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This article presents a novel target tracking algorithm for hyperspectral low
altitude UAV, combining deep learning with an improved Kernelized
Correlation Filter (KCF). Initially, an image noise reduction method based on
principal component analysis with Block-Matching 3D (BM3D), is employed to
process redundant information. Subsequently, an image fusionmethod is utilized
to merge the processed hyperspectral image and the high-resolution
panchromatic band image to obtain a high spatial resolution image for target
enhancement. Following this, YOLOv5 is used to detect the coordinate
information of the UAV target in the current frame. Then, The KCF algorithm
is used for target tracking in the current frame using kernel correlation filtering.
Finally, the Discriminative Scale Spatial Tracker (DSST) is employed to determine
the scale information to achieve a multi-scale tracking effect. The experimental
results demonstrate that the algorithm presented in this paper surpasses CSK,
HLT, and the conventional KCF algorithm in hyperspectral UAV datasets. On
average, there is a significant increase in accuracy which is over 17% when using
our algorithm.
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1 Introduction

As a new type of aerial apparatus in the modern era, UAVs offer lower cost, but more
convenient operation, and higher security features, which makes it a more popular choice in
many different kinds of fields such as military, agriculture, environmental monitoring, and
so on. In the military sector, UAVs can detect and mitigate potential threats through real-
time monitoring and tracking of enemy UAVs. In the civilian sector, they can aid law
enforcement agencies in detecting and organizing illegal drone invasions and other threats
to public safety. Additionally, in disaster relief and other fields, drone target tracking
technology can provide real-time information, locate the affected individuals promptly, and
assist in rescue operations.

With the rapid increasement and development of UAVs, the management and
monitoring of these devices is more crucial. To some extent, tracking UAV targets can
be slow and unreliable due to environmental changes, small targets and other issues, leading
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to low recognition accuracy. Therefore, it is essential to design
hyperspectral target tracking algorithms that are fast and accurate.

Hyperspectral remote sensing technology has become a research
hotspot, and it offers more spectral channels and the ability to
identify both UAVs and their flight backgrounds. Although multi-
band multispectral technology can obtain spectral information from
three or more optical spectra simultaneously, its spatial resolution is
limited. In contrast, hyperspectral remote sensing provides more
detailed information for target tracking and identification.

Previous studies have explored various hyperspectral target
tracking techniques. Xiong introduced the Material-based
Hyperspectral Tracker (MHT) algorithm, which utilizes spatial
spectral histogram statistics based on artificial features (SSHMG)
to simulate object information for target tracking [1]. Blolme
proposed the Minimum Output Squared Error filter (MOSSE)
algorithm, which employs correlation filtering to accelerate
algorithm operations by operating on the discrete Fourier
transform similarity in the frequency domain [2]. However,
MOSSE algorithm’s tracking effect is not completely satisfactory
due to the limited initial data obtained through random affine
transformations. Henriques et al. proposed the Cyclic Structure
for Tracking and Detection with Kernel (CSK) algorithm [3],
which constructs samples by cyclic shifting, effectively increasing
the initial data without drastically increasing the computational
effort. This approach achieves a dense sampling effect without
adding excessive computations, thereby maintaining a feasible
tracking algorithm performance. Additionally, Zhao designed a
hyperspectral target detection method based on transform
domain adaptive constrained energy minimization [4]. By
projecting spectral domain features onto the transform domain,
this approach aims to enhance the background and target
separability. Furthermore, it proposes a modified constrained
energy minimization detector based on the fractional domain.
Wei designed a deep learning based on algorithm for UAV target
detection in low altitude background [5], to study and analyze the
differences in spectral characteristics between UAV targets and
common targets in low altitude background and the imaging
characteristic bands of UAV targets in low altitude background,
and to realize the efficient detection of UAV targets by combining
the deep learning methods.

The primary challenges associated with utilizing hyperspectral
remote sensing for low altitude UAV target tracking are as follows:

(1) Limited spatial and spectral resolution: Due to the constraints
of imaging mechanisms and optical devices, obtaining high
spatial and spectral resolution spectral images directly is
challenging. Existing spectral imaging equipment may not
provide the required reliability for subsequent target detection
and identification [6]. Although increasing resolution
through image reconstruction is a common approach,
using reconstructed hyperspectral images directly for
interpretation may introduce irreversible errors, having
some negative influence on the target tracking accuracy.

(2) Sensitivity to UAV target appearance changes: Traditional
target recognition algorithms may struggle with accurate
tracking when factors such as occlusion and lighting
changes are present. Non-linear changes in target
appearance make it difficult for these algorithms to adapt.

(3) Insufficient robustness to scale variations: The distance from
the camera influences the size of the UAV in the image,
causing some scale changes. Fixed-size filter algorithms, such
as kernel filtering, exhibit suboptimal performance when
confronted with significant target scale variations.

(4) Sensitivity to motion blur and fast movement: Fast-moving
UAV targets blur with the imaging equipment not adjusting
focus in time. Traditional target tracking algorithms are more
susceptible to blurred image sequences, making it difficult for
filters to accurately match target features. The Kernel
Correlation Filter (KCF) Tracking Algorithm is a target
tracking method based on kernel correlation filters, suitable
for real-time tasks. It exhibits good accuracy and speed
performance [7]. However, applying the original KCF
algorithm alone does not yield satisfactory UAV target
tracking results. Specific factors contributing to this
limitation are outlined in Figure 1.

In order to address these challenges, the following work has been
conducted in this study:

(1) To tackle the issue of large information redundancy and low
resolution of hyperspectral images, an image denoising and
fusion algorithm based on Principal Component Analysis
(PCA) was proposed in this article. This involves extracting
the principal components of the hyperspectral image using
PCA. The algorithm then eliminates spectral and spatial noise
through the superior denoising capability of the three-
dimensional block matching algorithm (BM3D).
Subsequently, the first principal component is replaced by
histogram matching between the high-resolution
panchromatic image and the low-resolution hyperspectral
image after noise elimination. Finally, the high-resolution
fused image is obtained after the inverse change of PCA.

(2) In order to address the problems encountered in UAV target
tracking, such as occlusion, illumination changes and fuzzy
motion. This paper proposes a low altitude UAV target
tracking algorssithm based on YOLOV5 and KCF. The
pre-trained YOLOV5 model is used to detect the target in
the first frame of the input hyperspectral low altitude UAV
image sequence, which is to obtain the bounding box and
position information of the detected target and creat a UAV
target template. Subsequently, for each frame, the KCF
algorithm is used to globally search for the best matching
location of the target globally. When the target cannot be
found in the search region, the YOLOV5 model is employed
to re-detect and locate the target and update the template.

(3) To solve the problem of the UAV target moving scale change
unrobust, this paper includes the discriminative scale space
tracker (DSST) in the detection algorithm. The UAV target
position is initially obtained through the 3D filter, and then
the scale of the tracking frame is adjusted to seek the
maximum value of the response values and enable multi-
scale target tracking.

The article is structured as follows: Section 1 mainly focuses
on the background of UAV target tracking, and it analyzes the
difficulties of hyperspectral low altitude UAV target tracking,
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introduces the methods of target identification, and describes the
innovations of the algorithms. Section 2 describes in detail the
image noise reduction and fusion enhancement of target features
using PCA hyperspectral image dimensionality reduction
method in detail. Section 3 explains the low altitude UAV
target tracking algorithm based on YOLOV5+KCF + DSST
proposed in this paper and presents the network model and
algorithmic principles. Section 4 presents the results of
comparison and ablation experiments of the algorithm on the
dataset to demonstrate the feasibility and effectiveness of
the algorithm.

2 Theoretical analysis

2.1 PCA-based denoising fusion algorithm
for hyperspectral images

2.1.1 False colour image
Since the dimensionality of hyperspectral images is much higher

than that of RGB images, it is time-consuming to extract gradient
features and other operations directly from hyperspectral images.
Therefore, the information of the low, middle and high frequency
bands of the hyperspectral data is extracted to form a pseudo-colour
image to simulate an RGB image, which is used to extract the colour
and gradient information of the object. Assuming that the high light
spectral data exists in [1, 2,/, p] spectral bands. The lowest, middle
and highest frequencies [1, p/2, p] are taken as sampling frequencies
and cascaded to form a three-channel pseudo-colour image. The
resulting pseudo-colour image is shown in Figure 1. The pseudo-
colour image is shown in Figure 2.

2.1.2 Principal component analysis
Principal Component Analysis (PCA) is an effective method for

reducing the dimensionality of hyperspectral image data. By
performing PCA, the principal components effectively preserve
the majority of the original data’s essential information. By
leveraging PCA, a small amount of information is sacrificed in
exchange for obtaining low-dimensional data from hyperspectral
images. This trade-off enhances the efficiency of image fusion and
denoising without compromising accuracy. Figure 3 provides a
visual representation of the image fusion denoising process based
on principal component analysis.

2.1.3 Noise removal method for hyperspectral
images based on PCA and BM3D

The inspiration for this article is derived from the advancements
in weighted kernel paradigm minimization for color image noise
removal methods. The principal concept of hyper-spectral image
denoising based on PCA and BM3D, can be summarized as follows:

Find a set of orthogonal vectors in the measurement space that
maximises the variance of the data according to the K-L transform,
and project the original vector from the original n-dimensional
space onto them(m≪ n) dimensional subspace formed by this set of
orthogonal vectors. Its projected coefficients form a new eigenvector,
completing the dimensional compression.

Let �X � (�x1, �x1,/, �xp), �X � 1
N∑N

j�1xij be the mean values of
the vectors, while A � (μ1, μ2,/μd) is composed of eigenvectors μi
corresponding to the eigenvalues λi of the covariance matrix ∑x �
E (X − �X)(X − �X)T{ } of X arranged from largest to smallest. Its
PCA reconfiguration is shown in Eq. 1:

X* � AY (1)

FIGURE 1
Challenges in low altitude UAV hyperspectral target tracking: (A) Lower resolution in the hyperspectral image. (B) UAV obscured. (C) Shaded to
unshaded direction. (D) Blurred UAV images.
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After PCA transformation, the correlation between the
individual vectors of Y is basically eliminated, and the first
principal component contains the vast majority of the
information in the original X, while the secondary principal
components are dominated by noise. Therefore, the appropriate
principal components can be selected for optimal linear
reconstruction in the least squares sense, with reconstruction
mean square error EMS � ∑d

i�k+1λi. For the noise-containing X,
the reconstruction error primarily consists of noise, and a certain
degree of inter-spectral noise can be effectively removed. In the case
of hyperspectral images, the noise, predominantly Gaussian white
noise [8], is randomly distributed across multiple bands. The PCA
process leverages inter-spectral correlation to partially mitigate
inter-spectral noise and achieve dimensionality reduction.
Meanwhile, BM3D targets the removal of intra-spectral noise by
considering spatial domain correlations within the image. These two
methods address the removal of noise in two dimensions by
considering inter-spectral and intra-spectral similarities, respectively.
The main flowchart of the algorithm is shown in Figure 4.

2.1.4 PCA based hyperspectral image
fusion method

The fundamental principle of the PCA-based hyperspectral
image fusion method is as follows:

The high-resolution panchromatic image is histogram-matched
with the first principal component (PC1) influence after PCA
transformation. This ensures that the panchromatic image has the
same variance and grey-scale mean value as PC1. Subsequently, the
histogram-matched panchromatic influence replaces the first principal
component. The remaining principal components (PC2 to PCn) after
noise removal are PCA inverted and fusedwith the panchromatic image
to restore it to the original color space. This process results in the
generation of a fused high-resolution image [9–12]. The transformation
formula is shown in Eq. 2:

Y � KX (2)

Where X is the pixel vector of the original hyperspectral
image before PCA transformation, Y is the pixel vector of the
component image after PCA transformation, and K is the

FIGURE 2
Schematic diagram of false colour image generation.

FIGURE 3
Image fusion denoising process based on principal component analysis.
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transformation matrix, which is the transpose matrix of the
eigenvector matrix Sx of the X-space covariance matrix, as
shown in Eq. 3:
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(3)

The role of K is to give weighting coefficients to the
brightness of the image elements in multiple bands to achieve
a multidimensional orthogonal linear variation, i.e., y1, y2,/, yn

is x1, x2,/, xn is obtained by undergoing a linear
transformation. When subjected to a linear transformation of
the above form, the covariance matrix corresponding to Y is
shown in Eq. 4:

Sy � KSxK
T �

λ1

0

λ2
/

0

λn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where λ1, λ2,/, λn is the eigenvector value of the original
hyperspectral image covariance matrix Sx in order of its
magnitude λ1 > λ2 >/> λn.

2.1.5 Effectiveness analysis
The impact of the PCA-based denoising fusion algorithm on

hyperspectral images is depicted in Figure 5.
In these figures, Figure 5C, obtained through PCA fusion of

panchromatic and hyperspectral images, which not only retains high
spatial resolution information but also maintains the spatial and
spectral information of the image.

2.2 Low altitude UAV target tracking
algorithm based on YOLOV5 and KCF

2.2.1 YOLOv5 network structure
The YOLOv5 network structure illustrated in Figure 6, is composed

of four main segments: Input, Backbone, Neck, and Prediction. Input
involves data augmentation and Mosaic data enhancement, as well as
adaptive anchor frame calculation and image scaling to optimize the
performance of the neural network model. Acquiring a large volume of

FIGURE 4
Flowchart of BM3D algorithm.
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FIGURE 5
Visualization of the impact of the PCA-based fusion denoising method on hyperspectral images is presented in the following figures: (A) is high
resolution images (B) is hyperspectral image. (C) is image after fusion.

FIGURE 6
YOLOv5 network architecture.
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data is typically necessary for a neural network to function effectively,
yet the process of obtaining new data often demands substantial time
and labor costs [13]. Data augmentation techniques enable computers
to efficiently generate data and expand the dataset, utilizing methods
such as scaling, panning, rotation, and color transformations. Data
augmentation offers the advantage of increasing the number of training
samples and improving the model’s generalization power by
incorporating relevant noise data.

In addition to fundamental data augmentation methods,
YOLOv5 also incorporates the Mosaic data enhancement technique.
This approach involves randomly cropping and scaling four images, and
then it arranges and stitches them together to form a single picture. This
method enriches the dataset while augmenting small sample targets and
improving the network’s training speed. In normalization operations, the
model’s memory requirement is reduced as the data from four images is
calculated simultaneously [14–17].

Comparatively, YOLOv3 and YOLOv4 lack the ‘Backbone in Focus’
structure, with a more critical emphasis on the slicing operation. This
operation allows a 4 * 4 * 3 image to be sliced into 2 * 2 * 12 featuremaps.
While the neck structure in YOLOv4 employs typical convolution
operations, YOLOv5 incorporates the CSP2 structure borrowed from
CSPnet to enhance network feature fusion.

Regarding the prediction output layer, YOLOv5 shares the anchor
frame mechanism with YOLOv3 and v4. However, the main
improvement lies in the development of the CIOU_Loss and the
shift to DIOU_nms for prediction frame filtering. This modification
facilitates detection of originally occluded or overlapped targets.

2.2.2 KCF target tracking algorithm
The KCF target tracking algorithm is a method based on kernel

correlation filtering, belonging to the category of discriminative tracking
[18]. It involves collecting a substantial number of positive and negative
samples by populating the target frame in the initial tracking frame,
resulting in a filled frame. The filled frame is cyclically shifted in the
subsequent frame to generate a cyclic matrix. This process entails
designating the region containing the target as positive samples and
the remaining regions as negative samples. Subsequently, the target
detector is trained by using these positive and negative samples, and
then employed to detect whether the predicted position corresponds to
the target’s location. The trained target detector is then utilized in the
subsequent frame to ascertain the presence of the target. The filled
frame from the previous frame is used to continue the cyclic shift in
order to reclassify the images in the sample frames as positive and
negative samples. The strongest response among these sample frames is
selected as the filled frame of the target in the current frame. The
samples acquired in the current frame are utilized to update the target
detection classifier. Throughout this process, the ability to diagonalize
the cyclic matrix in Fourier space and the application of Fast Fourier
Transform (FFT) are leveraged to adapt the target detection classifier.
These techniques are utilized to compute these samples, thereby
improving operational speed. Firstly let a set of training samples as
(xi, yi), xi is the sample labels, then the regression function is
f(xi) � wTxi, w is the column vector denoting the weight
coefficients, which can be solved by the least squares method to
solve the solution [19], which is expressed in Eq. 5 as follows:

min
w

∑
i
f xi( ) − yi( )2+λ w‖ ‖2 (5)

Where λ is the regularisation function for the structural
complexity of the control system.

By introducing a nonlinear mapping function Φ(xi), the low-
dimensional nonlinearly indivisible problem can be mapped to a
high-dimensional space and thus transformed into a linear solution,
as shown in Eq. 6:

w � ∑
i
aiϕ xi( ) (6)

Substituting Eq. 6 into Eq. 5 under the kernel space and
performing a discrete Fourier variation is shown in Eq. 7:

α
∧ � y

∧

kxx
∧ + λ

(7)

At this point, the problem of optimisation problem for w is
transformed into a problem of solving for a, where Eq. α

∧
is the

discrete Fourier variation of α, kxx
∧

is the first row element of the
kernel function matrix.

After getting the nonlinear filter, the images in the video image
block image block is detected to find out the location of the target.
The image block to be detected is denoted by z. The output response
equation of the detection process is shown in Equation 8:

f z( ) � Kz( )Tα (8)

Where Kz denotes the kernel matrix between the training
samples and the candidate samples, which is an asymmetric
matrix, and each element of Kz is defined as Kz

ij �
K(Pi−1z, Pj−1x) , where P undisplaced matrix, which serves to
realise the displacements. The model of the associated filter is
initialised based on the features of the UAV selected in the frame
of the initial frame; secondly, the template is used to find the position
with the largest response in the captured frames in the subsequent
frames, which serves as the position of the UAV that is tracked in the
current frame; and lastly, the filter is updated using the position of
the UAV device determined in each frame.

The working block diagram of the original KCF tracking algorithm
in the process of visually tracking a UAV is shown in Figure 7.

2.2.3 DSST multiscale filters
The DSST multi-scale filter accomplishes target tracking by

leveraging the correlation filtering principle, effectively addressing
changes in the target’s scale. It employs scale filters and position filters
to represent the scale variation of the target, thereby delivering precise
positional information. Through the utilization of the scale filter, the
model’s outcomes can be fine-tuned at a specific location to attain the
optimal scale response, thereby achieving the intended objective.

(1) The correlation operation values of the position filter h
and the feature matrix block are constructed, and then the
error function ε between it and the expected value g is
calculated.

Firstly, the input image I is analysed to find a centroid and
compare it with the original tracking region to determine the best
sample value. Then, by analysing the features in the d-dimension of
each pixel point of the extracted sample, information about its
original grey value (1-dimensional) and HOG features

Frontiers in Physics frontiersin.org07

Sun et al. 10.3389/fphy.2024.1341353

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1341353


(1 − d-dimensional) can be obtained. Eq. 9 is the expression of the
error function. Where f denotes the matrix block extracted from the
feature map extracted from the feature map, f1 denotes the matrix
block corresponding to the l th dimensional feature, � 1, 2,/, d{ } .
h1 denotes the l th dimensional vector in the filter corresponding to
f1, h � hl,/, hd{ } . g denotes the desired result of the correlation
calculation between the eigenvalue matrix block constructed from
the 2D Gaussian function and the filter. Where the regular term
coefficients, λ are usually used to adjust the parameters to avoid
zero-component cases during the frequency domain
conversion [20].

ε � ∑d
l�1
hl × fl − g

���������
���������
2

+ λ∑d
l�1

hl
���� ����2 (9)

(2) By using discrete Fourier transform and Parseval’s theorem,
the value of the error function under least square is calculated.
as shown in Equation 10:

Hl � �GFL

∑d
k−1

�F
k
Fk + λ

� Al
t

Bl
t

(10)

In the above equation, H, A, B, G, F denote the discrete Fourier
transform of the corresponding function, and the variables with
horizontal lines are denoted as conjugate complex numbers. Al

t, B
l
t,

denote the numerator and denominator of the filter value at frame
time. In order to simplify the solution, Eq. 11 is the approximate
solution formula of Al

t, B
l
t:

Al
t � 1 − η( )Al

t−1 + η �GtFl
t

Bl
t � 1 − η( )Bt−1 + η∑d

k−1
�F
k
t F

k
t

(11)

(3) Using the position filter parameters at frame t, the correlation
score y of the image feature matrix block z with the known

filter is computed by Al
t, B

l
t when predicting the next frame in

the video. The specific process is denoted as follows:

y � F−1
∑d
l−1

�A
l
Zl

B + λ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (12)

Where the position corresponding to the maximum value of y is
the centre point pt+1 of the tracked target in the predicted t +
1 frame.

(4) Construct and solve the scale filter hscale

It is known that at frame t, the position pt in image It represents
the centre point of the outer rectangle of the tracked target, and the
minimum size of the outer rectangular region of the tracked target is
P × R .Firstly, centred on pt, intercept M samples Jn at different
scales according to Equation 13:

Jn � anP × an × R, n ∈ −S − 1
2

[ ],/ S − 1
2

[ ]{ } (13)

Then by extracting the features of sample Jn as f � fl,/, fn{ },
Finally, the scale filter hscale is obtained through Eq. 11.

(1) Predict the scale of the tracked target for frame t + 1.

To predict the centre of the tracked target position pt+1 for frame
t + 1 with the position filter, and extracting multi-scale samples
zscale, solve for the scale according to Equation 12: The scale of the
sample corresponding to the maximum value of score y is the scale
St+1 of the prediction.

(2) Based on the predicted tracking target position pt+1 at frame
t + 1 with scale St+1 , Update the position according to Eqs 9–11
with the parameters of the scale filter to start the next iteration.

FIGURE 7
The working block diagram of the original KCF tracking algorithm in the process of visually tracking a UAV.
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2.2.4 Algorithmic processes and frameworks
A combined scheme of the YOLOv5 algorithm and the KCF

algorithm is proposed to leverage the advantages of both
methods. In this proposed approach, the real-time shooting
frame utilizes the YOLOv5 algorithm for visual target
detection, determining the position of the tracked UAV in the
current frame. This result serves as the initial frame for the
subsequent tracking in the KCF algorithm. Additionally, the scale
estimation filtering algorithm from the DSST algorithm is
integrated into the KCF tracking algorithm to enable real-time
detection and tracking of the UAV. The specific flow of this
combined approach is illustrated in Figure 8.

The flow of the hyperspectral low altitude UAV target tracking
algorithm, based on deep learning and improved KCF tracking
depicted in Figure 8, is as follows:

Firstly, a hyperspectral camera is utilized to acquire the UAV
image sequence. Simultaneously, the YOLOv5 algorithm assesses
whether the confidence level exceeds a predetermined threshold.
If the threshold is reached, it indicates a successful detection, and
the current frame of the hyperspectral image is then transmitted
to the KCF tracking algorithm. Following the determination of
the target’s position during the tracking of subsequent frames, the
DSST algorithm is employed to determine the size of the target
frame for each frame. It evaluates the correctness of the tracking
based on the corresponding peak value of each frame. If the
tracking is determined to be correct, commands are issued to
continue the tracking, and in the event of failure, a return to the
YOLOv5 algorithm is initiated to conduct additional target
detection until the completion of the tracking process. This is
done so that when the UAV experiences occlusion, lighting
changes, and rapid movement resulting in the loss of the
target in the image sequence, the current frame can be
skipped and stepped to the target reappearance frame.

Hyperspectral image sequences are chosen to reduce the
interference of background factors and improve the efficiency
of target recognition.

3 Experimentation and analysis

3.1 Data set

The UAV used for the experiments was flown vertically at a
distance of 100 m and horizontally at a distance of 200 m, and
different bands were selected to collect data of houses, sky, tiles,
woods and glass curtain wall backgrounds. A total of
12,209 images of the dataset were taken, of which
1,610 images had a building background, 2,488 images had a
white tile background, 6,154 images had a glass curtain wall
background, 1,080 images had a sky background, and 876 images
had a wooded background. Where training set is 7,325 images,
2,113 are test set images and remaining 2,771 are validation
set images.

3.2 Experimental platforms

The low altitude UAV image sequence dataset was captured
using the IMEC xiSpec hyperspectral camera model, which
encompasses a total of 25 bands. The hardware parameters of
the PC workstation used for the model training include an
Intel(R) Xeon(R) Silver 4214R CPU @ 2.40 GHz 2.39 GHz
(two processors). The experiments were conducted on a
Windows 10 system featuring CUDA (Compute Unified
Device Architecture) version number 10.2 and PyTorch
framework version number 1.12.1.

FIGURE 8
Flowchart of hyperspectral low altitude UAV target tracking algorithm based on deep learning and improved KCF tracking.
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3.3 Results of target detection experiments

In the video test, footage was recorded with the IMEC xiSpec
hyperspectral camera. For comparative analysis, we selected the

original KCF algorithm, along with the commonly used CSK and
HLT algorithms. The tracking results of six frames from selected
video sequences featuring light-shift, occlusion, fast-movement,
and background-shift scenarios are presented in Figures 9–12.

FIGURE 9
Simulation results of CSK tracking in hyperspectral image sequences.
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(1) Tracking results of the CSK algorithm
(2) Tracking results of a novel hyperspectral-based HLT algorithm
(3) Tracking results of the original KCF algorithm

(4) Tracking results of hyperspectral low altitude UAV target
tracking algorithm based on deep learning and
improved KCF.

FIGURE 10
Simulation results of HLT tracking in hyperspectral image sequences.
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The hyperspectral dataset above showcases the outcomes of the
hyperspectral low altitude UAV target tracking algorithm, which is
based on deep learning and improved KCF tracking. From Figure 12, it

is evident that the enhanced algorithm can effectively achieve UAV
target tracking in various complex backgrounds, demonstrating
superior performance compared with other algorithms.

FIGURE 11
Simulation results of KCF tracking in hyperspectral image sequences.
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FIGURE 12
Simulation results of hyperspectral low altitude UAV target tracking algorithm based on deep learning and improved KCF tracking in hyperspectral
image sequence.
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3.4 Evaluation indicators

In this paper, the algorithm selects three evaluation metrics of
centre location error (CLE), precision (DP) and area under curve
(AUC) for analysis.

(1) Centre Location Error (CLE)

CLE calculates the Euclidean distance from the centre of the
tracking frame, assuming that for a certain frame, the centre of
the groundtruth annotation is (x1, y1), and the centre of the
tracking result is (x2, y2), which is obtained by the
transformation, as shown in Eq. 14:

X � x + width/2
Y � y + height/2 (14)

The error in the centre position is shown in Eq. 15:

CLE �
�������������������
x1 − x2( )2 + y1 − y2( )2√

(15)

(2) Distance Precision (DP)

The Euclidean distance is between the centroid of the
prediction box and the centroid of the Ground Truth box,
calculated as shown in Eq. 16 usually with a threshold of
20 pixels. That is, they are considered to be tracked
successfully if their Euclidean distance is within 20 pixels. In
order to determine the success of tracking, the Euclidean distance
between the centroid of the prediction box and the centroid of the
Ground Truth box is calculated. Typically, that a threshold of
20 pixels is used means that if the Euclidean distance falls within
this range, the tracking is considered successful.

ρ �
�������������������
x2 − x1( )2 + y2 − y1( )2√

(16)

(3) Area Under Curve (AUC)

Given a random positive and negative sample, the classifier is
used to classify and predict their respective scores. The
probability of the positive sample’s score is greater than the
negative sample’s score that can be represented by the area under
the receiver operating characteristic (ROC) curve, commonly
referred to as the AUC. AUC values between 0.7 and 0.85 signify
satisfactory performance, while values below 0.7 are generally
considered effective.

3.5 Comparative analysis of algorithms

The proposed hyperspectral low altitude UAV target tracking
algorithm, based on deep learning and improved KCF tracking, has
been compared with widely used correlation filter target tracking
algorithms in recent years, such as the CSK algorithm and the
traditional KCF algorithm. Additionally, to assess the performance
of the algorithms, the existing HLT hyperspectral tracking algorithm
based on hyperspectral sequential image target tracking has been

included. The performance of the various algorithms is depicted in
Figures 13, 14.

The comprehensive analysis of the results is as follows: The
traditional tracking algorithms, CSK and KCF, reliant on intensity,
texture information, and color attributes, lack the necessary
discriminative ability to learn the target’s feature model within a
hyperspectral image environment effectively. As a consequence,
marking the target’s position in the first is insufficient for
accurately predicting its position in subsequent frames, which
leads to reduced tracking accuracy and increased instances of
tracking failure. From the success and accuracy graphs, it is
evident that the existing hyperspectral image sequence target
localization algorithm, the HLT algorithm, and the proposed
hyperspectral low altitude UAV target tracking algorithm, based
on deep learning and improved KCF tracking, outperform the two
traditional algorithms.

When considering the variability of hyperspectral 25-band data
and calculating their fusion weights, it is observed that the HLT
algorithm exhibits superior detection performance in the early
stages but a slightly diminished effect in later stages of
continuous tracking. In comparison to this paper, the improved
algorithm demonstrates better performance in both success rate and
accuracy plots. Table 1 provides a performance comparison of the
six tracking algorithms.

As you can see from the table, the tracking algorithm
demonstrates optimality for both the mean values of CLE and
DP evaluation metrics. The average reduction of CLE compared
to the optimal values of the three traditional correlation filter
tracking algorithms is 27.9 pixel. DP improves by an average of
23.9% over the best of the three traditional correlation filtering
algorithms. Hyperspectral low altitude UAV target tracking
algorithm based on deep learning and improved KCF tracking
proposed in this article has the largest AUC value of 0.702. The
AUC is increased by 0.014 with respect to the sub-optimal value of
the tracking algorithm.

FIGURE 13
Success rate graphs for the 4 tracking algorithms.
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4 Conclusion

This article proposes a low altitude UAV target tracking
algorithm based on deep learning and improved KCF. To
begin with, the paper employs image fusion denoising
techniques based on principal component analysis, thereby
bolstering target information in low-resolution hyperspectral
images. To overcome the difficulty of tracking low altitude
UAV targets due to variations in lighting, occlusion, and rapid
movements, the paper integrates the YOLOv5 algorithm with the
DSST algorithm and the KCF tracking algorithm. This combined
approach allows for the retrieval of lost targets and enables
efficient long-term target tracking. Furthermore, the paper
compares the proposed algorithm to the conventional CSK
and HLT algorithms commonly utilized in hyperspectral target
detection, as well as the traditional KCF algorithm, which are
commonly used in hyperspectral target detection, and it is found
that the accuracies of the proposed algorithms are improved by
35.2%, 4.8%, and 31.7%, respectively, with an average
improvement of 23.9%. The findings reveal that the proposed
algorithm exhibits superior stability, accuracy, and robustness
compared to its counterparts. In conclusion, the developed
hyperspectral low altitude UAV target tracking algorithm,
grounded in deep learning and enhanced KCF tracking,
effectively tackles the challenge of tracking low altitude UAV
targets, paving the way for more accurate and reliable target
surveillance.
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