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This paper is devoted to investigating a class of stochastic neutral-type neural
networks with delays. By using the fixed point theorem and the properties of
neutral-type operator, we obtain the existence conditions for periodic solutions
of stochastic neutral-type neural networks. Furthermore, we obtain the
conditions for the exponential stability of periodic solutions using Gronwall-
Bellman inequality and stochastic analysis technique. Finally, a numerical example
is given to show the effectiveness and merits of the present results. Our results
can be used to obtain the existence and exponential stability of periodic solution
to the corresponding deterministic systems.
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1 Introduction

During the past years, the theory of stochastic differential equations has been
extensively studied, see, e.g., [1–5] and references therein. However, periodic solution
problems of stochastic differential equations have been studied by few authors. To be best
our knowledge, we only find that very few results for periodic solution of stochastic
differential equations and stochastic differential systems have been obtained. In [6],
Kolmanovskii and Myshkis introduced basic theory of T − periodic stochastic process
and T − periodic solution for stochastic retard differential equation which greatly promoted
the study of periodic solutions of stochastic differential equations. Itô and Nisio [7] studied
stationary solutions of a stochastic differential equation. Has’minskii [8] studied the
existence of periodic solution of differential equations with random right sides. In [9],
the authors considered existence problems for periodic Markov process and stochastic
functional differential equations by using the properties of periodic Markov processes. After
that, Li and Xu [10] also obtained the existence of periodic solution for a stochastic
functional differential equation with unbounded delays. In [11], Zhang and Gopalsamy
considered two classes of n − species stochastic population models with periodic coefficients
and obtained some sufficient conditions for the existence of a stochastically asymptotically
stable in the large periodic solution process. In [12], the authors studied mean-square
almost periodic solution for impulsive stochastic by applying Cauchy matrix. Jiang, etc. [13,
14] dealt with periodic solution of nonautonomous logistic equation with random
perturbation.

In the real world, a specific neural network is always affected by various uncertain
factors, stochastic perturbations are almost inevitable [15]. Therefore, it is necessary to
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investigate effects of stochastic perturbations on the dynamic
properties of neural networks. Recent years, stochastic neural
networks has been extensively studied. Stability analysis of
various stochastic neural networks see, e.g., [16–19]. In [16], the
authors considered the distributed synchronization of coupled
neural networks. Zhu and Cao [17, 18] investigated exponential
stability of stochastic neural networks with both Markovian jump
parameters and mixed time delays. Stability analysis of switched
stochastic neural networks with time-varying delays has been
studied in [19]. The stability and stabilization for a class of
stochastic systems with impulsive effects, see [20]; the pth
moment (p ≥ 2) and the almost-sure stability of stochastic
Cohen-Grossberg neural networks, see [21]; stochastic neural
networks with local impulsive effects, see [22]. For deterministic
neural network, see, e.g., [23, 24]. However, there are not many
achievements in the study of periodic solutions of stochastic neural
networks. Using fixed points principle and Gronwall-Bellman
inequality, the authors [25] concerned with the periodic solutions
for a class of stochastic Cohen-Grossberg neural networks with
time-varying delays. Yang and Li [26] considered existence and
exponential stability of periodic solution for stochastic Hopfield
neural networks on time scales. Wang and Wu [27] studied mean
square exponential stability and periodic solutions of stochastic
interval neural networks with mixed time delays. For recent
advances in periodic solution of stochastic differential equation
and neural networks, see [28–34].

Our main purpose of this paper is to study periodic solution of a
stochastic neutral-type neural networks by using the contraction
mapping theorem and Gronwall-Bellman inequality. For First, an
effective existence and uniqueness theorem of periodic solution for
considered system is established. Then, some sufficient conditions for the
exponential stability of periodic solution are given. Because the system
we study contains neutral terms and random perturbations, it is difficult
to obtain the existence conditions of periodic solutions. To overcome the
above difficulties, as one will see, several novel mathematic analysis
methods are applied. These existence and stability theorems are rather
general and therefore have great power in applications.

The distinctive contributions of this paper are outlined
as follows:

(1) It is noted that most existing results on stochastic neural
networks are mainly pertaining to the stability of considered
systems, see e.g., [9–11] and related references. In this paper,
we obtained existence results of periodic solution by using the
contraction mapping theorem. Hence, the research content of
this article expands the scope of research on nonlinear neutral
stochastic differential systems.

(2) We develop some techniques of stochastic analysis for studying
stochastic neutral-type neural networks with delays, our
methods for the proof of main results can more easily be
understood. Particularly, we use contraction mapping theorem
and Gronwall-Bellman inequality for obtaining stability results
which is different from ones in [14–16, 35–37].

(3) Our main results are also valid for the case of the
corresponding deterministic systems.

The following sections are organized as follows: In Section 2, we
introduce some useful Lemmas and Definitions. In Section 3, some

sufficient conditions are established for existence and uniqueness of
periodic solution of the considered system. Section 4 gives some
sufficient conditions for guaranteeing the exponential stability of
periodic solution. In Section 5, an example is given to show the
feasibility of our results. Finally, some conclusions are given for
this paper.

2 Preliminaries

In the present paper, we consider a stochastic neutral-type
neural networks with delays of the form

d xi t( ) − ci t( )xi t − γ( )[ ] � [ − ai t( )xi t( ) +∑n
j�1

aij t( )fj xj t( )( )
+∑n

j�1
dij t( )gj xj t − τij t( )( )( )

+Ii t( )]dt +∑n
j�1

σ ij xj t( )( )dξj t( ),
i � 1, 2, . . . , n, (2.1)

where n is the number of units in the considered system, γ > 0 is
a delay, xi(t) is the state of the ith neuron at time t, fj(·) and gj(·) are
the activation functions of the jth unit, ai(t) ≥ 0 denotes the rate with
which the ith unit will reset its potential to the resting state in
isolation when disconnected from the networks and external inputs,
aij(t) and dij(t) denote the strength of the jth neuron on ith unit at
time t and t − τij(t), respectively, Ii(t) denotes the ith component of
an external input source, ξ(t) � (ξ1(t), . . . , ξn(t))⊤ is the standard
Wiener process defined on complete probability space
(Ω,F , {F t}t> 0,P) σij is Borel measurable function. We assume
that ci(t), τij(t), ai(t), aij(t), dij(t) and Ij(t) are defined on R, are
T − periodic and continuous functions. The initial condition of
Eq. 2.1 is

xi s( ) � ϕi s( ), s ∈ −∞, t0( ], (2.2)

where ϕi(s) ∈ C((−∞, t0],R), t0 ∈ R.
Let B be a Banach space with the norm ‖ ·‖ and Lp(P, B) (p≥ 1)

be the space of all B-value random variable X such that
E(‖x‖p) � ∫Ω‖x‖pdP. Let f(x) be a continuous T − peridic
function on R. Denote

�f � maxx∈R|f x( )|, f � minx∈R|f x( )|.

Throughout this paper, we assume that.
(H1) fj, gj, σ ij ∈ C(R,R) are Lipschitz-continuous with

Lipschitz constants Lfj , L
g
j and lij, respectively, i, j = 1, 2, . . . , n.

(H1′) fj, gj ∈ C(R,R) are Lipschitz-continuous with Lipschitz
constants Lfj and Lgj , respectively, j = 1, 2, . . . , n.

Definition 2.1. [8] A stochastic process xt(s) is said to be periodic
with period T if its finite dimensional distributions are periodic with
period T, that is, for any positive integer n and any moments of time
t1, t2, . . . , tn the joint distribution of the random variables
xt1+kT(s), xt2+kT(s), . . . , xtn+kT(s) are independent of k, k ∈ Z.

Remark 2.1. [8] If x(t) is an T − periodic stochastic process, then its
mathematical expectation and variance are T − periodic.

Lemma 2.1. [5] (The Itô isometry) If f(t, ω) is is bounded and
elementary, then
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E ∫b

a
f t,ω( )dBt ω( )( )2[ ] � E ∫b

a
f2 t,ω( )dt( ).

Lemma 2.2. [38] For each x ∈ Rn
+ and p > 0,

|x|p ≤ n p
2−1( )∨0 ∑n

i�1
xp
i , ∑n

i�1
xi

⎛⎝ ⎞⎠p

≤ n p−1( )∨0 ∑n
i�1

xp
i ,

where ∨ denotes the Min operator, that is,

a ∨ b � a for a≤ b,
b for a> b.{

Lemma 2.3. [39] Let

A: CT → CT, Ax[ ] t( ) � x t( ) − c t( )x t − τ( ), ∀t ∈ R.

If |c(t)| ≠ 1, then operator A has continuous inverse A−1 on CT,
satisfying.

1)

A−1f[ ] t( ) �
f t( ) +∑∞

j�1
∏j
i�1

c t − i − 1( )τ( )f t − jτ( ), c0 < 1, ∀f ∈ CT,

−f t + τ( )
c t + τ( ) −∑∞

j�1
∏j+1
i�1

1
c t + iτ( )f t + jτ + τ( ), σ > 1, ∀f ∈ CT,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2)

∫T

0
| A−1f[ ] t( )|dt≤

1
1 − c0

∫T

0
|f t( )|dt, c0 < 1, ∀f ∈ CT,

1
σ − 1

∫T

0
|f t( )|dt, σ > 1, ∀f ∈ CT,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3)

|A−1f|0 ≤
1

1 − c0
|f|0, c0 < 1, ∀f ∈ CT,

1
σ − 1

|f|0, σ > 1, ∀f ∈ CT.

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where c0 � maxt∈[0,ω]T|c(t)|, σ � mint∈[0,ω]T|c(t)|, CT �

{x: x ∈ C(R,R), x(t + T) ≡ x(t)}.

Remark 2.2. From Lemma 2.3, we have

|A−1f|0 ≤ c*|f|0,

where c* � max{ 1
1−c0,

1
σ−1}.

Definition 2.2. [25] The periodic solution x(t, t0, ϕ) with initial
value ϕ of system (2.1) is said to be globally exponentially stable, if
there are constants λ > 0 and M > 1 such that for any solution y(t, t0,
ϕ1) with initial value ϕ1 of system (2.1) satisfies

E ‖x − y‖2( )≤ME ‖ϕ − ϕ1‖2( )e−λ t−t0( ), t≥ t0.

Let (Aixi) (t) = xi(t) − ci(t)xi(t − γ) = yi(t). From Lemma 2.3, then
xi(t) � (A−1

i yi)(t), and system (2.1) can be rewritten by

dyi t( ) � −ai t( )yi t( ) − ai t( )ci t( ) A−1
i yi( ) t − γ( ) +∑n

j�1
aij t( )fj A−1

j yj( ) t( )( )⎡⎢⎢⎣
+∑n

j�1
dij t( )gj A−1

j yj( ) t − τij t( )( )( ) + Ii t( )⎤⎥⎥⎦dt
+∑n

j�1
σ ij A−1

j yj( ) t( )( )dξj t( ),
i � 1, 2, . . . , n, (2.3)

with initial condition

yi s( ) � Aiϕi s( ) � ψi s( ), s ∈ −∞, t0( ]. (2.4)

Remark 2.3. system (2.1) is equivalent to system (2.3). Thus, system
(2.1) has a globally exponentially stable periodic solution, if and only
if, system (2.3) has a globally exponentially stable periodic solution.
Since system (2.3) has not neutral-type term, we can easily obtain
existence and stability results for system (2.3).

Remark 2.4. System (2.1) is a neutral-type stochastic system which
shows the neutral properties by D − operator xi(t) − ci(t)xi(t − γ). For
the details about D − operator, see [40]. Some results of stochastic
system with D − operator have been obtained, see [41–43] and related
references. However, there exist few results for the periodic solution of
stochastic system with D − operator. This paper is devoted to
investigating the above problem and obtaining the new results.

3 Existence of periodic solution

In this section, we will show the existence of periodic solutions
for system (2.1). Now, consider the linear section for system (2.3)

yi′ t( ) � −ai t( )yi t( ). (3.1)
By basic theory for ordinary differential equation, system (3.1) has
a solution

yi t( ) � Gi t, t0( )yi t0( ), i � 1, 2, . . . , n,

where Gi(t, t0) � e
−∫t

t0
ai(s)ds

. It is easy to see that

Gi t, t0( )≤ e− ai t−t0( ) for t≥ t0, i � 1, 2, . . . , n. (3.2)

Theorem3.1. Suppose that |ci(t)| ≠ 1, i = 1, 2, . . . , n and assumption
(H1) holds. Then system (2.1) has unique T-periodic solution,
provided that

δ � max1≤i≤n
2Λi

ai
2{ }< 1, (3.3)

where

Λi � ci′�ai�ci +∑n
j�1

�aijL
f
j cj′ + �dijL

g
j cj′( )⎛⎝ ⎞⎠2

+ ∑n
j�1

lijcj′⎛⎝ ⎞⎠2

,

ci′ � max
1

1 − �ci
,

1
ci − 1

{ }.
Proof. Let

X � x � x1, x2, . . . , xn( )T ∈ C R,Rn( ): xi t + T( ) � xi t( ), i � 1, 2, . . . , n{ }
with the norm ‖x‖X � E|x|21, where |x|1 � max1≤i≤nsupt∈R|xi(t)|.
Then X is a Banach space. Define a map Γ on X by
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Γϕ( ) t( ) � Γϕ( )1 t( ), Γϕ( )2 t( ), . . . , Γϕ( )n t( )( )T, t ∈ R,

where

Γϕ( )i t( ) � ∫t

−∞Gi t, s( ) −ai s( )ci s( ) A−1
i yi( ) s − γ( ) +∑n

j�1
aij s( )fj A−1

j yj( ) s( )( )⎡⎢⎢⎣
+∑n

j�1
dij s( )gj A−1

j yj( ) s − τij s( )( )( ) + Ii s( )⎤⎥⎥⎦ds
+∫t

−∞Gi t, s( )∑n
j�1

σ ij A−1
j yj( ) s( )( )dξj s( ), i � 1, 2, . . . , n.

Obviously, (Γϕ)i(t + T) = (Γϕ)i(t). Hence, Γ maps X to X. Next, we
show that Γ is a contraction mapping. For any u, v ∈ X, we have

| Γu( )i t( ) − Γv( )i t( )| � ∫t

−∞Gi t, s( ) −ai s( )ci s( ) A−1
i ui( ) s − γ( ) − A−1

i vi( ) s − γ( )[ ][∣∣∣∣∣
+∑n

j�1
aij s( ) fj A−1

j uj( ) s( )( ) − fj A−1
j vj( ) s( )( )[ ]

+∑n
j�1

dij s( ) gj A−1
j uj( ) s − τij s( )( )( ) −gj A−1

j vj( ) s − τij s( )( )( )[ ]⎤⎥⎥⎦ds
+∫t

−∞Gi t, s( )∑n
j�1

σ ij A−1
j uj( ) s( )( ) − σ ij A−1

j vj( ) s( )( )[ ]dξj s( )
∣∣∣∣∣∣∣∣∣∣.

(3.4)

For i = 1, 2, . . . , n, let

F1i � ∫t

−∞Gi t, s( ) −ai s( )ci s( ) A−1
i ui( ) s − γ( ) − A−1

i vi( ) s − γ( )[ ][
+∑n

j�1
aij s( ) fj A−1

j uj( ) s( )( ) − fj A−1
j vj( ) s( )( )[ ]

+∑n
j�1

dij s( ) gj A−1
j uj( ) s − τij s( )( )( ) − gj A−1

j vj( ) s − τij s( )( )( )[ ]⎤⎥⎥⎦ds
and

F2i � ∫t

−∞
Gi t, s( )∑n

j�1
σ ij A−1

j uj( ) s( )( ) − σ ij A−1
j vj( ) s( )( )[ ]dξj s( ).

Taking expectations for the above F1i and F2i, by Lemma 2.2, we have

E Γu( )i t( ) − Γv( )i t( )∣∣∣∣ ∣∣∣∣2 ≤ 2E |F1i|2 + |F2i|2( ), i � 1, 2, . . . , n. (3.5)

Evaluating the first term of the right-hand side of (3.5), in view of
Lemma 2.3, (3.2) and assumption (H1), we have

E|F1i|2 � E ∫t

−∞Gi t, s( ) −ai s( )ci s( ) A−1
i ui( ) s − γ( ) − A−1

i vi( ) s − γ( )[ ][∣∣∣∣∣
+∑n

j�1
aij s( ) fj A−1

j uj( ) s( )( ) − fj A−1
j vj( ) s( )( )[ ]

+∑n
j�1

dij s( ) gj A−1
j uj( ) s − τij s( )( )( ) − gj A−1

j vj( ) s − τij s( )( )( )[ ]⎤⎥⎥⎦ds
∣∣∣∣∣∣∣∣∣∣
2

≤
1
ai

ci′�ai�ci +∑n
j�1

�aijL
f
j cj′ + �dijL

g
j cj′( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦2E|u − v|21.

(3.6)

As to the second term of the right-hand side of (3.5), in view of
Lemma 2.1, Lemma 2.3, (3.2) and assumption (H1), we also have

E|F2i|2 � E ∫t

−∞
Gi t, s( )∑n

j�1
σ ij A−1

j uj( ) s( )( ) − σ ij A−1
j vj( ) s( )( )[ ]dξj s( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

� E ∫t

−∞ Gi t, s( )∑n
j�1

σ ij A−1
j uj( ) s( )( ) − σ ij A−1

j vj( ) s( )( )[ ]
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2

ds

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

≤
1
ai

∑n
j�1

lijcj′⎡⎢⎢⎣ ⎤⎥⎥⎦2E|u − v|21.

(3.7)

From (3.5-3.7), we have

E|Γu − Γv|21 ≤ 2⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1
ai

ci′�ai�ci +∑n
j�1

�aijL
f
j cj′ + �dijL

g
j cj′( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠2

+ 1
ai

∑n
j�1

lijcj′⎛⎝ ⎞⎠2⎤⎥⎥⎥⎥⎥⎥⎥⎦E|u − v|21� 2
1

ai
2ΛiE|u − v|21≤ δE|u − v|21.

Thus,

‖Γu − Γv‖X ≤ δ‖u − v‖X.
By (3.1) Γ is a contraction mapping on X system (2.3) has a unique
periodic solution yi(t), i.e., system (2.1) has a unique periodic
solution xi(t) � (A−1

i yi)(t), i � 1, 2, . . . , n.

Remark 3.1. Consider the corresponding deterministic system of
system (2.1)

d xi t( ) − ci t( )xi t − γ( )[ ] � −ai t( )xi t( ) +∑n
j�1

aij t( )fj xj t( )( )⎡⎢⎢⎣
+∑n

j�1
dij t( )gj xj t − τij t( )( )( ) + Ii t( )⎤⎥⎥⎦dt, (3.8)

where i = 1, 2, . . . , n.

Corollary 3.1. Suppose that |ci(t)| ≠ 1, i = 1, 2, . . . , n and
assumption (H1′) holds. Then system (3.8) has unique T-periodic
solution, provided that

~δ � max1≤i≤n
2~Λi

ai
2{ }< 1,

where

~Λi � ci′�ai�ci +∑n
j�1

�aijL
f
j cj′ + �dijL

g
j cj′( )⎛⎝ ⎞⎠2

,

ci′ � max
1

1 − �ci
,

1
ci − 1

{ }.

Remark 3.2. To the best of our knowledge, few authors deal with the
existence and exponential stability of periodic solutions to stochastic
neutral-type neural networks by using contraction mapping theorem
and Gronwall-Bellman inequality. Most articles only studied the
stability of stochastic neural networks, and the results on the
existence of solutions are not many, see e.g., [17–19, 21, 22].
Therefore, the results of this article enrich and develop the
research content and methods of stochastic neural networks. It
should be pointed out that the properties of regarding neutral-type
operators in Lemma 2.3 have important applications for obtaining
the main results of this paper. I believe that the above properties of
neutral-type operators will have wide applications in studying other
types of neutral-type systems.

Remark 3.3. In [44], the authors studied periodic solution problem
of a class of stochastic nonlinear system with delays; in this paper, we
investigated periodic solution problem of a class of stochastic neutral-
type neural networks with delays. The above two systems are
obviously different. Furthermore The main research methods in
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[44] are stochastic analysis technique and Lyaplov functional method,
see Theorem 2.2, Lemma 2.3 and Lemma 2.4 in [44]; the main
research methods in this paper are contraction mapping theorem and
Gronwall-Bellman inequality which are different from the
corresponding ones in [44].

4 Globally exponential stability of
periodic solution

In this section, we firstly show the exponential stability of
periodic solutions for system (2.3) with initial condition (2.4).
Then, we further obtain the exponential stability of periodic
solutions for system (2.1) with initial condition (2.2).

Theorem 4.1. Suppose that all conditions of Theorem 3.1 hold.
Then, the periodic solution of system (2.1) is globally exponentially
stable, provided that

λ � min1≤i≤n 2 ai − Λi{ }> 0 and 3 ci′( )2 > 1, i � 1, 2, . . . , n. (4.1)

Proof. From Theorem 3.1, system (2.3) has a periodic solution
yi(t) with initial condition ψi(s), where i = 1, 2, . . . , n, s ∈ (−∞, t0].
Assume that yi′(t) is an arbitrary solution of system (2.3) with the
initial condition ψi′(s), where i = 1, 2, . . . , n, s ∈ (−∞, t0]. From basic
theory of ordinary differential equation, system (2.3) has a solution

yi t( ) � Gi t, t0( )yi t0( ) + ∫t

t0
Gi t, s( ) −ai s( )ci s( ) A−1

i yi( ) s − γ( )[
+∑n

j�1
aij s( )fj A−1

j yj( ) s( )( )
+∑n

j�1
dij s( )gj A−1

j yj( ) s − τij s( )( )( ) + Ii s( )]ds
+∫t

t0

Gi t, s( )∑n
j�1

σ ij A−1
j yj( ) s( )( )dξj s( ), (4.2)

where i = 1, 2, . . . , n, t ≥ t0. Let zi(t) � yi(t) − yi′(t). By (4.2),
we have

zi t( ) � zi t0( )Gi t, t0( ) + ∫t

t0
Gi t, s( ) −ai s( )ci s( ) A−1

i yi( ) s − γ( )[[
− A−1

i yi′( ) s − γ( )]
+∑n

j�1
aij s( ) fj A−1

j yj( ) s( )( ) − fj A−1
j yj′( ) s( )( )[ ]

+∑n
j�1

dij s( ) gj A−1
j yj( ) s − τij s( )( )( ) − gj A−1

j yj′( ) s − τij s( )( )( )[ ]]ds

+∫t

t0

Gi t, s( )∑n
j�1

σ ij A−1
j yj( ) s( )( ) − σ ij A−1

j yj′( ) s( )( )[ ]dξj s( ). (4.3)

Let
H1i � zi t0( )Gi t, t0( ),

H2i � ∫t

t0
Gi t, s( ) −ai s( )ci s( ) A−1

i yi( ) s − γ( ) − A−1
i yi′( ) s − γ( )[ ][

+∑n
j�1

aij s( ) fj A−1
j yj( ) s( )( ) − fj A−1

j yj′( ) s( )( )[ ]
+∑n

j�1
dij s( ) gj A−1

j yj( ) s − τij s( )( )( ) − gj A−1
j yj′( ) s − τij s( )( )( )[ ]]ds,

H3i � ∫t

t0

Gi t, s( )∑n
j�1

σ ij A−1
j yj( ) s( )( ) − σ ij A−1

j yj′( ) s( )( )[ ]dξj s( ).

Taking expectations for the aboveH1i −H3i, by Lemma 2.2 and (4.3),
we have

E zi t( )(| |2 ≤ 3E |H1i|2 + |H2i|2 + |H3i|2( ), i � 1, 2, . . . , n. (4.4)
Evaluating the first term of the right-hand side of (4.4), by (3.2)
we have

E|H1i|2 ≤ e−2 ai t−t0( )E|zi t0( )|2. (4.5)
Evaluating the second term of the right-hand side of (4.4),
in view of Lemma 2.3, (3.2) and assumption (H1), we have

E|H2i|2 � E ∫t

t0
Gi t, s( ) −ai s( )ci s( ) A−1

i yi( ) s − γ( ) − A−1
i yi′( ) s − γ( )[ ][∣∣∣∣∣

+∑n
j�1

aij s( ) fj A−1
j yj( ) s( )( ) − fj A−1

j yj′( ) s( )( )[ ]
+∑n

j�1
dij s( ) gj A−1

j yj( ) s − τij s( )( )( ) − gj A−1
j yj′( ) s − τ ij s( )( )( )[ ]⎤⎥⎥⎦ds

∣∣∣∣∣∣∣∣∣∣
2

≤ ci′�ai�ci +∑n
j�1

�aijL
f
j cj′ + �dijL

g
j cj′( )⎡⎢⎢⎣ ⎤⎥⎥⎦2∫t

t0

e−2 ai t−s( )E|z|21ds.

(4.6)

As to the third term of the right-hand side of (4.4), in view of
Lemma 2.1, Lemma 2.3, (3.2) and assumption (H1), we
also have

E|H3i|2 � E ∫t

t0

Gi t, s( )∑n
j�1

σ ij A−1
j yj( ) s( )( ) − σ ij A−1

j yj′( ) s( )( )[ ]dξj s( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2

� E ∫t

t0
Gi t, s( )∑n

j�1
σ ij A−1

j yj( ) s( )( ) − σ ij A−1
j yj′( ) s( )( )[ ]

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

ds

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

≤ ∑n
j�1

lijcj′⎡⎢⎢⎣ ⎤⎥⎥⎦2∫t

t0

e−2 ai t−s( )E|z|21ds.

(4.7)
From (4.4-4.7), we have

E zi t( )(| |2 ≤ 3e−2 ai t−t0( )E|zi t0( )|2

+3 ci′�ai�ci +∑n
j�1

�aijL
f
j cj′ + �dijL

g
j cj′( )⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣

+ ∑n
j�1

lijcj′⎛⎝ ⎞⎠2⎤⎦∫t

t0

e−2 ai t−s( )E|z|21ds. (4.8)

Using Gronwall-Bellman inequality and (4.8), we have

E zi t( )| |2 ≤ 3E zi t0( )| |2e−λ t−t0( ), (4.9)
where λ is defined by (4.1). Furthermore, form Lemma 2.3 and (4.9),
we have

E xi t( ) − xi′ t( )∣∣∣∣ ∣∣∣∣2 � E A−1
i zi t( )∣∣∣∣ ∣∣∣∣2 ≤ 3 ci′( )2E zi t0( )(| |2e−λ t−t0( ).

Hence, the periodic solution of system (2.3) is globally exponentially
stable, i.e., the periodic solution of system (2.1) is globally
exponentially stable.

Corollary 4.1. Suppose that all conditions of Theorem 3.1 hold.
Then, the periodic solution of system (2.1) is globally exponentially
stable, provided that

~λ � min1≤i≤n 2 ai − ~Λi{ }> 0and 3 ci′( )2 > 1 i � 1, 2, . . . , n,

where ~Λi is defined by corollary 3.1.
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Remark 4.1. From the above results, it is easy to see that the
random terms have no effect on the periodicity of the considered
system. That is, both stochastic neutral-type neural networks and
its corresponding deterministic systems have the similar
periodicity.

Remark 4.2. In recent years, fractional-order system have been
extensively studied, see [45, 46] and related references. However, the
periodic solution problems for fractional-order system or stochastic
fractional-order system are rarely studied. In future research, we will
focus on the aforementioned issues.

FIGURE 1
The states’ evolution of x1(t) for Eq. 5.1 with different initial values.

FIGURE 2
The states’ evolution of x2(t) for Eq. 5.1 with different initial values.
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5 A numerical example

In this section, we present an example to illustrate the feasibility
of our results obtained in previous sections. For i = 2, consider the
following stochastic neutral-type neural networks:

d xi t( ) − ci t( )xi t − γ( )[ ] � −ai t( )xi t( ) +∑n
j�1

aij t( )fj xj t( )( )⎡⎢⎢⎣
+∑n

j�1
dij t( )gj xj t − τij t( )( )( ) + Ii t( )]dt

+∑n
j�1

σ ij xj t( )( )dξj t( ), (5.1)

where

c1 � c2 � 0.1, a1 t( ) � 0.35 + 0.1 sin t, a2 t( ) � 0.4 + 0.1 cos t, I1 t( )
� I2 t( ) � 0.2 cos t,

aij t( )( )
2×2

� 0.2 + 0.1 cos t 0.1 + 0.25 sin t

0.3 + 0.25 sin t 0.2 + 0.05 cos t
( ),

dij t( )( )
2×2

� 0.25 + 0.1 cos t 0.15 + 0.25 sin t

0.25 + 0.2 sin t 0.3 + 0.15 cos t
( ),

τij t( )( )
2×2

� 0.5 + 0.2 cos t 0.3 + 0.15 cos t

0.3 + 0.1 sin t 0.4 + 0.2 sin t
( ),

σ ij x( )( )
2×2

� 0.1 + 0.05 cosx 0.2 + 0.25 sinx

0.1 + 0.1 sin x 0.2 + 0.2 cosx
( ),

f1 x( ) � f2 x( ) � 0.05|x|, g1 x( ) � g2 x( ) � 0.01|x|.
After a simple calculation, we have

a1 � 0.25, a2 � 0.3, �a1 � 0.45, �a2 � 0.5, �c1 � �c2 � 0.1, c1* � c2*

� 1.1,

�a11 � 0.3, �a12 � 0.35, �a21 � 0.55, �a22 � 0.25, �d11 � 0.35, �d12

� 0.4, �d21 � 0.45, �d22 � 0.45,

Lf
1 � Lf

2 � 0.05, Lg
1 � Lg

2 � 0.01, l11 � 0.05, l12

� 0.25, l21 � 0.1, l22 � 0.2.

Thus,

Λ1 � c1*�a1�c1 +∑2
j�1

�a1jL
f
j cj′ + �d1jL

g
j cj′( )⎛⎝ ⎞⎠2

+ ∑2
j�1

l1jcj′⎛⎝ ⎞⎠2

≈ 0.026,

Λ2 � c2*�a2�c2 +∑2
j�1

�a2jL
f
j cj′ + �d2jL

g
j cj′( )⎛⎝ ⎞⎠2

+ ∑2
j�1

l2jcj′⎛⎝ ⎞⎠2

≈ 0.023,

δ � max1≤i≤2
2Λi

ai
2{ } ≈ 0.9904< 1,

λ � min1≤i≤2 2 ai − Λi{ } ≈ 0.474> 0, 3 c1*( )2 � 3 c2*( )2 � 3.63> 1.

It follows that all conditions of Theorem 4.1 hold. Hence, system
(5.1) has a periodic solution, which is globally exponentially stable.
The numerical solutions with different initial values are shown in
Figure 1 and Figure 2.

6 Conclusion and discussions

In this paper, we have obtained some new sufficient conditions
for the existence, uniqueness and exponential stability of periodic

solution for a stochastic neutral-type neural networks with delays.
The existence results have been obtained by the contraction
mapping theorem which extend the previous corresponding
results. The stability results have been obtained by stochastic
analysis and Gronwall-Bellman inequality. It should be pointed
out that the properties of neutral type operators have important
applications in this study. We believe that the above properties can
also be used to study other types of neutral-type neural networks.

In the future, we will explore existence and stability of periodic
solution for neutral-type stochastic differential system with impulse,
markov jumps, L�evy jumps and so on. Also, we will study periodic
solution problems for neutral-type stochastic differential system on
time scales.
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