying loess seeps down along the

FIGURE 12
Mudstone softening-related tunnel displacement vector.

FIGURE 13
Arch Feature Displacement. (A) Elevation Shift Comparison. (B) Feature Points Uplift. (C) Rheology Curve (Point 3#). (D) Deformation Rate Curve
(Point 3#).

Frontiers in Physics frontiersin.org09

Li et al. 10.3389/fphy.2024.1345581

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1345581


joints and cracks and invades the surrounding rock of
the tunnel.

2) Mudstone has strong hydrophilicity and weak expansibility,
which will lead to increase and expansion of macroscopic
fissures, a sharp decrease in physical and mechanical
characteristics. Mudstone’s aging deformation
characteristics become more obvious as the content of
water increases. Further research indicates a close
interplay between the softening mechanisms of the
surrounding rock and changes in stress distribution.
Particularly in water-sensitive rocks such as mudstone,
the permeation of moisture leads to a reduction in the
strength of the surrounding rock and a redistribution of
stress, thereby exacerbating the instability of rock layers
around tunnels.

3) Computational comparative analysis reveals that the depth of
the tunnel and stress levels exert a relatively significant
influence on the unloading deformation of the surrounding
rock, the magnitude of time-dependent deformation, and the
convergence time. Conversely, the impact of swelling forces is
comparatively minor, and they are not the primary controlling
factors for substantial deformation and cracking of the lining
in the surrounding rock.

When preparing suggestions for the treatment of a tunnel, it
is necessary to improve the interception and drainage measures
of the tunnel to ensure smooth drainage. It is also necessary to
strengthen the weak surrounding rock at a certain depth around
the tunnel in order to improve the strength and anti-deformation
ability of rock mass. It is also recommended to strengthen the
stress and strain monitoring of the tunnel lining and the
monitoring of drainage facilities, and dynamically track and
analyze the long-term stability of the tunnel by means of real-
time monitoring, so as to provide security for the normal
operation of the tunnel.
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