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Introduction: In this study, the spatial bending vibration of macro- and/or micro-
scale cantilevered fluid-conveying pipes is investigated through finite
dimensional analysis.

Methods: Firstly, the Galerkin method is employed to discretize the partial
differential equations of motion of the system into a system of ordinary
differential equations. Then, the projection method based on center manifold-
normal form theory is adopted to derive the coefficient formula that determines
the pipe’s nonlinear dynamic behaviors, i.e., the change rate of the real part of the
critical eigenvalue with respect to the flow velocity and the nonlinear resonance
term, thereby obtaining reduced-order equations. Compared to previous studies
that relied on the numerical solution of ordinary differential equations to
determine the existence and stability of periodic motion, this paper concludes
the existence and stability of periodic motion by utilizing the coefficients of the
Galerkin discretized equations and the reduced-order equations, significantly
saving time in determining the dynamic properties of pipes.

Results and discussion: Subsequently, by investigating the reduced-order
equations under specific parameters, the existence and stability of the two
types of periodic motion of the pipe are studied. For macro pipes, the
truncated mode numbers are set incrementally to calculate the coefficients of
the reduced-order equations, investigate the distribution of the stability of the
two types of periodic motions with the mass ratio, and carry out a longitudinal
comparison (i.e., the comparison between the results obtained under different
truncated mode numbers) as well as a horizontal comparison (i.e., the
comparison of results between the finite dimensional analysis and the infinite
dimensional analysis). It is found that the reasonable truncated mode number
required to study this type of system is 15. Previous studies primarily focused on
the convergence of frequency and amplitude when determining the truncated
mode numbers. On this basis, our study further examines the convergence of
motion forms with respect to the truncated mode numbers. Finally, based on the
Galerkin discretization equations of 15 modes, the distribution of the stability of
two types of the periodic motion of micro pipes with the mass ratio is analyzed.
For macro- and micro-scale pipes, when the truncated mode number is 15, the
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error between the finite dimensional analysis results and the infinite dimensional
analysis results is calculated to be about 7%. The above results are verified by
obtaining the numerical solution to Galerkin discretization equations.
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1 Introduction

Fluid-conveying pipe is an important engineering structure,
and its dynamic behaviors have been extensively and deeply
studied. Early studies mainly focused on the establishment of
motion equations and the linear vibration of pipelines [1–5].
Holmes was the first to investigate the nonlinear vibration of
fluid-conveying pipes [6, 7]; in this literature, the processing
method based on Galerkin discretization was called “finite
dimensional analysis” [6], and the processing method based
on function space projection was called “infinite dimensional
analysis” [8]. The terms “finite dimensional analysis” and
“infinite dimensional analysis” used in our study are derived
from the definition given by Holmes. Rousselet and Herrmann
[9] used the Krylov-Bogoliubov method to investigate the
coupled nonlinear vibration of the cantilevered fluid-
conveying pipe and the fluid in the pipes and analyze the
variation law of the periodic motion amplitude of the pipe
with the mass ratio. Based on the n-mode (n = 1, 2, or 3)
discrete system of the motion equation of fluid-conveying
pipes, Namchchivaya and Tien [10], Jayaraman and
Narayaman [11], and Namchchivaya [12] studied the
nonlinear parametric vibration of simply supported pipes at
both ends; Chang and Chen [13], Li and Paidoussis [14]
investigated the nonlinear parametric vibration of cantilevered
pipes. Paidoussis et al. [15] considered the cantilevered fluid-
conveying pipe subject to motion constraints; these motion
constraints were simplified to a cubic nonlinear spring, which
is the source of the nonlinear term of the system. In their study,
the chaotic motion of the pipe was studied by the 2-mode
Galerkin discretization of the original motion equation. Based
on [15], Paidoussis and Semler [16] added the geometric
nonlinearity caused by a large amplitude and used 2, 3, and
4 modes to discretize the original vibration equation; it was found
that 2-mode Galerkin discretization equations can produce
qualitatively accurate results, and 4-mode Galerkin
discretization equations can produce quantitatively accurate
results. Based on [15], Jin [17] added linear spring constraints
and analyzed the influence of linear spring stiffness on the
chaotic motion of the system by using 2-mode Galerkin
discretization equations. Paidoussis and Semler [18]
considered the nonlinear vibration of a cantilevered fluid-
conveying pipe with an intermediate support spring, where the
“nonlinear term” originating from the geometric nonlinearity
was due to a large amplitude motion. In their study, based on 2-
mode Galerkin discretization equations, various bifurcation
phenomena of the system were investigated with the center
manifold-normal form theory. Paidoussis and Semler [19]
presented a general process of using the center manifold-

normal form method to study the dynamic behavior of
cantilevered fluid-conveying pipes, and numerical calculations
were conducted by using Galerkin discretization equations of 2,
3, and 4 modes respectively. Subsequently, Paidoussis and Semler
[19] found that the impact of truncation mode numbers on the
calculation results was not obvious, and it was considered the
essential dynamic characteristics of the system can be only
extracted with low-order discretization equations. Until 2006,
in the literature using the Galerkin method to investigate fluid-
conveying pipes, the number of truncation modes generally did
not exceed 4 [20–23]. It worths mentioning that the above-
mentioned references are all studies on two-dimensional (2D)
motions of fluid-conveying pipes.

Since the study by Wadham-Gagnon et al. [24], great
attention was paid to the dynamics of three-dimensional (3D)
vibrations of cantilevered fluid-conveying pipes. Following the
modified Hamilton principle [1], Wadham-Gagnon et al. [24]
derived a new 3D version of nonlinear governing equations for
cantilevered fluid-conveying pipes by incorporating an
additional mass at the free end of the pipe and springs
support. Note that this equation is consistent with the
equation derived by Lundgren et al. [25] using the force
balance method when factors such as terminal mass and
intermediate spring support are not considered. Based on this
new 3D model, Modarres-Sadeghi et al. [26] investigated the
motion switches of cantilevered fluid-conveying pipes between
2D and 3D with increasing flow velocity, where 8-mode Galerkin
discretization equations were used at most. Additionally, the 3D
motion of cantilevered fluid-conveying pipes with additional
intermediate springs support [27], with an end mass [28], or
with both an end mass and springs support [29] was been studied.
In Ref. [27], using 4-mode Galerkin discretization equations,
Païdoussis et al. conducted a theoretical and experimental study
of 3D nonlinear dynamics of cantilevered pipes with external
springs, involving five different cases in terms of attachment,
spring configurations, and stiffnesses. Results indicated that the
system may lose stability either via flutter or divergence,
depending on the specific case of spring support. Compared to
Ref. [27], a more complete (chaotic motion and far more
extensive experimental investigation), accurate (a larger
number of Galerkin’s truncation modes, where 8-mode
Galerkin discretization equations were used at most), and
interesting (richer dynamical behaviors) work was completed
by Ghayesh and Païdoussis [30]. In Refs. [28, 29], to achieve the
convergence of calculation, up to 10-mode Galerkin
discretization equations were used. For pipes with a large end-
mass, the resulting dynamics becomes much richer than that of
pipes without any external attachments. Furthermore, it was
found that for a very large end-mass, many Galerkin’s
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truncation modes (where 12-mode Galerkin discretization
equations were used at most) are required to obtain
convergent results [31]. By introducing a lateral base
excitation, Chang and Modarres-Sadeghi [32] extended the
equations proposed by Wadham-Gagnon et al. [24] and
applied them to investigate the possibility of controlling the
pipe’s 3D motion and/or limiting it to a 2D motion in a pre-
defined direction by changing the base excitation frequency and
amplitude, where 8-mode Galerkin discretization equations were
used at most.

Due to the recent technological development in engineering
practice, the characteristic size of structures become smaller and
smaller [33–36], including the micro beam [37–39] with Winkler
elastic foundation [40], micro torus plate [41], micro cylindrical
shell [42, 43], micro-structure on elastic foundation [44], and fluid-
conveying micro pipe [45]. The study of micro-scale pipes is an
important research direction of the dynamics of fluid-conveying
pipes. Yang et al. [46] discussed the geometric nonlinearity caused
by axial stretching and investigated the free vibration of micropipes
based on the modified couple stress theory (MCST), where the
number of truncation modes was 1. Dai et al. [47] studied the
buckling and post-buckling vibrations of carbon nanotubes (CNTs),
calculated the buckling configuration of the tube when the fluid
velocity in the pipe exceeded a critical value using a theoretical
method, and derived a differential equation for the vibration of the
pipe under this configuration. The post-buckling vibration of the
pipe was studied by using the Galerkin method, and the number of
truncation modes was 2. Bahaadini and Hosseini [48] examined the
fluid-conveying CNTs in a magnetic field and investigated the
buckling and vibration of the tube under different boundary
conditions, where the number of truncation modes was 8.
Bahaadini and Hosseini [49] studied the effect of dissipation on
the stability of viscoelastic CNTs and comprehensively determined
the viscosity coefficient and microscale effect on the system
frequency and critical flow velocity, where the number of
truncation modes was 8. Hu et al. [50] considered micro-scale
cantilevered fluid-conveying pipes subject to motion constraints
that were simplified into a smoothed-trilinear cubic model, where
based on 4-mode Galerkin discretization equations, the impact of
micro-scale effects and motion constraints on the dynamic behavior
of the pipe was studied. It was found that the micro-scale parameters
can make the pipe more stable, and the motion constraints make the
system exhibit richer dynamic phenomena. Dai et al. [51]
established a completely nonlinear vibration equation of
cantilever fluid-conveying pipes under the action of electrostatic
force, in which the nonlinear term was included by a nonlinear
electrostatic force and geometric nonlinearity caused by a large
amplitude. Based on Galerkin discretization equations of 4 modes,
the impact of voltage on the stability boundary of the pipe was
investigated. Ghayesh et al. [52] investigated the parametric
vibration of CNTs fixed at both ends. By analyzing Galerkin
discretization equations of 8 modes, it was found that the
average flow velocity and amplitude of the fluid in the pipe
significantly affect the path of the pipe to chaotic vibration. Zhu
et al. [53] investigated the impact of viscoelastic foundation and
partially distributed tangential force on the dynamics of cantilever
CNTs, where the number of truncation modes was 8. In the
comprehensive study by Sarparast et al. [54], the effects of

various parameters, including magnetic flow, scale parameters,
flow velocity, axial spin speed, Y-shaped downstream elbow
angle, concentrated masses, attached springs, surface effects, and
complex environments on the vibration characteristics of the
cantilevered pipe and pinned-pinned pipe were analyzed, where
the number of truncation modes was 7.

For the dynamics of fluid-conveying pipes, some studies do not
perform Galerkin discretization on partial differential equations
but directly use other methods. By using the perturbation method
for analysis, Bajaj et al. investigated the Hopf bifurcation of planar
cantilevered fluid-conveying pipes [55] and parametric vibration
[56] and studied the type and stability of the periodic motion of
symmetrical and asymmetric spatial cantilevered fluid-conveying
pipes [57, 58] and spatial parametric vibration [59]. Yamashita
et al. considered the interaction between the second-order and
third-order modes of a cantilevered fluid-conveying pipe with a
concentrated mass [60] and a spring constrained [61] attached to
its free end under planar vibration. At this time, the complex
frequencies corresponding to the second- and third-order modes
had positive real parts, and these two modes were excited to
perform interactions. Yamashita et al. [62] considered the
spatial vibration of a cantilevered fluid-conveying pipe with a
concentrated mass attached to the free end and investigated the
“in-plane and out-of-plane” interactions of its second- and third-
order modes based on the results reported in Ref. [60]. The
methods used in references [60–62] were all projection methods
[63], and the coefficients of the reduced-order equations were all
determined by numerical calculations. Zhang and Huang [64]
adopted a mode analysis method to study the effect of Poisson,
junction, and friction couplings on the stability of cantilevered
fluid-conveying pipes. Amiri et al. [65] studied the planar linear
vibration of a micro-scale cantilevered fluid-conveying pipe in a
spring-damper environment and subjected to temperature and
magnetic loads. They used the extended Galerkin method
(i.e., mode analysis method) to analyze the critical flow velocity
and flutter frequency of the pipe by considering the boundary value
problem of the differential equation. In references [66, 67] by Jin
and Ren, the post-buckling equilibrium configuration was
obtained by the two-step perturbation technique, and it was
used as the initial configuration to establish a differential
equation of perturbation motion for forced vibration analysis
and parametric resonance study of FG nanotubes, where the
effects of the flow velocity, material gradient, and different
scales on the nonlinear dynamic behaviors were discussed. In
another paper by Jin et al. [68], the analogous method was
applied to obtain the amplitude-frequency response curves for
pulsatile fluid-conveying FG nanopipes with movable boundary.
The static deformation and flutter for cantilevered fluid-conveying
curved pipes were studied experimentally by Chehreghani et al.
[69]. Guo et al. applied the center manifold-normal form method
to study the symmetric bifurcation [70] and asymmetric
bifurcation [71] of the micro-scale cantilevered fluid-conveying
pipe. The differential quadrature method was also widely used in
the vibration research of fluid-conveying pipes [72, 73].
Incidentally, other methods applied to investigate the dynamics
of structures, e.g., the Navier discretization method [74],
eigenvalue and eigenvector method [75–77], successive
approximation method [78], Fourier series method [79],
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compact analytical method [80], may also be suitable for the
analysis of fluid-conveying pipe’s dynamics.

The literature review above indicates that most studies on the
dynamics of fluid-conveying pipes adopt the Galerkin method.
However, there is no unified conclusion on how many truncation
modes should be taken. Among the majority of literatures, the
truncated mode numbers generally do not exceed 8. Although
some literature has conducted convergence analysis based on
frequency or amplitude, the corresponding motion form of the
same frequency or amplitude may also be different, i.e., it may be
planar motion or spatial motion. Thus, it is necessary to examine the
convergence of motion with respect to the number of truncation
modes. Meanwhile, the mass ratio has an important impact on the
dynamic characteristics of fluid-conveying pipes. However, most of
the existing studies using the Galerkin method investigate the
convergence of the calculation results at one or a few specific
mass ratios. The number of truncation modes obtained in this
way cannot be extended to a wide range of mass ratios. In view
of this, in almost the entire mass ratio interval, by investigating the
change law of the “distribution of periodic motion stability along the
mass ratio” with the number of truncation modes and combined
with infinite dimensional analysis results, this study summarizes the
reasonable truncation mode numbers required when investigating
the dynamics of macro- and/or micro-cantilevered fluid-conveying
pipes with the Galerkin method, thus making the truncation modes
applicable to a wide range of mass ratios while ensuring the
convergence of motion forms.

The rest of this paper is organized as follows. In Section 2, the 3D
bending vibration equation of a macro- and/or micro-cantilevered
fluid-conveying pipe with O (2) symmetry is given based on
previous studies. In Section 3, by using the Galerkin technique,
the original vibration equation is discretized into a set of ordinary
differential equations. Then, by utilizing the projection method
based on the center manifold and normal form theory, the
discretized systems are reduced to a two-degree-of-freedom
nonlinear ordinary differential equation. It is worth mentioning
that previous studies mainly relied on the numerical resolutions of
Galerkin discretized equations for pipe. However, when the
numbers of mode truncation are considerable, the numerical
resolutions of these ordinary differential equations become
exceedingly time-consuming. If the periodic motion patterns of
the pipe can be determined based on the coefficients of the
discretized equations, it would expedite the determination of the
dynamic properties of pipes. The reduced-order equations proposed
here precisely fulfill this research requirement. In Section 4, the
truncation mode numbers are taken incrementally for a macro pipe.
The convergence of the linear term coefficients of the reduced-order
equations is analyzed, and the stability of the periodic motion
determined by the nonlinear term coefficients of the reduced-
order equations is investigated. By comparing the results given
by different truncation mode numbers and the results of infinite
dimensional analysis, the reasonable truncation mode numbers
needed to study this type of system are summarized and applied
to the study of micro-scale pipes. The reasonable numbers of mode
truncation summarized through the aforementioned process
ensures the convergence of frequency, amplitude, and motion
forms. For macro- and/or micro-cantilevered fluid-conveying
pipes, the errors between the finite dimensional analysis results

and the infinite dimensional analysis results are calculated. Finally,
some conclusions are drawn in Section 5.

2 Mechanics models and differential
equations of motion

The motions equations [70] are derived on the basis of the
following assumptions [24, 81]:

(1) the fluid is incompressible;
(2) the fluid is plug-flow and the flow velocity is constant;
(3) the pipe is modelled as a nonlinear Euler-Bernoulli beam;
(4) the transverse deflections of the pipe could be large, but the

strains in the pipe are small;
(5) rotatory inertia and shear deformation are neglected;
(6) the centroid line of the pipe is inextensible;
(7) for micro-scale pipe, the pipe is made of materials of which

size-dependent behaviors can be predicted by the MCST [82].

As shown in Figure 1A, the macro- and micro-scale cantilevered
fluid-conveying pipe with a length of L has a cross-sectional area ofAp,
a bending stiffness of EI, and a mass per unit length ofm. The mass of
fluid conveyed per unit length is M, and the velocity V is constant
relative to the pipe centerline (i.e., axis). The cross-section of the pipe is
circular with O(2) symmetry (Figure 1D). The general spatial flexural
vibration of the pipe is considered in this study (Figure 1B).

As shown in Figure 1C, when the pipe is not deformed, the straight
line where the pipe centerline is located is the X axis; the fluid velocity
direction in the pipe is the positive direction of theX axis; the surface of
the cantilevered end is the YZ plane; the intersection point of the pipe
centerline and the YZ plane is the originO. Based on this, the reference
system O −XYZ is established, i.e., the Lagrange coordinate system,
which is used to specify the position of the material point on the pipe
when it is not deformed. After the pipe is deformed, another coordinate
system o − xyz is taken, i.e., the Euler coordinate system, which
coincides with O −XYZ and is used to describe the instantaneous
position of the material point on the pipe. The displacement of any
point on the pipe can be described by the relationship between the
coordinates of the same mass point in the undeformed state and the
deformed state of the pipe [83]. Before deformation, the initial position
of a certain mass point of the pipe is denoted as (X,Y,Z). After
deformation, the position of the same mass point at time t is
represented as (x, y, z). Then, the displacement u1(X,Y,Z, t),
u2(X,Y,Z, t) and u3(X,Y,Z, t) of any material point of the pipe at
moment t in the x, y and z directions can be described as

u1 X,Y, Z, t( ) � x −X, u2 X,Y, Z, t( ) � y − Y, u3 X,Y, Z, t( )
� z − Z (1)

In the following, a curvilinear coordinate s along the length of
the pipe centerline is introduced. Generally, the cantilevered fluid-
conveying pipes are assumed to be inextensible, s is equal to X [24],
as shown in Figure 2 [71].

At moment t, it is assumed that the position of one point on the
centerline of the pipe (X, 0, 0)which can be represented as (s, 0, 0) is

r � r s, t( ) � s + u, v, w( ) (2)
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where u � u1(s, 0, 0, t), v � u2(s, 0, 0, t) and w � u3(s, 0, 0, t). The
inextensibility condition can be written as follows [24]:

1 + ∂u
∂s

( )2

+ ∂v
∂s

( )2

+ ∂w
∂s

( )2

� 1 (3)

For the vibration of a slender pipe, the Euler-Bernoulli beam
model can be adopted. The resulting dimensionless form of the
motions equations and boundary conditions is shown below [70]:

€η + ]2η″ + 2
��
β

√
] _η′ + 2l0 + 1( )η 4( ) + 3

2
η″3 + η″ζ″2 + 2η′η″η‴ + 2η′ζ″ζ‴[ ]

− η″∫1

ξ
∫ξ

0
_η′2 + 2

��
β

√
] _η′η″ + _ζ′2 + 2

��
β

√
] _ζ ′ζ″ + ]2 η″2 + ζ″2( ) + η″η 4( ) + ζ″ζ 4( )[ ]dξdξ

+ η′∫ξ

0
_η′2 + 2

��
β

√
] _η′η″ + _ζ′2 + 2

��
β

√
] _ζ′ζ″ + ]2 η″2 + ζ″2( ) + η″η 4( ) + ζ″ζ 4( )[ ]dξ

+ l0[−η′2η 4( ) + 2η′η″η‴ + 2η″3 + 2η″ζ″2 − η″ζ′ζ‴ + 3η′ζ″ζ‴ − η′ζ′ζ 4( )

+ 2η′∫ξ

0
η″η 4( ) + ζ″ζ 4( )( )dξ − 2η″∫1

ξ
∫ξ

0
η″η 4( ) + ζ″ζ 4( )( )dξdξ]

� 0 (4a)

FIGURE 1
(A) The schematic of the macro- and micro-scale cantilevered fluid-conveying pipe; (B) 3D flexural vibration; (C) Coordinate systems; (D) The
circular cross-section of the macro- and micro-scale pipe.

FIGURE 2
The centroid line of the pipe is not stretchable: (A) before the deformation; (B) after the deformation.
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€ζ + ]2ζ″ + 2
��
β

√
] _ζ′ + 2l0 + 1( )ζ 4( ) + 3

2
ζ″3 + η″2ζ″ + 2ζ′ζ″ζ‴ + 2ζ′η″η‴[ ]

− ζ″∫1

ξ
∫ξ

0

_ζ′2 + 2
��
β

√
] _ζ′ζ″ + _η′2 + 2

��
β

√
] _η′η″ + ]2 η″2 + ζ″2( ) + η″η 4( ) + ζ″ζ 4( )[ ]dξdξ

+ ζ′∫ξ

0

_ζ′2 + 2
��
β

√
] _ζ′ζ″ + _η′2 + 2

��
β

√
] _η′η″ + ]2 η″2 + ζ″2( ) + η″η 4( ) + ζ″ζ 4( )[ ]dξ

+ l0[−ζ′2ζ 4( ) + 2ζ′ζ″ζ‴ + 2ζ″3 + 2ζ″η″2 − ζ″η′η‴ + 3ζ′η″η‴ − ζ′η′η 4( )

+ 2ζ′∫ξ

0
η″η 4( ) + ζ″ζ 4( )( )dξ − 2ζ″∫1

ξ
∫ξ

0
η″η 4( ) + ζ″ζ 4( )( )dξdξ]

� 0 (4b)
η 0, τ( ) � η′ 0, τ( ) � η″ 1, τ( ) � η‴ 1, τ( ) � 0 (5a)
ζ 0, τ( ) � ζ′ 0, τ( ) � ζ″ 1, τ( ) � ζ‴ 1, τ( ) � 0 (5b)

where

ξ � s

L
, η � w

L
, ζ � v

L
, τ � EI

m +M
( ) 1

2 t

L2
, ] � M

EI
( ) 1

2

VL, β � M

m +M
,

l0 � Apl2G

2EI
(6)

are all dimensionless quantities. In Eq. 6, G is the Lamé’s constant
and l is a material length scale parameter date from MCST [82],
which has been used to analyze various micro-structures [84–86].
The dimensionless parameter l0 � Apl2G

2EI represents the size effect on
the equations of motions of the system, and its impact on the pipe’s
responses will be given later. For macro-pipes, it is obvious that l � 0
or l0 � 0. l0 may have different dimensionless form for different
structures [85, 86]. Incidentally, there exists other nonlocal elasticity
theory which can capture the small size effects of microstructures
and has been used to study the vibration characteristics of nanorod
[87, 88] and nanotube [89].

3 Galerkin discretization and reduced-
order equations

3.1 Galerkin discreted equations

Given that the mode functions of the cantilever beam satisfy
boundary condition (5), they can be selected as basis functions [2,
16, 17, 90]. According Galerkin method, let the solutions to Eqs. 4a
and 4b be

η ξ, τ( ) � ∑n
i�1
ϕi ξ( )qi τ( ) (7a)

ζ ξ, τ( ) � ∑n
i�1
ψi ξ( )pi τ( ) (7b)

where

ϕi ξ( ) � ψi ξ( ) � cosh λiξ − cos λiξ − σ i sinh λiξ − sin λiξ( ),
σ i � sinh λi − sin λi( )/ cosh λi + cos λi( ), i � 1, 2, ..., n( ){ (8)

qi(τ) and pi(τ) are the generalized coordinates corresponding to the
vibration of the pipe in two transverse directions; ϕi(ξ) and ψi(ξ) are
the i-th order eigenfunctions of the cantilever beam; n is the number
of truncation modes; λi is the i-th order eigenvalue of the cantilever
beam. According to the Galerkin method, Eq. 7 is substituted into
Eq. 4 and multiplied by φi(ξ) or ψi(ξ) at both sides. Then, by
conducting integration from 0 to 1, a system of second-order
ordinary differential equations about qi, pi can be obtained.

⎧⎪⎨⎪⎩ €qi + cij _qj + kijqj + Aijklqjqkql + Bijklqjqk _ql + Cijklqj _qk _ql

+Lijklqjpkpl +Mijklqjpk _pl +Nijklqj _pk
_pl

� 0 €pi + cij _pj + kijpj + Aijklpjpkpl + Bijklpjpk _pl

+ Cijklpj _pk
_pl + Lijklpjqkql +Mijklpjqk _ql +Nijklpj _qk _ql

� 0

(9)
where

cij � 2]
��
β

√ ∫1

0
ϕiϕ

′
jdξ, kij � 1 + 2l0( )∫1

0
ϕ 4( )
i ϕjdξ + ]2∫1

0
ϕiϕ

″
jdξ

Aijkl � ∫1

0
ϕi · [l0 2ϕ′

jϕ
″
kϕ

‴
l + 2ϕ″

jϕ
″
kϕ

″
l − ϕ′

jϕ
′
kϕ

4( )
l + 2ϕ′

j∫ξ

0
ϕ″
kϕ

4( )
l dξ − 2ϕ″

j∫1

ξ
∫ξ

0
ϕ″
kϕ

4( )
l dξdξ( )

+]2 ϕ′
j∫ξ

0
ϕ″
kϕ

″
l dξ − ϕ″

j∫1

ξ
∫ξ

0
ϕ″
kϕ

″
l dξdξ( )

+3
2

2ϕ′
jϕ

″
kϕ

‴
l + ϕ″

jϕ
″
kϕ

″
l( ) + ϕ′

j∫ξ

0
ϕ″
kϕ

4( )
l dξ − ϕ″

j∫1

ξ
∫ξ

0
ϕ″
kϕ

4( )
l dξdξ]dξ

Bijkl � ∫1

0
ϕi · 2]

��
β

√
ϕ′
j∫ξ

0
ϕ″
kϕ

′
ldξ − ϕ″

j∫1

ξ
∫ξ

0
ϕ″
kϕ

′
ldξdξ( )dξ

Cijkl � ∫1

0
ϕi · ϕ′

j∫ξ

0
ϕ′
kϕ

′
ldξ − ϕ″

j∫1

ξ
∫ξ

0
ϕ′
kϕ

′
ldξdξ( )dξ

Lijkl � ∫1

0
ϕi · [l0(2ϕ″

jψ
″
kψ

″
l − ϕ″

jψ
′
kψ

‴
l + 3ϕ′

jψ
″
kψ

‴
l − ϕ′

jψ
′
kψ

4( )
l +

2ϕ′
j∫ξ

0
ψ″
kψ

4( )
l dξ − 2ϕ″

j∫1

ξ
∫ξ

0
ψ″
kψ

4( )
l dξdξ)

+]2 ϕ′
j∫ξ

0
ψ″
kψ

″
l dξ − ϕ″

j∫1

ξ
∫ξ

0
ψ″
kψ

″
l dξdξ( )

+3
2

ϕ″
jψ

″
kψ

″
l + 2ϕ′

jψ
″
kψ

‴
l( ) + ϕ′

j∫ξ

0
ψ″
kψ

4( )
l dξ − ϕ″

j∫1

ξ
∫ξ

0
ψ″
kψ

4( )
l dξdξ]dξ

Mijkl � ∫1

0
ϕi · 2]

��
β

√
ϕ′
j∫ξ

0
ψ″
kψ

′
ldξ − ϕ″

j∫1

ξ
∫ξ

0
ψ″
kψ

′
ldξdξ( )dξ

Nijkl � ∫1

0
ϕi · ϕ′

j∫ξ

0
ψ′
kψ

′
ldξ − ϕ″

j∫1

ξ
∫ξ

0
ψ′
kψ

′
ldξdξ( )dξ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

and j, k, l run from 1 to n.
Let [15–17].

qi � xi, _qi � xi+n, pi � xi+2n, _pi � xi+3n (11)

Transform Eq. 9 into a first-order form:

_X � LX +N X( ) (12)
In Eq. 12

L �
0 I
−K −C

0 0
0 0

0 0
0 0

0 I
−K −C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

whereK is an n-order matrix whose elements are kij; C is an n-order
matrix whose elements are cij; I is an n-order unit matrix; 0 is a
n-order matrix whose elements are all zeros. N(X) represents the
nonlinear term in Eq. 12:

N X( ) � 0,/0︸!!︷︷!!︸
1−−n

, N1 X( ),/, Nn X( ), 0,/0︸!!︷︷!!︸
1−−n

, N1+n X( ),/, N2n X( )⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦Τ

(14)
where Ni(X) and Ni+n(X) are shown below.
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Ni X( ) � −Aijklxjxkxl − Bijklxjxkxl+n − Cijklxjxk+nxl+n

− Lijklxjxk+2nxl+2n −Mijklxjxk+2nxl+3n −Nijklxjxk+3nxl+3n
(15)

Ni+n X( ) � −Aijklxj+2nxk+2nxl+2n − Bijklxj+2nxk+2nxl+3n

− Cijklxj+2nxk+3nxl+3n − Lijklxj+2nxkxl −Mijklxj+2nxkxl+n

−Nijklxj+2nxk+nxl+n
(16)

3.2 Reduced-order equations

3.2.1 Critical flow velocity
By examining the degeneracy of the linear part of Eq. 12, the

critical flow velocity can be given.

_X � LX (17)

Eq. 17 can be written as

_X1
_X2

[ ] � L1 0
0 L2

[ ] X1

X2
[ ] (18)

where “0” is a 2n-order matrix whose elements are all zeros, and

L1 � L2 � 0 I
−K −C[ ],

In Eq. 18, “0” in L1 and L2 are n-order matrices whose elements
are all zero, and X1 and X2 are given below.

X1 � q1,/qn︸!!!︷︷!!!︸
n

, _q1,/ _qn︸!!!︷︷!!!︸
n

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦Τ � x1,/, x2n[ ]Τ,

X2 � p1,/pn︸!!!︷︷!!!︸
n

, _p1,/ _pn︸!!!︷︷!!!︸
n

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦Τ � x2n+1,/, x4n[ ]Τ

It can be seen that X1 and X2 are non-coupling, and they can be
written as

_X1 � L1X1 (19)
_X2 � L2X2 (20)

Considering L1 � L2, Eqs 19, 20 have the same form. No matter
how the parameters change, the eigenvalues of L1, L2 are identical, so
Eqs 19, 20 degenerate at the same time. Because the instability mode
of this type of cantilevered fluid-conveying pipe [Eqs. 19, 20] is the
occurrence of flutter [50, 91], the degeneracy forms of Eqs 19, 20 are
that L1, L2 have a pair of equivalent pure imaginary eigenvalues
± iω0 at the same time, which is equivalent to the degeneracy form of
the matrix L with two pairs of “semi-simple” pure imaginary

FIGURE 3
The critical flow velocity-mass ratio curve: (A) The exact solution and the solutions corresponding to themode truncation numbers 2, 4, 6, 8, and 9;
(B) The exact solution and the solutions corresponding to the mode truncation numbers 8, 9, 11, 13, and 15; The critical frequency-mass ratio curve: (C)
The exact solution and the solutions corresponding to the mode truncation numbers 2, 4, 6, 8, and 9; (D) The exact solution and the solutions
corresponding to the mode truncation numbers 8, 9, 11, 13, and 15.
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eigenvalues ± iω0,± iω0. Therefore, the critical flow velocity is defined as
follows. At a given l0 and mass ratio β, the critical flow velocity (denoted
as ]c) is the one when matrix L has two pairs of pure imaginary
eigenvalues. The imaginary part of the pure imaginary eigenvalues
± iω0, i.e., ω0, is called ‘critical frequency’, which represents the
natural frequency of the pipe at ]c. For a processed pipe, l0 is given,
and the fluid in the pipe depends on the specific application scenario.
Hence, when examining the critical flow velocity, the value of l0 can be
determined first; then, the variation of ]c with the mass ratio β is studied,
and the “critical flow velocity-mass ratio curve” is drawn. The pure
imaginary eigenvalues ± iω0,± iω0 are called critical eigenvalues of
which real parts generally change to be non-zero when flow velocity
has an increment around ]c. And the change rate of the real part of the
critical eigenvalue with respect to the flow velocity will be
investigated later.

3.2.2 Reduced-order equations
At a given l0 and mass ratio β, when the flow velocity has a

change of ε near the critical value ]c, the original equation can be
written as

_X � L υc + ε( )X +N X( ) (21)

Denote L0 � L(]c). < ·, ·> is used to represent the inner
product, defined as < x, y > � xΤ�y. “Τ” and “�” represent the
transpose and conjugate, respectively. L0* represents the conjugate
operator of L0, and it satisfies 〈L0x, y〉 � 〈x, L*0y〉. For the matrix,
L0* � �L0

Τ. The eigenvalues set of a linear operator is the same as that
of its conjugate operator. However, the eigenvectors need to be
discussed separately. Accordingly, this study further defines w(i)

0

(�w(i)
0 ) and q(i)0 (�q(i)0 ) as the characteristic eigenvectors of L0 and L0*

corresponding to eigenvalues iω0(−iω0),−iω0(iω0), respectively.
These quantities are related as

L0w
1( )
0 � iω0w

1( )
0 , L0 �w

1( )
0 � −iω0 �w

1( )
0 , L0w

2( )
0 � iω0w

2( )
0 ,

L0 �w
2( )

0 � −iω0 �w
2( )
0 , L0

*q 1( )
0 � −iω0q

1( )
0 , L0

*�q 1( )
0 � iω0�q

1( )
0 ,

L0
*q 2( )

0 � −iω0�q
2( )

0 , L0
*q 2( )

0 � iω0�q
2( )

0 (22)

The high-dimensional (specifically, 4n-dimensional, where n is
the number of truncation modes) ordinary differential system (12)
can be reduced and simplified to a 4-dimensional equations
according to the method described in [70] (z1, z2 are
complex numbers).

_z1 � iω0z1 + ελ′εz1
+F2100z21�z1 + F1011z1z2�z2 + F0120�z1z22 + O /( )

_z2 � iω0z2 + ελ′εz2
+H0021z22�z2 +H1110z1�z1z2 +H2001z21�z2 + O /( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (23)

where

λ′ε � 〈L′
εw

1( )
0 , q 1( )

0 〉 � 〈L′
εw

2( )
0 , q 2( )

0 〉 (24)

L′
ε �

0 0 0 0
−K′ −C′ 0 0
0 0 0 0
0 0 −K′ −C′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Both K′ and C′ are n-order matrices, and their elements are

kij′ � 2]c ∫1

0
ϕiϕ

″
jdξ, cij

′ � 2
��
β

√ ∫1

0
ϕiϕ

′
jdξ, respectively.

The coefficients F2100, F1011, F0120, H0021, H1110 and H2001 are
determined by Eq. 25.

F2100 � 1
2
< q 1( )

0 ,C w 1( )
0 ,w 1( )

0 , �w 1( )
0 )> , F1011 � < q 1( )

0 ,(
C w 1( )

0 ,w 2( )
0 , �w 2( )

0 )> , F0120 � 1
2
< q 1( )

0 ,C �w 1( )
0 ,w 2( )

0 ,w 2( )
0 )> ,((

H0021 � 1
2
< q 2( )

0 ,C w 2( )
0 ,w 2( )

0 , �w 2( )
0 )> , H1110 � < q 2( )

0 ,C w 1( )
0 , �w 1( )

0 ,w 2( )
0 )((

> , H2001 � 1
2
< q 2( )

0 ,C w 1( )
0 ,w 1( )

0 , �w 2( )
0 )> .( (25)

where C(·, ·, ·) denotes the multiple symmetric linear types
determined by N(X). For any 4n-dimensional vector

α � α1,/, α4n[ ]Τ, β � β1,/, β4n[ ]Τ, γ � γ1,/, γ4n[ ]Τ.
considering the form of N(X) in Eq. 14 and according to the
definition of multiple symmetric linear types [92], we have

FIGURE 4
The rate of change of the real part of the critical eigenvalue: (A) The exact solution and the solutions corresponding to themode truncation numbers
as 2, 4, 6, 8, and 9, respectively; (B) The exact solution and the solutions corresponding to the mode truncation numbers as 8, 9, 11, 13, and 15,
respectively.
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FIGURE 5
(Continued).
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FIGURE 5
(Continued). The resonance term coefficients of the second-order discretization equation of the macro pipe, the stability of two types of periodic
motion, the phase diagram, and the configuration diagram: (A–C) The coefficients of the reduced-order equations; (D) the stability of spatial periodic
motion; (E) the stability of planar periodic motion. (D1) and (E1) The enlarged version of (D, E) near the “*”. (F) the position relationship of the free ends of
the pipe in two directions; (G) the velocity-displacement relationship diagram of the free ends of the pipe in one direction; (H) the transient process
of thewhole pipe vibration; (I) the steady-state vibration of thewhole pipe. The blue (red) color represents the transient (steady-state) motion in (F–I). The
interpretation of (J–M) is compared to (F–I); The Poincaré map: (N) corresponding to (F–I); (O) corresponding to (J–M). The blue points correspond to
transient motion, and the red points correspond to steady-state motion (i.e., fixed point).
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C α, β, γ( ) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0,/0︸!!︷︷!!︸
1−−n

, C1 α, β, γ( ),/, Cn α, β, γ( ), 0,/0︸!!︷︷!!︸
1−−n

, C1+n

α, β, γ( ),/, C2n α, β, γ( )⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Τ

(26)

where

Ci α, β, γ( ) � ∑4n
j,k,l�1

∂3Ni X( )
∂xj∂xk∂xl

∣∣∣∣∣∣ X�0αjβkγl
Ci+n α, β, γ( ) � ∑4n

j,k,l�1
∂3Ni+n X( )
∂xj∂xk∂xl

∣∣∣∣∣∣ X�0αjβkγl

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(27)

According to Eqs 15, 16, the following results can be obtained.

Ci α, β, γ( ) � − Aijkl αjβkγl + αjβlγk + αkβjγl + αlβjγk + αkβlγj + αlβkγj( )
− Bijkl αjβkγl+n + αjβl+nγk + αkβjγl+n + αl+nβjγk + αkβl+nγj + αl+nβkγj( )
− Cijkl αjβk+nγl+n + αjβl+nγk+n + αk+nβjγl+n + αl+nβjγk+n + αk+nβl+nγj + αl+nβk+nγj( )
− Lijkl αjβk+2nγl+2n + αjβl+2nγk+2n + αk+2nβjγl+2n + αl+2nβjγk+2n + αk+2nβl+2nγj + αl+2nβk+2nγj( )
−Mijkl αjβk+2nγl+3n + αjβl+3nγk+2n + αk+2nβjγl+3n + αl+3nβjγk+2n + αk+2nβl+3nγj + αl+3nβk+2nγj( )
−Nijkl αjβk+3nγl+3n + αjβl+3nγk+3n + αk+3nβjγl+3n + αl+3nβjγk+3n + αk+3nβl+3nγj + αl+3nβk+3nγj( )

(28)

Ci+n α, β, γ( ) � − Aijkl(αj+2nβk+2nγl+2n + αj+2nβl+2nγk+2n + αk+2nβj+2nγl+2n
+αl+2nβj+2nγk+2n + αk+2nβl+2nγj+2n + αl+2nβk+2nγj+2n)
− Bijkl(αj+2nβk+2nγl+3n + αj+2nβl+3nγk+2n + αk+2nβj+2nγl+3n
+αl+3nβj+2nγk+2n + αk+2nβl+3nγj+2n + αl+3nβk+2nγj+2n)
− Cijkl(αj+2nβk+3nγl+3n + αj+2nβl+3nγk+3n + αk+3nβj+2nγl+3n
+αl+3nβj+2nγk+3n + αk+3nβl+3nγj+2n + αl+3nβk+3nγj+2n)
− Lijkl αj+2nβkγl + αj+2nβlγk + αkβj+2nγl + αlβj+2nγk + αkβlγj+2n(
+ αlβkγj+2n) −Mijkl(αj+2nβkγl+n + αj+2nβl+nγk

+ αkβj+2nγl+n+αl+nβj+2nγk + αkβl+nγj+2n + αl+nβkγj+2n)−Nijkl(αj+2nβk+nγl+n + αj+2nβl+nγk+n
+αk+nβj+2nγl+n+αl+nβj+2nγk+n + αk+nβl+nγj+2n + αl+nβk+nγj+2n)

(29)

These Eqs 28 and 29 are the specific forms of Eq. 26, where i run
from 1 to n [see Eq. 8]. Eq. 28 are these terms from C1(α, β, γ) to
Cn(α, β, γ) in Eq. 26. Eq. 29 are these terms from C1+n(α, β, γ) to
C2n(α, β, γ) in Eq. 26.

In this way, Eq. 26, i.e., the specific form of C(α, β, γ) is known.
By combining the eigenvectorsw(1)

0 , �w(1)
0 ,w(2)

0 , and �w(2)
0 of L0 as well

as the eigenvectors q(1)0 , �q(1)0 , q(2)0 , and �q(2)0 of L0*, the specific
coefficients shown in Eqs 24, 25 can be calculated, thereby
obtaining the specific form of Eq. 23.

3.2.3 Periodic motion and its stability
For Eq. 23, by taking polar coordinate transformation

z1 � r1eiθ1 , z2 � r2eiθ2 , Eq. 23 can be written as [70]

_r1 � εRe λ′ε( )r1 + ReF2100r31 + ReF1011r1r22
+ ReF0120 cos 2θ2 − 2θ1( ) − ImF0120 sin 2θ2 − 2θ1( )[ ]r1r22

_r2 � εRe λ′ε( )r2 + ReH0021r32 + ReH1110r2r21
+ ReH2001 cos 2θ2 − 2θ1( ) + ImH2001 sin 2θ2 − 2θ1( )[ ]r2r21

_θ1 � ω0 + εIm λ′ε( ) + ImF2100r21 + ImF1011r22
+ ReF0120 sin 2θ2 − 2θ1( ) + ImF0120 cos 2θ2 − 2θ1( )[ ]r22

_θ2 � ω0 + εIm λ′ε( ) + ImH0021r22 + ImH1110r21
+ −ReH2001 sin 2θ2 − 2θ1( ) + ImH2001 cos 2θ2 − 2θ1( )[ ]r21

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(30)

Only when εRe(λ′ε)> 0, the vibration of the pipe does not
disappear. The vibration amplitude is supposed to be “small”, so
the following scale transformation is
conducted r1 →

��|ε|√
r1, r2 →

��|ε|√
r2,

With this scale transformation, Eq. 30 becomes

FIGURE 6
(A) The position relationship of the free ends of the pipe in two directions; (B) the velocity-displacement relationship diagram of the free ends of the
pipe in one direction.
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FIGURE 7
(Continued).
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FIGURE 7
(Continued). The resonance term coefficients of the second-order discretization equation of the macro pipe, the stability of two types of periodic
motion, the phase diagram, and the configuration diagram: (A–C) The coefficients of the reduced-order equations; (D) the stability of spatial periodic
motion; (E) the stability of planar periodic motion. (D1) and (E1) The enlarged version of (D) and (E) near the “*” and “o”. The interpretation of (F–I) is
compared to Figures 5F–I. The interpretation of (j–m) is compared to Figures 5J–M; The Poincaré map: (N) corresponding to (F–I); (O)
corresponding to (J–M). The blue points correspond to transient motion, and the red points correspond to steady-state motion (i.e., fixed point).
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FIGURE 8
(Continued).
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FIGURE 8
(Continued). The resonance term coefficients of the second-order discretization equation of the macro pipe, the stability of two types of periodic
motion, the phase diagram, and the configuration diagram: (A–C) The coefficients of the reduced-order equations; (D) the stability of spatial periodic
motion; (E) the stability of planar periodic motion. (D1) and (E1) The enlarged version of (D) and (E) near the “*” and “o”. The interpretation of (F–I) is
compared to Figures 5F–I. The interpretation of (J–M) is compared to Figures 5J–M; The Poincaré map: (N) corresponding to (F–I); (O)
corresponding to (J–M). The blue points correspond to transient motion, and the red points correspond to steady-state motion (i.e., fixed point).
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_r1 � ε| |{ Re λ′ε( )∣∣∣∣∣ ∣∣∣∣∣r1 + ReF2100r31 + ReF1011r1r22
+ ReF0120 cos 2θ2 − 2θ1( ) − ImF0120 sin 2θ2 − 2θ1( )[ ]r1r22}

_r2 � ε| |{ Re λ′ε( )∣∣∣∣∣ ∣∣∣∣∣r2 + ReH0021r32 + ReH1110r2r21
+ ReH2001 cos 2θ2 − 2θ1( ) + ImH2001 sin 2θ2 − 2θ1( )[ ]r2r21}

_θ1 � ω0 + ε| | sign{ ε( )Im λ′ε( ) + ImF2100r21 + ImF1011r22
+ ReF0120 sin 2θ2 − 2θ1( ) + ImF0120 cos 2θ2 − 2θ1( )[ ]r22}

_θ2 � ω0 + ε| | sign{ ε( )Im λ′ε( ) + ImH0021r22 + ImH1110r21
+ −ReH2001 sin 2θ2 − 2θ1( ) + ImH2001 cos 2θ2 − 2θ1( )[ ]r21}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(31)

Then, variable substitution ϕ � θ2 − θ1 is conducted and let
ρ � [r1, r2, ϕ]Τ, then Eq. 31 can be rewritten as

_ρ
_θ1

[ ] � 0
ω0

[ ] + ε
g ρ( )
Ω ρ( )[ ] (32)

where

g ρ( ) �
Re λ′ε( )∣∣∣∣∣ ∣∣∣∣∣r1 + ReF2100r31 + ReF1011r1r22 + ReF0120 cos 2ϕ( ) − ImF0120 sin 2ϕ( )[ ]r1r22
Re λ′ε( )∣∣∣∣∣ ∣∣∣∣∣r2 + ReH0021r32 + ReH1110r2r21 + ReH2001 cos 2ϕ( ) + ImH2001 sin 2ϕ( )[ ]r2r21

−ReH2001 sin 2ϕ( ) + ImH2001 cos 2ϕ( ) + ImH1110 − ImF2100[ ]r21{
+ ImH0021 − ImF1011 − ReF0120 sin 2ϕ( ) − ImF0120 cos 2ϕ( )[ ]r22}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

FIGURE 9
(Continued).
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and

Ω ρ( ) � sign ε( )Im λ′ε( ) + ImF2100r
2
1 + ImF1011r

2
2

+ ReF0120 sin 2ϕ( ) + ImF0120 cos 2ϕ( )[ ]r22 (34)

In Eq. 32, ρ � [r1, r2, ϕ]Τ are slow variables and θ1 is a fast variable
of which configuration space is Τ1. After introducing a time scale
transformation τ → ετ, the derivative of ρ with respect to slow time
ετ are equal to the time averaging of g(ρ), which are equal to the spatial
averaging of g(ρ) on the configuration spaceΤ1 of the fast variable θ1, i.e.,

_ρ � 1
2π

∫2π

0
g ρ( )dθ1 � g ρ( ) (35)

Thus one can write Eq. 35 in the following form

⎧⎪⎨⎪⎩ _r1 � α| |r1 + a1r31 + a2r1r22 + a3 cos 2ϕ( ) − b3 sin 2ϕ( )[ ]r1r22
_r2 � α| |r2 + a1r32 + a2r2r21 + a3 cos 2ϕ( ) + b3 sin 2ϕ( )[ ]r2r21

_ϕ � −a3 sin 2ϕ( ) + b3 cos 2ϕ( ) + b2 − b1[ ]r21
+ b1 − b2 − a3 sin 2ϕ( ) − b3 cos 2ϕ( )[ ]r22 (36)

where (·) denotes the derivative with respect to slow time ετ and

α � Re λ′ε( ),
a1 � ReF2100 � ReH0021, b1 � ImF2100 � ImH0021,
a2 � ReF1011 � ReH1110, b2 � ImF1011 � ImH1110,
a3 � ReF0120 � ReH2001, b3 � ImF0120 � ImH2001.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (37)

FIGURE 9
(Continued). The resonance term coefficients of the second-order discretization equation of the macro pipe, the stability of two types of periodic
motion, the phase diagram, and the configuration diagram: (A–C) The coefficients of the reduced-order equations; (D) the stability of spatial periodic
motion; (E) the stability of planar periodic motion. (D1) and (E1) The enlarged version of (D) and (E) near the “*”. The interpretation of (F–I) is compared to
Figures 5F–I; (J) The Poincaré map corresponding to (F–I). The blue points correspond to transient motion, and the red points correspond to
steady-state motion (i.e., fixed point).
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The equilibrium points of the averaging Eq. 36 correspond to
the periodic motions of the original Eq. 23, and the stability of the
two equations corresponds to each other in the case of
nondegeneracy.

Regardless of whether α is positive or negative, it is known
from Ref. [70] that one of the eigenvalues of spatial periodic

motions and planar periodic motions is negative and equal to −2α
or 2α, and the motion stability depends on the remaining
eigenvalues. For spatial periodic motion, it is stable when
a3/a2 is positive and unstable when a3/a2 is negative; for
planar periodic motion, it is unstable when a3/a1 is positive
and stable when a3/a1 is negative.

FIGURE 10
The resonance term coefficients of the second-order discretization equation of the macro pipe, the stability of two types of periodic motion: (A–C)
The coefficients of the reduced-order equations; (D) the stability of spatial periodic motion; (E) the stability of planar periodic motion.

FIGURE 11
(A) The stability of spatial periodic motion for n = 15 and 16; (B) The stability of planar periodic motion for n = 15 and 16.
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FIGURE 12
(Continued).
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4 The influences of mode truncation
number and “reasonable mode
truncation numbers”

This study considers the nonlinear dynamic characteristics of
the macro pipe (l0 � 0) and micro-scale pipes (l0 � 0.2 and
l0 � 0.5). The key point is to summarize the “reasonable mode
truncation numbers” needed to study the vibration of the fluid-

conveying pipe with the Galerkin method. To improve the
paper’s readability, the Galerkin method is first used to
explore the nonlinear dynamic characteristics of the macro
pipe (i.e., l0 � 0). In detail, the truncation mode numbers are
taken incrementally; the convergence of the dynamic
characteristics with respect to the “mode truncation numbers”
is investigated through longitudinal comparison; combined with
the horizontal comparison, the “reasonable mode truncation

FIGURE 12
(Continued). (A) The stability of spatial periodic motion for infinite dimensional analysis and finite dimensional analysis with n = 15; (B) The stability of
planar periodic motion for infinite dimensional analysis and finite dimensional analysis with n = 15. (A1–A5) The enlarged version of circles 1 to 5 in (A);
(B1–B5) The enlarged version of rectangles 1 to 5 in (B).
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numbers” needed to study the dynamics of this type of system is
summarized. Then, a horizontal comparison is conducted
between the results obtained based on “reasonable mode
truncation numbers” and the results obtained based on infinite
dimensional analysis [70], and the “error” is calculated.

Subsequently, the nonlinear dynamics phenomena of the
micro-scale pipes (l0 � 0.2 and l0 � 0.5) are investigated
according to the “reasonable mode truncation numbers”.
Finally, the obtained results are compared with those reported
in Ref. [70].

FIGURE 13
(A) The critical flow velocity-mass ratio curve for micro-scale pipes; (B) The rate of change of the real part of the critical eigenvalue for micro-scale
pipes; (C) The critical frequencies-mass ratio curve for micro-scale pipes.

FIGURE 14
Flutter boundaries as a function of outside diameter D, (A) critical speed and (B) critical frequencies [91].
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4.1 Case of macro-pipes (l0 � 0)

4.1.1 Influence of the mode truncation number on
the critical flow velocity-mass ratio curve and the
critical frequency-mass ratio curve

The critical flow velocity-mass ratio curves and the critical
frequency-mass ratio curves obtained by different orders of
Galerkin truncation are different. The curves are drawn for the
mode truncation numbers of n = 2, n = 4, n = 6, n = 8, n = 9, n = 11,
n = 13, and n = 15. Then, the curves are compared with the exact
solution reported in Ref. [70].

As shown in Figure 3A, C, the critical flow velocity-mass ratio
curves and the critical frequency-mass ratio curves obtained by the
Galerkin method are almost consistent with the exact solution when
the mode truncation number is 8 and 9. Meanwhile, Figure 3B and
Figure 3D shows that the critical flow velocity-mass ratio curves and
the critical frequency-mass ratio curves given by the Galerkin
method show almost no change when the mode truncation
number increases from 8. Thus, for the prediction of critical flow
velocity and critical frequency, the Galerkin truncation using
8 modes can obtain quite accurate results. Then, when the actual
flow velocity exceeds the critical flow velocity, what type of motion
will occur for the pipe conveying fluid, and can the Galerkin
discretization of the 8 modes accurately predict its dynamic
characteristics? These issues are analyzed below. The analysis
result indicates that, in the prediction of the dynamic behavior of

the fluid-conveying pipe after instability occurs, the Galerkin
discretization of 8 modes cannot provide accurate results, and
more modes truncations are required for accurate predictions.

4.1.2 Influences of themode truncation number on
periodic motion

Based on the above analysis, the following figures show the data
(Eqs 24 and 25) required for the reduced-order Eq. 23 and the data
[a3/a2 and a3/a1, shown in Eq. 37 required for determining the
stability. Then, by comparing these figures with each other and with
the infinite dimensional analysis results in Ref. [70], the number of
modes truncations needed to accurately predict the system dynamics
properties can be determined.

(a) The change rate of the real part of the critical eigenvalue under
different mode truncation numbers, i.e., α or Re(λ′ε), shown in
Eqs 37, 24:

From Figure 4A, it can be seen that the change rate of the real part
of the critical eigenvalue provided by the Galerkin method is highly
consistent with the exact solution when the mode truncation number is
8 and 9. A more detailed comparison, as shown in Figure 4B, indicates
that the exact solution of the change rate of the real part of the critical
eigenvalue is completely consistent with the Galerkin solution when the
mode truncation number is 9, 11, 13, and 15, respectively. In contrast,
compared with the other solutions in Figure 4B, when the mode

FIGURE 15
The resonance term coefficients of the second-order discretization equation of the micro pipe with l0 � 0.2, the stability of two types of periodic
motion: (A–C) The coefficients of the reduced-order equations; (D) the stability of spatial periodic motion; (E) the stability of planar periodic motion.
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truncation number is 8, the Galerkin solution has a little deviation in the
tail (i.e., the section where the mass ratio is greater than 0.9). Hence, for
predicting the change rate of the real part of the critical eigenvalue, the
Galerkin truncation of 9 modes can already obtain quite accurate
results. The research in [70] indicates that (i) at Re(λ′ε)> 0, flutter
occurs in the pipe when the flow velocity increment is larger than zero,
and the original straight configuration of the pipe is stable when the
increment is smaller than zero; (ii) at Re(λ′ε)< 0, flutter occurs in the
pipe when the flow velocity increment is smaller than zero, and the
original straight configuration of the pipe is stable when the increment
is larger than zero. The following study demonstrates that the Galerkin
discretization of 9 modes is insufficient to provide accurate qualitative
dynamic characteristics of the pipe, butmoremode truncation numbers
are needed.

(b) The nonlinear resonance term (see Eqs 37, 25) and the
stability criterion of periodic motion (a3/a2 and a3/a1) [see
Eq. 37 for the definitions of a1, a2, a3]:

Based on the above analysis about the effect of the mode
truncation number on the critical flow velocity-mass ratio curve,
the critical frequency-mass ratio curve and the change rate of the real
part of the critical eigenvalue, let us start with n = 9 and take the
truncation mode numbers incrementally to obtain the reasonable
truncated mode number required to study this type of system.
Subsequently, the resolutions of the ordinary differential
equations set (9) are conducted using Runge-Kutta methods.

When n = 9, Figures 5A–C shows the variation curve of the high-
order term coefficient with the mass ratio, and Figures 5D, E
demonstrates the stability of the two types of periodic motion. A
mass ratio of β = 0.92 [represented by “o” in Figures 5D,E] and a flow
velocity of υ � 17.42 + 0.18 � 17.6 (17.42 is the critical flow velocity
corresponding to the mass ratio β = 0.92 when n = 9, and 0.18 is the
increment of flow velocity) are used to obtain the numerical solution
to Eq. 9 and then substitute it into Eq. 7, thereby obtaining Figures
5F–I. Specifically, Figure 5F shows the relationship between the
positions of the free ends of the pipe, and the pipe converges from
the transient solution (in blue color) to the steady-state planar
periodic motion (in red color). Figure 5G shows the relationship
between displacement and velocity of the free ends of the pipe in one
direction, and it is demonstrated that the system does not perform
planar quasi-periodic motion or chaotic motion. Figure 5H, I show
the motion configuration diagrams of the whole pipe. As time
increases, the transient solution (in blue color) in Figure 5H
gradually changes to the steady-state planar periodic motion (in
red color) in Figure 5I, and the black line represents the trajectory of
the free ends of the pipe. The figure presents stable planar periodic
motion, which is consistent with the infinite dimensional analysis
results in Ref. [70]. Furthermore, the Poincaré map (with _η � 0 as
the Poincaré section) is shown in Figure 5N.

It needs to be explained that in the drawing of Figure 5H, I, the
displacement of point (ξ, 0, 0) on the pipe centerline along the
length direction can be determined using the inextensibility
condition (Eq. 3) and the dimensionless process (Eq. 6). It is

FIGURE 16
The resonance term coefficients of the second-order discretization equation of the micro pipe with l0 � 0.5, the stability of two types of periodic
motion: (A–C) The coefficients of the reduced-order equations; (D) the stability of spatial periodic motion; (E) the stability of planar periodic motion.
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∫ξ

0

������������
1 − η′2 + ζ′2( )√

− 1[ ]dξ (38)

It is significant that the nonlinear terms have an important
influence on the dynamics of pipe. For the same parameters as
Figures 5F-G, if only linear terms considered, the displacement
and velocity of pipe will go toward infinity, as shown in Figure 6.

To compare with the results obtained when n = 11 in the
following section, this study here sets the mass ratio β =
0.725 [represented by “*” in Figures 5D, E, and Figure 5(D1, E1)
is the enlargement near the “*”] and the flow velocity υ � 12.96 +
0.24 � 13.2 (12.96 is the critical flow velocity corresponding to the
mass ratio β = 0.725 when n = 9, and 0.24 is the increment of the flow
velocity) to obtain the numerical solution to Eq. 9 and then
substitute it into Eq. 7, thereby obtaining Figures 5J–M. The
interpretations of Figures 5J–M can be compared to those of
Figures 5F–I, respectively. According to the observation, the 9th-
order truncation at this mass ratio gives the result that “the system
performs stable spatial periodic motion”. The Poincaré map (with
_η � 0 as the Poincaré section) is shown in Figure 5O. In contrast, the
analysis below demonstrates that the 11th-order truncation at this
mass ratio yields the result that “the system performs stable planar
periodic motion”. Meanwhile, the infinite dimensional analysis in
[70] {see Figures 12A, B in Ref. [70] or Figures 12A, B in this study}

also indicates that the pipe performs stable planar periodic motion
at this time.

When n = 11, Figures 7A–C shows the variation curve of the
high-order term coefficient with the mass ratio, and Figures 7D, E
presents the stability of the two types of periodic motion.

The results obtained when n = 11 have a minor correction to the
results obtained when n = 9, as can be seen from the following
comparison. This study sets a mass ratio of β = 0.725 again
{represented by “*” in Figures 7D, E, and Figure 7(D1, E1) is the
enlargement near the “*”} and a flow velocity of υ � 12.96 + 0.24 �
13.2 (12.96 is the critical flow velocity corresponding to the mass
ratio β = 0.725 when n = 11, and 0.24 is the increment of flow
velocity) to obtain the numerical solution to Eq. 9 and then
substitute it into Eq. 7, thereby obtaining Figures 7F–I.
Obviously, this figure represents stable planar periodic motion,
which is consistent with the infinite dimensional analysis results
in the [70]. Furthermore, the Poincaré map (with _η � 0 as the
Poincaré section) is shown in Figure 7N. The interpretations of
Figures 7F–I can be compared to those of Figures 5F–I, respectively.

To compare with the results obtained when n = 13 in the
following section, this study here sets the mass ratio β =
0.715 [represented by “O” in Figures 7D, E, and Figure 7 (D1,
E1) is the enlargement near the “O”] and the flow velocity υ �
12.88 + 0.32 � 13.2 (12.88 is the critical flow velocity corresponding

FIGURE 17
The stabilities of (A) spatial and (B) planar periodic motion for infinite dimensional analysis and finite dimensional analysis with n = 15 when l0 � 0.2;
The stabilities of (C) spatial and (D) planar periodic motion for infinite dimensional analysis and finite dimensional analysis with n = 15 when l0 � 0.5.
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FIGURE 18
The stabilities of (A) spatial and (B) planar periodic motion for macro pipe (i.e., l0 � 0) andmicro pipe with l0 � 0.2; The stabilities of (C) spatial and (D)
planar periodic motion for infinite dimensional analysis and finite dimensional analysis with n = 15 when l0 � 0.2. (A1) and (B1) The enlarged version of (A)
and (B) near the black point; (C1) and (D1) The enlarged version of (C) and (D) near the black point.
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FIGURE 19
(A) and (E) the position relationship of the free ends of the pipe in two directions; (B) and (F) the velocity-displacement relationship diagram of the
free ends of the pipe in one direction; (C) and (G) the transient process of thewhole pipe vibration; (D) and (H) the steady-state vibration of thewhole pipe.
The blue (red) color represents the transient (steady-state) motion in (A–H); The Poincaré map: (I) corresponding to (A–D); (J) corresponding to (E–H).
The blue points correspond to transient motion, and the red points correspond to steady-state motion (i.e., fixed point).
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to the mass ratio β = 0.715 when n = 13, and 0.32 is the increment of
the flow velocity) to obtain the numerical solution to Eq. 9 and then
substitute it into Eq. 7, thereby obtaining Figures 7J–M. The
interpretations of Figures 7J–M can be compared to those of
Figures 5J–M, respectively. The observation indicates that the
11th-order truncation at this mass ratio gives the result that “the
system performs stable spatial periodic motion”. The Poincaré map
(with _η � 0 as the Poincaré section) is shown in Figure 7O. In
contrast, the analysis below demonstrates that the 13th-order
truncation at this mass ratio yields the result that “the system
performs stable planar periodic motion”. Meanwhile, the infinite
dimensional analysis in Ref. [70] {see Figures 12A, B in Ref. [70] or
Figures 12A,B in this study} also indicates that the pipe performs
stable planar periodic motion at this time.

When n = 13, Figures 8A–C illustrates the variation curve of the
high-order term coefficient with the mass ratio, and Figures 8D,E
depicts the stability of the two types of periodic motion.

The results obtained when n = 13 have a minor correction to the
results obtained when n = 11, as indicated by the comparison below.
This study sets a mass ratio of β = 0.715 again [represented by “O” in
Figures 8D,E, and Figures 8(D1, E1) is the enlargement near the “O”]
and a flow velocity of υ � 12.88 + 0.32 � 13.2 (12.88 is the critical
flow velocity corresponding to the mass ratio β = 0.715 when n = 13,
and 0.32 is the increment of flow velocity) to obtain the numerical
solution to Eq. 9 and then substitute it into Eq. 7, thereby obtaining
Figures 8F–I. Obviously, the figure represents stable planar periodic
motion, which is consistent with the infinite dimensional analysis
results in [70]. Furthermore, the Poincaré map (with _η � 0 as the

FIGURE 20
(A) The position relationship of the free ends of the pipe in two directions; (B) the velocity-displacement relationship diagram of the free ends of the
pipe in one direction; (C) the transient process of thewhole pipe vibration; (D) the steady-state vibration of the whole pipe. The blue (red) color represents
the transient (steady-state) motion in (A–D); (E) The Poincaré map corresponding to (A–D). The blue points correspond to transient motion, and the red
points correspond to steady-state motion (i.e., fixed point).
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Poincaré section) is shown in Figure 8N. The interpretations of
Figures 8F–I can be compared to those of Figures 5F–I, respectively.

To compare with the results obtained when n = 15 in the
following section, this study here sets the mass ratio β =
0.708 [represented by “*” in Figures 8D, E, and Figures 8(D1,
E1) is the enlargement near the “*”] and the flow velocity υ �
12.83 + 0.37 � 13.2 (12.83 is the critical flow velocity corresponding
to the mass ratio β = 0.708 when n = 13, and 0.37 is the increment of
the flow velocity) to obtain the numerical solution of Eq. 9 and then
substitute it into Eq. 7, thereby obtaining Figures 8J–M. The
interpretations of Figures 8J–M can be compared to those of
Figures 5J–M, respectively. The observation indicates that the
13th-order truncation at this mass ratio gives the result that “the
system performs stable spatial periodic motion”. The Poincaré map
(with _η � 0 as the Poincaré section) is shown in Figure 8O. In
contrast, the analysis below demonstrates that the 15th-order
truncation at this mass ratio yields the result that “the system
performs stable planar periodic motion”. Meanwhile, the infinite
dimensional analysis in Ref. [70] {see Figures 12A,B in Ref. [70] or
Figures 12A,B in this study} also indicates that the pipe performs
stable planar periodic motion at this time.

When n = 15, Figures 9A–C shows the variation curve of the
high-order term coefficient with the mass ratio, and Figures 9D, E
demonstrates the stability of the two types of periodic motion.

The results obtained when n = 15 have a minor correction to the
results obtained when n = 13, as indicated by the following
comparison. This study sets a mass ratio of β = 0.708 again
[represented by “*” in Figures 9D, E, and Figures 9(D1, E1) is
the enlargement near the “*”] and a flow velocity of υ � 12.83 +
0.37 � 13.2 (12.83 is the critical flow velocity corresponding to the
mass ratio β = 0.708 when n = 15, and 0.37 is the increment of flow
velocity) to obtain the numerical solution to Eq. 9 and then
substitute it into Eq. 7, thereby obtaining Figures 9F–I.
Obviously, this figure presents stable planar periodic motion,
which is consistent with the infinite dimensional analysis results
in Ref. [70]. Furthermore, the Poincaré map (with _η � 0 as the
Poincaré section) is shown in Figure 9J. The interpretations of
Figures 9F–I can be compared to those of Figures 5F–I, respectively.

When n = 16, Figures 10A–C presents the variation curve of the
high-order term coefficient with the mass ratio, and Figures 10D, E
shows the stability of the two types of periodic motion.

By comparing Figures 9D,E and Figures 10D, E, it is found that
the two sets of figures are basically consistent in predicting the pipe’s
periodic motion properties (as shown by Figure 11). Thus, when
using the Galerkin method to investigate the qualitative dynamic
behavior of this type of system, the reasonable mode truncation
number should be set to 15, at which point the results have
converged. Meanwhile, the results obtained at the mode
truncation number of 15 are compared with those obtained
based on infinite dimensional analysis in Ref. [70] (as shown in
Figures 12A, B). It can be observed that in predicting the qualitative
dynamic behavior of the system, the two sets of figures are also very
close, and the difference lies in circles 1 to 5 and rectangles 1 to 5.
Then, Figure 12(A1–A5) and Figure 12(B1–B5) are obtained by
enlarging circles 1 to 5 and rectangles 1 to 5, respectively. The
difference between the finite dimensional analysis results with the
mode truncation number of 15 and that in Ref. [70] is represented by
the black and magenta points in the figure. By calculating the

distance between the black point and the magenta point in each
figure in Figure 12(A1–A5), the sum of the distances is obtained as
0.0701. After conducting the same calculation for Figure 12(B1–B5),
the sum of the distances is also 0.0701. Therefore, for this macro
pipe, the error between the results of finite dimensional analysis and
infinite dimensional analysis is only 7.01%, indicating a high level of
coincidence. In the following section, for finite dimensional analysis
of micro-scale pipes (l0 � 0.2 and l0 � 0.5), the mode truncation
number is set to 15.

4.2 Case of micro-scale pipes (l0 � 0.2
and l0 � 0.5)

The values of characteristic length l in Eq. 6 are dependent on the
materials made of pipes, which are given by [93].

b2h � 3 1 − μ( )l2 (39)
where μ is the Poisson’s ratio and bh is a higher-order bending
parameter. For epoxy beams, bh is 24 μm [93]. For polypropylene
beams, bh is 32 μmor 53.7 μm [94]. For steel or aluminummaterials,
bh ~ 10μm [95]. As a matter of fact, the microscale effects of
micropipes are hinged on the dimensionless material length scale
parameter l0 � Apl2G

2EI , which encompasses not only material length
scale parameter l but also involves the tension elastic modulus E,
shear elastic modulus G, as well as the cross-sectional area Ap of the
pipe and the moment of inertia I relative to its diameter.

When the mode truncation number is set to 15, the critical flow
velocity-mass ratio curves and the critical frequencies-mass ratio
curves of the two types of micro-scale pipes are illustrated in Figures
13A,C, and the variation curve regarding the change rate of the real
part of the critical eigenvalue [i.e., α or Re(λ′ε) in Eqs. 37, 24] with the
mass ratio is presented in Figure 13B. By combining Figure 3B and
Figure 4B, it can be seen that a larger l0 corresponds to a larger
critical flow velocity; however, l0 does not affect the change rate of
the real part of the critical eigenvalue.

Reference [91] investigated the linear vibration characteristics of
microscale cantilevered fluid-conveying pipes, in which the material
and geometrical properties for micro-scale pipe constituents and fluid
are taken as: l = 17.6 μm, E = 1.44 GPa, mass of pipe per unit volume
ρp = 1000 kg/m,mass of fluid per unit volume ρf = 1000 kg/m, Poisson’s
ration μ = 0.35, d/D = 0.8. Here, d and D are the inside and outside
diameters, respectively. And then, the flutter boundaries as a function of
D are shown by the red curves in Figure 14. For the aforementioned
parameters, themass ratio β = 0.64 is calculated; at D = 52.9 μm, l0 = 0.2,
and at D = 33.43 μm, l0 = 0.5. Critical flow velocities at β = 0.64 in
Figure 13A are 12.2041 and 14.5867, respectively, while in Figure 14A,
the critical flow velocities for D = 52.9 μm and D = 33.43 μm are
roughly 12.2041 and 14.5867; critical frequencies at β = 0.64 in
Figure 13C are 31.1832和37.2710, and in Figure 14B, the critical
frequencies for D = 52.9 μm and D = 33.43 μm are approximately
31.1832 and 37.2710. This demonstrates that when the model in this
paper is simplified to a linear scenario, the results are consistent with
those reported in the existing literature.

When the material length parameter is set to l0 � 0.2, Figures
15A–C shows the variation curve of the high-order term coefficient
with the mass ratio, and Figures 15D, E demonstrates the stability of
the two types of periodic motion.
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When the material length parameter is set to l0 � 0.5, Figures
16A–C presents the variation curve of the high-order term
coefficient with the mass ratio, and Figures 16D, E shows the
stability of the two types of periodic motion.

When l0 is set to 0.2, the comparison between finite dimensional
analysis and infinite dimensional analysis results is shown in Figures
17A, B. After calculation, the error in predicting the qualitative dynamic
behavior of the pipe between the two methods is 0.0746, i.e., 7.46%.
When l0 is set to 0.5, the comparison between finite dimensional
analysis and infinite dimensional analysis results is illustrated in Figures
17C, D. Through calculation, the error in predicting the qualitative
dynamic behavior of the pipe between the two methods is 0.0669,
i.e., 6.69%. For the macro pipe, the error is calculated to be 0.0701
(i.e., 7.01%), as mentioned in the previous section. Overall, whether it is
a macro pipe or a micro pipe, the error between the results obtained
using the mode truncation number of 15 and those obtained based on
infinite dimensional analysis is very small. That is, it is reasonable to use
15 modes for Galerkin discretization.

5 Discussions

When the mode truncation number is set to 15, the stability
comparison of the two types of periodic motion for l0 values of 0 and
0.2 is shown in Figures 18A, B; for l0 values of 0.2 and 0.5, the
stability comparison of the two types of periodic motion is shown in
Figures 18C, D. It can be seen that with the increase in l0, the region
corresponding to the stable planar periodic motion increases, and
the region corresponding to the stable spatial periodic motion
decreases. Meanwhile, the addition of micro-scale effects can
change the stable spatial periodic motion into stable planar
periodic motion, as shown by the black point in Figures 18A, B
[Figures 18(A1, B1) is the enlargement near the black point]. At a
mass ratio of 0.61, when l0 is 0, the pipe performs stable spatial
periodic motion, as shown in Figures 19A–D; at this time, the flow
velocity is υ � 10.07 + 0.33 � 10.4, where 10.07 is the critical flow
velocity, and 0.33 is the increment of flow velocity; the interpretation
of the subfigures in Figures 19A–D can be compared to those in
Figures 5J–M. The Poincaré map (with _η � 0 as the Poincaré
section) is shown in Figure 19I. However, when l0 is 0.2, the pipe
performs stable planar periodic motion, as shown in Figures 19E–H;
at this time, the flow velocity is υ � 11.915 + 0.285 � 12.2, where
11.915 is the critical flow velocity, and 0.285 is the increment of flow
velocity; the interpretation of the subfigures in Figures 19E–H can be
compared to those in Figures 5F–I. The Poincaré map (with _η � 0 as
the Poincaré section) is shown in Figure 19J. This is consistent with
the results of the infinite dimensional analysis in Ref. [70].

According to Eq. 4a, the dimensionless material length scale
parameter l0 is positively correlated with the bending stiffness of
pipe, which implies that a larger l0 leads to a higher bending stiffness.
As shown in Figure 3B, Figure 13A, Figure 3D and Figure 13C larger
l0 leads to higher critical flow velocities and frequencies. In
summary, a larger bending stiffness leads to higher critical flow
velocities and critical frequencies, and makes it more likely for the
pipe to exhibit stable planar periodic motion after losing stability.

For the truncated mode numbers n = 9 and n = 11, as shown in
Figure 3D, the critical frequencies corresponding to β = 0.725 all are
44.2565. When a small increase in flow velocity causes vibrations as

shown in Figures 5J–M, the actual frequency is 45.4974, close to the
critical frequency. When a small increase in flow velocity causes
vibrations shown in Figures 7F–I, the actual frequency is 45.3660,
also close to the critical frequency. This indicates that the vibration
frequencies in both Figures 7F–I and Figures 5J–M are near the
critical frequency, yet their motion forms differ due to different
numbers of mode truncation.

For the truncated mode numbers n = 11 and n = 13, as shown in
Figure 3D, the critical frequencies corresponding to β = 0.715 all are
44.0148. When a small increase in flow velocity causes vibrations as
shown in Figures 7J–M, the actual frequency is 45.7292, close to the
critical frequency. When a small increase in flow velocity causes
vibrations shown in Figures 8F–I, the actual frequency is 45.5303,
also close to the critical frequency. This indicates that the vibration
frequencies in both Figures 8F–I and Figures 7J–M are near the
critical frequency, yet their motion forms differ due to different
numbers of mode truncation.

For the truncated mode numbers n = 13 and n = 15, as shown in
Figure 3D, the critical frequencies corresponding to β = 0.708 all are
43.8340. When a small increase in flow velocity causes vibrations as
shown in Figures 8J–M, the actual frequency is 45.8627, close to the
critical frequency. When a small increase in flow velocity causes
vibrations shown in Figures 9F–I, the actual frequency is 45.6627,
also close to the critical frequency. This indicates that the vibration
frequencies in both Figures 9F–I and Figures 8J–M are near the
critical frequency, yet their motion forms differ due to different
numbers of mode truncation.

This paper demonstrates that for a wide range of mass ratio β,
the spatial flexural vibrations of the fluid-conveying pipe shown in
Figure 1 can be precisely described by the Galerkin discretized
ordinary differential equations set of 15 truncated mode
numbers. These ordinary differential equations are obtained by
discretizing the original motions equations Eq. 4 by using the
first 15 mode functions of a cantilever beam, effectively capturing
the pipe’s dynamic properties, including critical flow velocity,
frequency, amplitude, and motion form. Notably, the types of
periodic motion of the pipe (including planar and spatial
periodic motions) and their stability can be determined from the
coefficients of the Galerkin discretized equations, specifically Eqs 10
and 23, 24, 25, 26, 28, 29, 37. Accurate prediction of the motion form
assists in adopting appropriate vibration control measures, whether
for stable planar or spatial periodic motions. For instance, stable
planar periodic motion may be managed by integrating an energy
sink within a specific plane, while managing a stable spatial periodic
motion may necessitate the addition of energy sinks encircling the
pipe. The projection method used in this paper (based on the Center
Manifold-Normal Form Theory) can also be applied to other types
of fluid-conveying pipe models, such as those without O (2)
symmetry in their cross-sections. However, in such cases, the
calculations of the center manifold and reduced-order equations
become extremely complex due to the inability to apply ‘symmetry’
to simplifying, it is a matter that the author will seriously consider in
future research.

The presence of errors between finite dimensional analysis
and infinite dimensional analysis results is proven by taking the
mass ratio β = 0.64 and l0 � 0.2 as an example. According to the
finite dimensional analysis {see the higher black points in Figures
18C, D [Figures 18(C1, D1) is the enlargement near the black
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point]}, the pipe performs stable spatial periodic motion, as
shown in Figures 20A–D. Here, the flow velocity is υ � 12.205 +
0.295 � 12.5 (12.205 is the critical flow velocity, and 0.295 is the
increment of flow velocity). The interpretation of the subfigures
in Figures 20A–D can be compared to those in Figures 5J–M. The
Poincaré map (with _η � 0 as the Poincaré section) is shown in
Figure 20E. However, according to infinite dimensional analysis
{see Figures 13, 14 in Ref. [70] or Figure 17 and the lower black
points in Figures 18C, D [Figure 18(C1, D1) is the enlargement
near the black point] in this study}, stable planar periodic motion
occurs here. Thus, there is an error between finite dimensional
analysis and infinite dimensional analysis results, and how to
reconcile this error is an open question.

Galerkin method is also suitable for motions equations with large
nonlinear terms, even though the flow velocity is far away from the
instability threshold. Generally,more truncatedmode numbers produce
more accurate results. However, the center manifold theory and normal
form method are applicable only close to the bifurcation point, i.e., for
flow velocity not far away from the critical value. This is the limitation of
the present reduced two-degree-of-freedom model. When the flow
velocity is gradually increased beyond the instability threshold, the
types, stabilities, and bifurcations of periodicmotions of fluid-conveying
cantilevered micropipes, e.g., the occurrence of torus motions or chaos,
are still some of the open questions.

In practical applications, two considerations are proposed.
Firstly, if the actual pipe model closely resembles that shown in
Figure 1, then based on the specific mass ratio β and l0, Eqs 10 and
23, 24, 25, 26, 28, 29, 37 can be calculated to determine the type of
motion that the pipe will undergo after instability, either stable
planar or spatial periodic motion, thereby selecting appropriate
control strategies. Additionally, adjustments to the values of β

and l0 can facilitate these two types of motion for the pipe.
Secondly, if the actual pipe model differs from that in Figure 1,
the numbers of mode truncation n when using Galerkin method
should be 15 or more to ensure the convergence of dynamic
properties such as critical flow velocity, frequency, amplitude,
and motion form.

6 Conclusion

In this study, by using the Galerkin method, the spatial vibration
Eq. 4 of the macro- and micro-scale cantilevered fluid-conveying
pipe is discretized into a system of ordinary differential Eq. 9.
Meanwhile, the reduced-order Eq. 23 of the system of ordinary
differential equations and associated coefficients (24) and (25) are
calculated with the projection method. Based on this, two types of
periodic motion and their stability within the system are
investigated. The results of various mode truncation numbers are
compared longitudinally and transversely with infinite dimensional
analysis results by setting the modal truncation number
incrementally. The following conclusions are obtained.

(1) For the linear vibration characteristics of pipes, which
includes the critical flow velocity, the critical frequency and
the change rate of the real part of the critical eigenvalue, the 9-
mode Galerkin discretization equations can obtain results
relatively close to those of the infinite dimensional analysis.

As shown by Figure 3 and Figure 4. However, the 9-mode
Galerkin discretization equations cannot give convergent
results for the nonlinear vibration characteristics of pipes.

(2) As the mode truncation number n continues to increase, the
results about the nonlinear vibration characteristics of pipes
(i.e., the planar and spatial periodic motions) obtained when
n = 11 have a minor correction to the results obtained when
n = 9; there are similar minor corrections for the results of n =
13 to those of n = 11, results of n = 15 to those of n = 13, until
the results of n = 16 are almost the same as those of n = 15.
That is, when n = 15, the result converges, so this is a
reasonable mode truncation number.

(3) With a mode truncation number of 15, the differences
between the results of the finite dimensional and infinite
dimensional analysis are calculated for macro- (l0 � 0) and
micro-scale pipes (l0 = 0.2 and 0.5), respectively. It is found
that the errors are 7.01%, 7.46%, and 6.69%, respectively,
indicating a very small difference. This further verifies that the
reasonable mode truncation number is 15. How to properly
deal with these sources of error remains an open question.
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