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Electron cyclotron harmonic (ECH) waves are electrostatic emissions frequently
observed in the Earth’s magnetosphere. By precipitating magnetospheric hot
electrons into the ionosphere, ECH waves play a critical role in the formation of
diffuse aurora. Previous research has extensively investigated the strong
dependence of ECH waves on the geomagnetic activities. In this study, we
present the first report of the prompt response of ECH waves to an
interplanetary shock on the basis of WIND and Van Allen Probes observations.
Our observations and analyses demonstrate that the interplanetary shock
compression can increase >0.1 keV hot electron fluxes in the dayside inner
magnetosphere, consequently leading to the prompt intensification of ECH
waves by promoting the wave instability. These findings expand our
comprehension of the impacts of solar wind disturbances on magnetospheric
plasma waves and offer fresh insights into solar wind-magnetosphere-
ionosphere coupling.
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1 Introduction

Electron cyclotron harmonic (ECH) waves are electrostatic emissions [1] that typically
appear in thermal plasmas in the Earth’s magnetosphere [2–6]. They are usually observed as
harmonic wave bands at frequencies between multiples of electron gyrofrequency (fce)
[7–9]. Through cyclotron resonance, ECH waves are able to efficiently precipitate keV
electrons from the magnetosphere to the ionosphere, contributing to the formation of
diffuse aurora [10–16]. Therefore, a comprehensive understanding of the spatiotemporal
distribution of ECH waves is required to forecast space weather [17–22].

The generation of ECH waves is proposed to be associated with Bernstein-mode
instability driven by hot electron loss cone distributions [23,24]. These emissions with
quasi-perpendicular wave vectors are confined near their source regions [24]. While
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extensive event and statistical studies have focused on the strong
dependence of ECH waves on geomagnetic activities [3,25–27],
none have directly established a link between ECH waves and
solar wind disturbances. Interplanetary shocks, a subset of solar
wind discontinuities frequently observed during active days [28–31],
are highly geoeffective [32–35]. Numerous works have reported the
immediate impacts of interplanetary shocks on magnetospheric
plasma waves, including ultra low frequency waves, whistler-
mode waves, magnetosonic waves, and EMIC waves [36–44].
Thus, the questions that naturally arise are whether and how an
interplanetary shock can abruptly influence magnetospheric
ECH waves.

In this study, using observations from the WIND [45] and Van
Allen Probes missions [46], we present a representative ECH wave
event during an interplanetary shock. The observations and analyses
show that a shock compression can increase > 0.1 keV hot electron
fluxes in the Earth’s dayside inner magnetosphere, thus leading to
the prompt intensification of ECH waves by promoting the wave
instability.

2 Observation

Here we utilize the combined observations of WIND and Van
Allen Probes to monitor the prompt response of ECH wave to an
interplanetary shock. The Wind satellite operated in a halo orbit
near the L1 Lagrange point. The Solar Wind Experiment (SWE)
[47], the Magnetic Fields Investigation (MFI) [48], and the Three-
Dimensional Plasma and Energetic Particle Investigation (3DP) [49]
onboardWINDmeasured the solar wind parameters. The Van Allen
Probes mission, comprising two identical probes (termed as RBSP-A
and RBSP-B), orbited near the equator with perigees of
approximately 0.1 RE and apogees of approximately 6 RE [46]. In
this work, wemainly used the High Frequency Receiver (HFR) of the
Electric and Magnetic Field Instrument Suite and Integrated Science
(EMFISIS) instrument [50] to observe ECH waves. The HFR
provided electric spectral intensities in the frequency range of
10–400 kHz in survey mode. Note the Waveform Frequency
Receiver (WFR) of EMFISIS can provide electric spectral
intensities at frequencies ranging from 10 Hz to 12 kHz.
However, the WFR electric spectral data had been contaminated
seriously above 5 kHz during the event in this work, and did not
allow the clear observation of ECH waves. Following the method in
Kurth et al. [51], we can derive the background plasma density Ne

from the upper hybrid resonance frequency. The fluxgate
magnetometer (MAG) of EMFISIS and the Electric Field and
Waves (EFW) [52] instrument captured the background
electromagnetic field. The Helium Oxygen Proton Electron
(HOPE) Mass Spectrometer [53] of the Energetic particle,
Composition and the Thermal (ECT) plasma suite [54] provided
the electron flux data from several eV to ~ 50 keV. The geomagnetic
indices were obtained from the OMNI database.

Figures 1A–G plot the solar wind parameters observed by
WIND from 07 June 2014 to 11 June 2014. At 16:12 UT on
07 June 2014, a fast forward interplanetary shock was monitored,
marked by abrupt increases in magnetic field strength, velocity,
density, temperature, and dynamic pressure. According to the list by
Chi et al. [55], there was an interplanetary coronal mass ejection

(ICME) between approximately 19:00 UT on 08 June 2014 and 10:
00 UT on 10 June 2014. This ICME exhibited typical features,
including a declining velocity profile, low proton temperature, and
bidirectional streaming of suprathermal electrons [56,57]. In a
statistical sense, ICMEs c1might be the major driver of shocks
c2during solar maximum, but shocks exist during solar minimum
even if few ICMEs are present [58]. The large time lapse between the
shock and the ICME front makes it uncertain to determine their
relations. Whether this shock was driven by the ICME or a fast solar
wind stream requires detailed studies in future and beyond the scope
of this work. Approximately 41 min after its arrival in WIND data,
the interplanetary shock with a drastic increase in solar wind
dynamic pressure from 1 nPa to 6 nPa, compressed the Earth’s
magnetosphere. This compression caused an increase of SYM-H
index from −5 nT to 23 nT. Figure 1H shows the response of inner
magnetospheric ECH waves to the interplanetary shock as observed
by RBSP-A on 07 June 2014. Around the shock arrival, RBSP-A
operated in the northern hemisphere (MLAT~ 15°) of dayside
magnetosphere (L~ 6, MLT~ 9 hr) under relatively quiet
conditions (SYM-H> -10 nT and AE< 350 nT). Before the shock
arrival, RBSP-A received faint and intermittent ECH wave signals
(PE < 1 × 10−10 mV2m−2Hz−1) appearing as harmonic bands below
the upper hybrid resonance frequency fUHR. Note the WFR
observations were too noisy to identify ECH waves below
10 kHz. As marked by the vertical dashed lines (16:53 UT), the
shock compression caused a sudden and significant intensification
of ECH wave power, increasing by approximately one order of
magnitude to PE ~ 1 × 10−9 mV2m−2Hz−1. Compared with the ECH
waves typically confined in the near equatorial region, this ECH
wave event was observed at relatively higher latitudes (MLAT~ 15°)
with a weak intensity. This is consistent with the statistical
characteristics of ECH waves showed in previous studies
[25,59,60]. It should also be mentioned that this ECH wave
intensification was not a manifestation of the spatial variation of
waves but a temporal behavior. During the inbound pass before the
shock arrival, RBSP-A only observed weak or no ECH waves in
larger L-shells with comparable MLT (as shown in Figure 1H). The
inward movement of these weak ECH waves triggered by shock
compression could not explain the wave intensification. Thus, the
ECH wave intensification should be related to variations in plasma
environment triggered by the shock compression, which will be
further investigated in the following section.

3 Physical explanations

Figure 2 presents the temporal evolutions of background
electromagnetic fields and plasmas measured by RBSP-A during
the event. Corresponding to the shock compression at 16:53 UT
(marked by the vertical dashed line in Figure 2), the background
magnetic field intensity increased from 200 nT to 223 nT. In
contrast, the background plasma density Ne in the low-density
plasma trough remained consistently below 10 cm−3 (which is
dominant by the cold plasma) with no systematic variations after
the shock. The interplanetary shock also induced ultralow-frequency
waves with impulsive electric field amplitudes of 5 mV/m,
subsequently resulting in a significant acceleration of hot electron
fluxes above 0.1 keV. It is noteworthy that the similar responses of
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FIGURE 1
Overview of the ECH wave event on 07 June 2014: (A) Magnetic field magnitude Bt and components (BX, BY, BZ) in the geocentric solar
magnetospheric (GSM) coordinate. (B) Bulk velocity Vsw. (C) Proton density Np. (D) Proton temperature Tp. (E) suprathermal electron flux j. (F) Solar wind
dynamic pressure Psw. (G) Geomagnetic SYM-H index. (H) Zoom-in figure of Wave electric power spectra PE with overplotted electron gyrofrequency
(fce) harmonics and upper hybrid resonance frequency (fUHR). The solar wind measurements by Wind satellite at ~ 1.26 × 106 km from Earth have
been shifted 41 min according to the SYM-Hmeasurements. The shadowed areas mark an ICME. The vertical dashed lines in each panel mark the arrival
of interplanetary shock.
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magnetospheric electron fluxes ranging from low energy to
relativistic energy to interplanetary shocks have been reported by
numerous studies [37,61–65]. However, the modulation of hot

electron fluxes by the ULF wave can not be clearly observed in
Figures 2D–F. Possible explanations for this could be the following:
1) rapid relaxation by magnetospheric plasma waves (ECH waves

FIGURE 2
Temporal evolution of background fields and plasmas of 07 June 2014 event: (A) background magnetic field strength B. (B) Background plasma
densityNe. (C) Electric field components in themodified geocentric solar ecliptic (mGSE) coordinate system. (D) electron spin-averaged differential flux j.
(E,F) differential electron fluxes j at specific energies. The vertical dashed line mark the arrival of interplanetary shock, and the vertical dash-dotted lines
mark the pre-shock and post-shock moments for the growth rate calculation.
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and chorus); 2) the comparable cadence (~21 s) of HOPE
instrument to ULF wave period (~1–2 min). As reported by
previous theoretical studies [23,24], the enhancement of hot
electron fluxes could promote the wave instability by providing
more free energy, and then lead to the wave intensification.

To further determine the influence of shock compression on the
generation of ECH waves, we use the BO code [66] to calculate the
linear dispersion relations and wave growth rates. The inputs of the
code include the background magnetic field intensity and electron
phase space density F. The observed electron PSD is fitted by a total
of N bi-Maxwellian components.

F v⊥, v‖( ) � ∑N
i�1

Fi, (1)

Fi � ni
π3/2V‖thiV

2
⊥thi

exp − v‖ − Vdzi( )2
V2

‖thi
[ ]

×
rai
Aai

exp − v⊥ − Vdri( )2
V2

⊥thi

[ ] + rbi
αiAbi

exp − v⊥ − Vdri( )2
αiV

2
⊥thi

[ ]{ },
(2)

where rai � 1−αiΔi
1−αi , rbi � −αi+αiΔi

1−αi . For the ith plasma component, ni is
the density; V‖thi, V⊥thi, Vdzi, and Vdri are the parallel thermal

FIGURE 3
Comparison between different geomagnetic models at the pre-shock and post-shock moments on 07 June 2014: (A,C) Modeled magnetic field
configurations in the SM X-Z plane along the field lines traced from the RBSP-A location and (B,D) corresponding field intensities as a function of
magnetic latitude for dipole (black dashed lines), T96 (red solid lines), T01 (blue solid lines), and TS04 (black solid lines) geomagnetic models. The orange
asterisks represent the locations of RBSP-A and observed magnetic field intensities at specific moments.
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velocity, perpendicular thermal velocity, parallel drift velocity, and
perpendicular ring beam velocity; expressions Aai � Abi � 1 when
Vdri � 0; αi and Δi characterize the size and the depth of the loss
cone. According to previous numerical studies [24,67,68], we set the
background cold electrons as the 1 eV component for calculation.
Note the sum of each component density ni is equal to the
background plasma density Ne.

As the ECH wave powers (Figure 1H) and background plasma
conditions (Figure 2) exhibited systematic variations following the
interplanetary shock, we selected two specific times for analyses
(marked by the vertical dash-dotted lines in Figure 2): 1) pre-shock
moment at 16:50 UT; 2) post-shock moment at 17:00 UT. The
satellite data provide direct measurements of background magnetic
field intensity and plasma density for the growth rate calculation.
However, because of the instrumentation constraints and data

quality, electron flux data from HOPE are unavailable in small
pitch angles (< 18°) during this event. Theoretically, the local loss
cone angle αloss of bounced electrons can be determined by the
following expression [69]:

sin αloss
2 � B0

Bloss
(3)

where B0 and Bloss are the magnetic field intensities at the satellite
position and low altitude mirror point where electrons get lost. Here
we assume the mirror point locates at 100 km height. Because of the
absence of measurements for Bloss, we rely on geomagnetic models to
derive the ratio B0

Bloss
. Figure 3 shows comparisons between different

Tsyganenko geomagnetic models [70–72] around the interplanetary
shock. Since the satellite was located in the inner magnetosphere, the
field line configurations of the Tsyganenko models closely resemble

FIGURE 4
Electron phase space densities in pitch angle-energy space at pre-shock (A) and post-shock (B) moments on 07 June 2014. The solid lines and
circles represent modeled and observed electron phase space densities, and the black vertical dashed lines represent the modeled loss cone angles.
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those of the dipole field. Different with the situation in larger L-
shells, there was no off-equatorial magnetic field minimum on the
field lines of this event, which has been suggested to explain the
latitudinal extension of ECH waves. However, even in the inner
magnetosphere (5 < L < 6.6) usually with the absence of off-
equatorial magnetic field minimums, ECH waves can extend to
MLAT> 15° with decreasing amplitudes according to MMS
observations (as shown in Figure 3 of Lou et al. [59]). Further
understanding of the high-latitude ECH waves requires detailed
investigations in the future. Comparing with the T96 and
T01 models, the magnetic field strengths derived from
TS04 model align more closely with the observation values after
the shock compression. Therefore, we use TS04 geomagnetic model
[72] to estimate the loss cone size. Based on Eq. 3, the modeled loss
cone angles αloss are 3.49° and 3.68° at the pre-shock and post-shock
moments. These approximations suggest that the interplanetary
shock may not trigger significant changes in the electron loss
cone through adiabatic processes during this event. Taking into
account the estimated loss cone sizes, Figure 4 plots the modeled and
observed electron phase space densities at the pre-shock and post-
shock moments. To reduce the intense fluctuations of electron flux
data (as shown in Figures 2E, F), we smoothed the data over
8 adjacent time points (~168 s) and symmetrized the data with
respect to the 90° pitch angle. The detailed fitting parameters of bi-
Maxwellian components are given in Table 1. Generally speaking,
the modeled electron phase space densities are in reasonable
agreement with the observations.

Figures 5A, D illustrate the ECH wave linear growth rates
calculated by the BO code within 87° < θ < 90° at the pre-shock
and post-shockmoments. Based on the observations (Figure 1H), we
focus on the first three harmonic bands below the upper hybrid
resonance frequency. It is evident that the modeled growth rates
roughly share the similar frequency distributions with the observed
ECH wave intensities, indicating the electron phase space density
fittings reasonably reflect the real conditions. In comparison to the
pre-shock moment, the modeled growth rates at the post-shock
moment increase by approximately threefold, qualitatively
explaining the intensification of ECH waves after the
interplanetary shock. Figures 5B, E show the wave frequency ω/

Ωe as a function of normalized wave vector kρe at θ = 89° (ω is the
wave angular frequency, Ωe is the electron angular gyrofrequency,
and ρe is the gyroradius). These dispersion relations enable the
calculation of the wave minimum resonant energy Emin, which can
be determined as follows.

Emin � 1
2
mev

2
‖ , (4)

v‖ � ω − nΩe

k‖
, (5)

here v‖ is the electron parallel velocity, k‖ = k cos θ is the wave
parallel vector, n is the resonance order, and me is the electron rest
mass. Based on Figures 5B, C, E, F show the minimum resonant
energy Emin of different harmonic bands (each with a specific
resonance order) as a function of wave frequency ω/Ωe at θ =
89°. Combined with the wave growth rates shown in Figures 5A, D,
the corresponding Emin for the frequencies with positive growth
rates predominantly falls within the range of 0.1 keV–1 keV. These
calculations indicate the ECH wave intensification is highly
associated with the shock-induced enhancement of > 0.1 keV hot
electrons, which enlarges the free energy for ECH wave excitation.

4 Discussion and conclusion

In contrast to previous studies focusing on the dependence of
ECH waves on geomagnetic activities [3,25,26,59], here we present
the first report of the prompt response of ECH waves to an
interplanetary shock based on the WIND and Van Allen Probes
observations. A fast forward interplanetary shock with a drastic
increase in solar wind dynamic pressure (from 1 nPa to 6 nPa)
compressed the Earth’s magnetosphere, causing the prompt
intensification of dayside inner magnetospheric ECH waves. The
observations and analyses suggest that the shock-induced
enhancement of > 0.1 keV hot electron enlarges the free energy
for the ECH wave excitation, consequently leading to the
intensification of ECH waves by promoting the wave instability.
Another intriguing phenomenon is the impact of a solar wind
disturbance on ECH waves on 08 June 2014. As marked by the

TABLE 1 The fitting parameters of electron phase space densities for the 07 June 2014 event.

Groups Components ni (m
−3) T‖thi (keV) T⊥thi (keV) αi Δi Vdzi Vdri

1 4.00 × 106 0.001 0.001 1.0 1.0 0 0

2 3.00 × 106 0.0082 0.0150 1.0 1.0 0 0

pre-shock 3 3.00 × 105 0.0411 0.0501 1.0 1.0 0 0

(16:50 UT) 4 6.00 × 104 0.1393 0.2406 0.01 0.2 0 0

5 1.30 × 105 1.7769 2.9112 0.0016 0.3 0 0

1 4.00 × 106 0.001 0.001 1.0 1.0 0 0

2 3.00 × 106 0.0125 0.0192 1.0 1.0 0 0

post-shock 3 3.00 × 105 0.0478 0.0601 1.0 1.0 0 0

(17:00 UT) 4 1.10 × 105 0.1557 0.2730 0.011 0.2 0 0

5 1.60 × 105 2.2289 3.6845 0.0018 0.3 0 0
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vertical dash-dotted line in Figures 1A–G, there were increases in
solar wind magnetic field and dynamic pressure at ~04:44 UT on
08 June 2014. Different with the event on 07 June 2014, this structure
was not an interplanetary shock. Figure 6 shows ECH wave
observations measured by the twin Van Allen Probes satellites on
08 June 2014. Corresponding to the arrival of the solar wind
disturbance (marked by the vertical dash-dotted line in Figure 6),
RBSP-A near the perigee was unable to receive ECH wave signals,
while RBSP-B in the dayside magnetosphere (L ~ 5.8) observed the

prompt intensification of ECH waves. In addition to the prompt
impacts, the solar wind compressions in magnetosheath on 07 and
08 June 2014 could increase the dayside reconnection rate and lead
to the strong convection in the magnetosphere [73]. Probably
because of the associated hot electron injections and
plasmasphere erosions, both satellites observed the enhanced
occurrences of ECH waves on 08 June 2014. A comprehensive
understanding of the dependence of ECH waves on solar winds
requires further investigation in the future.

FIGURE 5
ECH wave growth rates, dispersion relations, and minimum resonant energy of first three harmonic bands at pre-shock and post-shock moments.
(A,D) linear wave growth rates γ/Ωe as a function of frequency ω/Ωe and wave normal angle θ with overplotted electric power intensity PE of ECH waves
from HFR data; (B,E) wave frequency ω/Ωe as a function of normalized wave vector kρe (ρe is the gyroradius) at θ = 89°; (C,F) minimum resonant energy
Emin of different harmonic bands (with specific resonance order) as a function of wave frequency ω/Ωe at θ = 89°.
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In this work, we employ the BO code to compute the linear
wave dispersion relation and growth rate of ECH waves. The
calculations are based on the hot electron flux data measured
by HOPE. However, as shown in Figure 4, the electron flux data
exhibit irregular fluctuations over pitch angles and are notably
absent within the loss cone, and the bi-Maxwellian fittings of
electron fluxes are unable to capture all the subtle changes. Because
of these data and technical limitations, the BO modeling here only
provides a qualitative understanding of the observed wave
evolutions following the interplanetary shock. In the future,
detailed numerical studies are required to evaluate the results
obtained in this work.

The prompt responses of magnetospheric waves to solar wind
disturbances have attracted increasing interests. Recent works have
reported the immediate effects of solar wind disturbances on chorus,
hiss, magnetosonic waves, and electromagnetic ion cyclotron waves
[36–44,74]. Owing to the important roles of these plasma waves in
magnetosphere dynamics, solar wind disturbances could lead to
non-negligible changes in space weather by affecting the
spatiotemporal distribution of plasma waves. For instance, the
ECH wave intensification event reported in this work might

contribute to the formation of shock diffuse aurora, attributed to
ECH waves’ capacity to scatter keV electrons [75]. Our present
findings, in conjunction with previous research, have brought new
insights into the solar wind-magnetosphere-ionosphere coupling
and highlighted the dependence of magnetospheric waves on the
solar wind disturbances.
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