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In this study, we employ the effective iterative method to address the fractional
Wu-Zhang Equation within the framework of the Caputo Derivative. The effective
iterative method offers a practical approach to obtaining approximate solutions
for fractional differential equations. We seek to provide insights into its solution
and behavior by applying this method to the Wu-Zhang Equation. Through
numerical analysis and the presentation of relevant tables and Figures, we
demonstrate the accuracy and efficiency of this method in solving the
fractional Wu-Zhang Equation. This research contributes to the understanding
and solution of fractional-order differential equations and their applications in
various scientific and engineering domains.
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1 Introduction

In mathematics, fractional calculation is a generalization of classical calculus. During the last
few decades, researchers have paid muchmore attention to fractional calculus. Several fields have
benefited from the application of fractional calculus, including physics, engineering, biology,
medicine, hydrology, economics and finance [1–8]. In differential equations, linearmodels can be
solved by different methods and do not require excessive effort to obtain their exact solutions.
Non-linear models are more difficult to solve. It’s hard to solve most problems in the real world
because they’re non-linear. There is no exact solution to the majority of non-linear problems. To
solve these problems, researchers use a variety of approaches [9–15]. In recent years, the
exploration of advanced mathematical methods and novel approaches has significantly impacted
the domain of fractional calculus. A series of publications by notable researchers Tao, He, Anjum,
Yang, and others have introduced pioneering concepts, unveiling the potential of transformative
methodologies in the field. Among these, the Aboodh transformation-based homotopy
perturbation method, highlighted in the work by [16] in Frontiers in Physics, presents a new
ray of hope for the application of fractional calculus. He, Anjum, and others also, in their
2023 publication in Therm. Sci. has illuminated the challenges and prospects beyond Laplace and
Fourier transforms, setting the stage for a broader understanding of mathematical
transformations [17]. Exploring applications, Anjum, Ain, Din, and their team have
undertaken an insightful analysis of Caputo fractional order dynamics, particularly in the
context of the Middle East Lungs Coronavirus (MERS-CoV) model, as revealed in their
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2022 [18]. Furthermore, the work of Anjum, He, He, and collaborators
(2021) in Fractals introduces the intriguing concept of two-scale fractal
theory in population dynamics [19]. In contrast, Anjum, Ain, Li, and
others (2021) present a groundbreaking two-scale mathematical model
for tsunami waves in the GEM-International Journal on Geo
mathematics [20].

Coastal and harbor design is often influenced by the Wu-Zhang
system of equations, which describes the non-linear water wave
availability in the ocean. To obtain the exact solution, this is one of
the most critical topics in mathematical physics. Several authors

have recently used various numerical and analytical approaches to
find the numerical and analytical solution to the WZ equations, for
example, using the first integral method [21], the modified Adomian
decomposition method [22], the homotopy perturbation method
[23], the extended Tanh method and the exp-function method [24],
the exponential rational function method [25], the successive
approximation method [26], the modified variation iteration
method [27], the extended trial equation method [28] and the
dynamic system method [29]. In addition, more solitonic
solutions were extracted using the mapping method. According

FIGURE 1
NIM solution of 3D plot for α(f, g, h, ϵ) when p = 0.4.

FIGURE 2
NIM solution of 3D plot for α(f, g, h, ϵ) when p = 0.6.

FIGURE 3
NIM solution of 3D plot for α(f, g, h, ϵ) when p = 0.8.

FIGURE 4
NIM solution of 3D plot for α(f, g, h, ϵ) when p = 1.0.
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to [30], the extended trial equation method, Lie symmetry analysis,
and mapping method are used to obtain solutions for solitary, shock,
and singular solitary waves. According to [31], the 3-component
Wu-Zhang equation is solved using the ansatz method, followed by a
one-solution solution. Several methods have been used recently to
enhance these equations, including Backlund transformations [32],
Darboux transformations [33–35], asymptotic analysis methods
[36], Painleve analyses [37] and extended Painleve expansions [38].

The new iterative method (NIM) was introduced in 2006 by
Daftardar-Gejji and Jafari for solving linear and non-linear

equations [39]. A straightforward method is proposed for
handling linear and non-linear equations. In contrast to ADM
and numerical methods, NIM doesn’t require the calculation of
tedious Adomian polynomials in non-linear terms like ADM, a
Lagrange multiplier like VIM, or discretization like numerical
methods. A significant advantage of this method is that it does
not require small parameter assumptions, unlike regular
perturbation methods. Its primary disadvantage lies in the fact
that NIM is an iterative method requiring an initial condition. An
iterative method was developed in [40] to solve linear and non-
linear fractional diffusion-wave equations on finite domains with
Dirichlet boundary conditions. In this study, the New Iterative
Method [41] has been applied to linear and non-linear fractional

FIGURE 5
NIM solution of 3D plot for β(f, g, h, ϵ) when p = 0.4.

FIGURE 6
NIM solution of 3D plot for β(f, g, h, ϵ) when p = 0.6.

FIGURE 7
NIM solution of 3D plot for β(f, g, h, ϵ) when p = 0.8.

FIGURE 8
NIM solution of 3D plot for β(f, g, h, ϵ) when p = 1.0.
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diffusion-wave equations. It has been reported in [42] that new
iterative methods were used to study a fractional version of a
logistic equation. The scientific landscape in recent publications
showcases diverse research spanning various disciplines. Among
these, significant contributions emerge in physics, fluid
dynamics, material science, and mathematical engineering
[43–47]. Notably, [48] have made strides in particle physics by
establishing the first hidden-charm pentaquark with strangeness.
Concurrently, [49] delve into the characteristics of cavity
dynamics in water entries with paired spheres, contributing

insights into fluid behavior. Yang and Kai [50] explore the
dynamical properties and chaotic behaviors of non-linear
coupled Schrodinger equations in fiber Bragg gratings, while
[51] propose a Dilatancy Equation for Geomaterials based on
property-dependent plastic potential theory. Furthermore, [52]
present an Iterative Threshold Algorithm for Sparse Problems,
and [53] focus on aerial target threat assessment using improved
methods in mathematical biosciences and engineering. These
diverse studies underscore the multidisciplinary nature and
broad scope of recent scientific endeavors [54–56].

FIGURE 9
NIM solution of 3D plot for γ(f, g, h, ϵ) when p = 0.4.

FIGURE 10
NIM solution of 3D plot for γ(f, g, h, ϵ) when p = 0.6.

FIGURE 11
NIM solution of 3D plot for γ(f, g, h, ϵ) when p = 0.8.

FIGURE 12
NIM solution of 3D plot for γ(f, g, h, ϵ) when p = 1.0.
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The Wu-Zhang equation is a nonlinear partial differential
equation that describes the (1 + 1)-dimensional dispersive long
wave in two horizontal directions on shallow waters. It has been
applied in various fields, including engineering and coastal design.
The equation has been extended to include time-fractional and space-
fractional derivatives, leading to the time-fractional (2 + 1)-
dimensional Wu-Zhang system and the space-fractional (2 + 1)-
dimensional Wu-Zhang system. The Wu-Zhang equation and its
generalizations have found applications in various fields, such as
ocean engineering, coastal design, and the study of nonlinear waves.

The equation has also been used to model nonlinear and dispersive
waves in other contexts, such as conformable time-fractional systems
and time-fractional (2 + 1)-dimensional systems. Throughout the
paper, a fractional approach will be used to solve the Wu-Zhang
equation and analyze the behavior that lies behind the phenomenon
in a fractional model. This research aims to extend the
implementation of NIM to solve time-fractional partial differential
equations, including systems of two or more partial differential
equations, which are applied in engineering and science. Moreover,
the study explores various fractional order values across three distinct
situations, examining 3D and contour plots to determine the physical
characteristics of the solution. A comparison between the
approximate and exact solution is done to ensure the model is
accurate. Physical problems with fractional orders can be solved

FIGURE 13
Comparison between exact and NIM solution for 3D plot α(f, g, h,
ϵ) for different fractional order values of p = 0.4, 0.6, 0.8, 1.0.

FIGURE 14
Comparison between exact and NIM solution for 3D plot β(f, g, h,
ϵ) for different fractional order values of p = 0.4, 0.6, 0.8, 1.0.

FIGURE 15
Comparison between exact and NIM solutions for a 3D plot γ(f, g,
h, ϵ) for different fractional order values of p = 0.4, 0.6, 0.8, 1.0.

FIGURE 16
Comparison between exact and NIM solution for 2D plot γ(f, g, h,
ϵ) for different fractional order values of p = 0.4, 0.6, 0.8, 1.0.
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FIGURE 17
Comparison between exact and NIM solution for 2D plot γ(f, g, h,
ϵ) for different fractional order values of p = 0.4, 0.6, 0.8, 1.0.

FIGURE 18
Comparison between exact and NIM solution for 2D plot γ(f, g, h,
ϵ) for different fractional order values of p = 0.4, 0.6, 0.8, 1.0.

TABLE 1 Using the NIM solution of α(f, g, ), compare the exact solution and
the absolute error.

f α(f,g,ϵ)NIM α(f,g,ϵ)Exact Absoluteerror

0.1 −1.87326 −1.87326 4.45355 × 10−12

0.2 −1.76079 −1.76079 5.26512 × 10−12

0.3 −1.65288 −1.65288 5.57865 × 10−12

0.4 −1.55123 −1.55123 5.41389 × 10−12

0.5 −1.45717 −1.45717 4.86677 × 10−12

0.6 −1.37153 −1.37153 4.07652 × 10−12

0.7 −1.29471 −1.29471 3.18545 × 10−12

0.8 −1.2267 −1.2267 2.31193 × 10−12

0.9 −1.1672 −1.1672 1.53522 × 10−12

1 −1.11568 −1.11568 8.9595 × 10−13

TABLE 2 Using the NIM solution of β(f, g, ), compare the exact solution and
the absolute error.

f β(f,g,ϵ)NIM β(f,g,ϵ)Exact Absoluteerror

0.1 1.12674 1.12674 4.45355 × 10−12

0.2 1.23921 1.23921 5.26512 × 10−12

0.3 1.34712 1.34712 5.57865 × 10−12

0.4 1.44877 1.44877 5.41389 × 10−12

0.5 1.54283 1.54283 4.86677 × 10−12

0.6 1.62847 1.62847 4.07652 × 10−12

0.7 1.70529 1.70529 3.18545 × 10−12

0.8 1.7733 1.7733 2.31193 × 10−12

0.9 1.8328 1.8328 1.53522 × 10−12

1 1.88432 1.88432 8.9595 × 10−13

TABLE 3 Using the NIM solution of γ(f, g, ), compare the exact solution and
the absolute error.

f γ(f,g,ϵ)NIM γ(f,g,ϵ)Exact Absoluteerror

0.1 1.31727 1.31727 1.20437 × 10−11

0.2 1.27611 1.27611 6.54965 × 10−12

0.3 1.21284 1.21284 7.3519 × 10−13

0.4 1.13194 1.13194 4.35252 × 10−12

0.5 1.03867 1.03867 8.00382 × 10−12

0.6 0.938363 0.938363 9.96481 × 10−12

0.7 0.835894 0.835894 1.03821 × 10−11

0.8 0.735335 0.735335 9.64584 × 10−12

0.9 0.639773 0.639773 8.21843 × 10−12

1 0.551309 0.551309 6.5119 × 10−12

TABLE 4 Numerical values of α(f, g, ) using the NIM solution for different
values of fractional order of p.

f NIMp=0.4 NIMp=0.6 NIMp=0.8 NIMp=1.0

0.1 −1.18334 −1.39435 −1.54218 −1.6488

0.2 −1.08479 −1.30431 −1.44618 −1.54642

0.3 −1.01175 −1.22827 −1.36007 −1.45208

0.4 −0.96415 −1.16602 −1.28417 −1.36659

0.5 −0.93839 −1.11612 −1.21816 −1.29027

0.6 −0.92871 −1.07639 −1.16129 −1.22299

0.7 −0.92883 −1.04448 −1.11255 −1.16431

0.8 −0.93327 −1.01826 −1.07091 −1.11359

0.9 −0.93809 −0.99606 −1.03539 −1.07009

1 −0.94097 −0.97676 −1.00512 −1.03302
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using the New Iterative Method (NIM), which can be applied to both
linear and non-linear fractional order problems. Three main sections
in the article are arranged as follows: Section 2 represents some
definitions, and Section 3 shows the methodology of the New Iterative
Method (NIM). Section 4 discusses the problem’s solution. Section 5
provides the numerical results and discussions and the last Section 6
shows the short conclusion.

2 Preliminaries

In this section, we will discuss several basic definitions and
conclusions relating to the Caputo fractional derivative.

Definition 1. The formula for the Riemann fractional integral is as
follows [57]:

Jσtω x, t( ) � 1
Γ σ( )∫t

0
t − r( )σ−1ω x, r( )dr

Definition 2. The fractional derivative of f according to the Caputo
formula is defined as [57]:

CDσ
tω x,t( ) � 1

Γ m−σ( )∫t

0
t− r( )m−σ−1ω x,r( )dr, m−1<σ≤m, t>0.

Lemma 1. For n − 1 < σ ≤ n, p > − 1, t ≥ 0 and λ ∈ R, we have:

1. Dσ
t t

p � Γ(σ+1)
Γ(p−σ+1)t

p−σ

2. Dσ
t λ � 0

3. Dσ
t I

σ
tω(x, t) � ω(x, t)

4. Iσt � ω(x, t) −∑n−1
i�0 ∂

iω(x, 0) tii!

3 General procedure for the
proposed methods

3.1 General procedure of new
iterative method

For the basic idea of the new iterative method, we consider the
general functional equation:

α ω( ) � K ω( ) +N α ω( )( ), (1)

whereN is non linear operator and K is unknown function. We have
been looking for a solution of Eq. 1 having the series form

α ω( ) � ∑∞
i�0

αi ω( ),

The nonlinear term can be decomposed as

N ∑∞
i�0

αi ω( )⎛⎝ � N α0( ) +∑∞
i�0

N ∑i
j�0

αj ω( )⎛⎝ ⎞⎠ −N ∑r−1
j�0

]j ω( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

TABLE 7 Comparison of the present solution (NIM) with the HPM solution
[58] for the Wu-Zhang equation.

g |αExact −
αHPM|

|αExact −
αNIM|

|βExact −
βHPM|

|βExact −
βNIM|

−40 0.340 × 10−7 2.22 × 10−16 0.800 × 10−10 1.66 × 10−16

−30 0.400 × 10−8 4.81 × 10−14 0.400 × 10−8 4.79 × 10−14

−20 0.750 × 10−7 1.93 × 10−11 0.500 × 10−11 1.93 × 10−11

−10 0.270 × 10−7 7.70 × 10−9 0.330 × 10−9 7.70 × 10−9

0 0.100 × 10−8 0.39 × 10−8 0.100 × 10−9 0.79 × 10−8

10 0.100 × 10−8 7.44 × 10−9 0.100 × 10−9 7.44 × 10−9

20 0.710 × 10−8 1.89 × 10−11 0.200 × 10−9 1.89 × 10−11

30 0.810 × 10−7 4.70 × 10−14 0.700 × 10−9 4.70 × 10−14

TABLE 6 Numerical values of γ(f, g, ) using the NIM solution for different
values of fractional order of ν.

f NIMp=0.4 NIMp=0.6 NIMp=0.8 NIMp=1.0

0.1 1.2735 1.11691 1.16217 1.22387

0.2 0.994528 0.959897 1.05273 1.1379

0.3 0.692635 0.796728 0.935302 1.03929

0.4 0.413849 0.643804 0.818174 0.934323

0.5 0.192384 0.512861 0.707707 0.828522

0.6 0.043514 0.409143 0.607749 0.726182

0.7 −0.03555 0.33198 0.519809 0.630253

0.8 −0.05949 0.276869 0.443702 0.542476

0.9 −0.04746 0.237847 0.378313 0.463644

1 −0.0173 0.209282 0.3222 0.393877

TABLE 5 Numerical values of β(f, g, ) using the NIM solution for different
values of fractional order of p.

f NIMp=0.4 NIMp=0.6 NIMp=0.8 NIMp=1.0

0.1 1.81666 1.60565 1.45782 1.3512

0.2 1.91521 1.69569 1.55382 1.45358

0.3 1.98825 1.77173 1.63993 1.54792

0.4 2.03585 1.83398 1.71583 1.63341

0.5 2.06161 1.88388 1.78184 1.70973

0.6 2.07129 1.92361 1.83871 1.77701

0.7 2.07117 1.95552 1.88745 1.83569

0.8 2.06673 1.98174 1.92909 1.88641

0.9 2.06191 2.00394 1.96461 1.92991

1 2.05903 2.02324 1.99488 1.96698
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From 4 to 5, 3 is equivalent to

∑∞
r�0

αr ω( ) � K +N α0( ) +∑∞
r�0

N ∑r
j�0

αj ω( )⎛⎝ ⎞⎠ −N ∑r−1
j�0

αj ω( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
We define the following recurrence relation:

ω0 � K,
ω1 � N α0( ),
ω2 � N α0 + α1( ) −N α0( ),
ωn+1 � N α0 + α1 +/αn( ) −N α0 + α1 +/αn−1( ), n � 1, 2, 3/ ,

Then

α0 + α1 +/αn( ) � N α0 + α1 +/ϑn( ), n � 1, 2, 3/ ,

α � ∑∞
r�0

αr ω( ) � K +N ∑∞
r�0

αr ω( )⎛⎝ ⎞⎠

3.1.1 Basic road map of NIM
In this section, we discuss basic idea for solving fractional-order

nonlinear PDE using the NIM. Consider the following fractional-
order PDE:

Dμ
ϵα ζ , ϵ( ) � Y α, ∂α( ) + Z ω, ϵ( ), m − 1< μ≤m, m ∈ W (2)

∂t

∂ϵt α ω, 0( ) � St ω( ), t � 0, 1, 2, 3/m − 1 (3)

where A is non linear function of ] and ∂] (partial derivative of ]
with respect to ]) and B is the source function. In view of the new
iterative method, the intimal value problem Eqs 2, 3 is equivalent to
the integral equation

α ω, ϵ( ) � ∑m−1

t�0
st ω( ) ϵ

t

t!
+ Iρϵ Y( ) + Iρϵ Z( ) � K +N ω( )

where

K � ∑m−1

t�0
st ω( ) ϵ

t

t!
+ Iρϵ Z( )

N α( ) � Iρϵ Y( )

4 Solution of Wu-Zhang (WZ) equation
by NIM

In this section, we apply NIM to understand the anomalous
behavior of the fractional-order Wuâ“Zhang (WZ) equation, which
is given by

∂pα

∂ϵp + ααf + βαg + γf � 0

∂pβ

∂ϵp + αβf + ββg + γg � 0

∂pγ

∂ϵp + αγ( )f + βγ( )g + 1
3

αfff + αfgg + βffg + βggg( ) � 0

(4)

Subject to initial condition

α f, g, 0( ) � −a3 + a2a0
a1

+ 2
�
3

√
3

a1 tanh a1f + a2g( )
β f, g, 0( ) � a0 + 2

�
3

√
3

a2 tanh a1f + a2g( )
γ f, g, 0( ) � 2

3
a21 + a22( )sech2 a1f + a2g( )

(5)

in Eq. 4, γ(f, g, ϵ) represent the elevation of the water wave, α(f, g, ϵ)
represent the surface velocity of water along the x-axis, and β(f, g, ϵ)
represents the surface velocity of water along the y-axis. In Eq. 5 a0,
a1, a2, and a3 are arbitrary constant.

Now using the NIM procedure, we get the following few terms
for α(f, g, ϵ)

α0 f, g, ϵ( ) � 1
3

2
�
3

√( )a1 tanh a1f + a2g( ) − a0a2 + a3
a1

α1 f, g, ϵ( ) � 2a1a3e
psech2 a1f + a2g( )�

3
√

pΓ p( )
α2 f, g, ϵ( ) � 1

3
�
3

√
pΓ p( ) 2a1ϵp 2

�
3

√
a21 + a22( )tanh a1f + a2g( )((

− 3a3)sech2 a1f + a2g( )) + 1

9p2Γ p( )2Γ 3p( )Γ p + 1
2

( )
a12

1−2pϵpsech2 a1f + a2g( ) 2a23ϵp tanh a1f + a2g( )((
a214

p+1ϵpΓ 2p( )Γ p + 1
2

( )sech2 a1f + a2g( )(
+ a2

24p+1ϵpΓ 2p( )Γ p + 1
2

( )sech2 a1f + a2g( )
− 3

���
3π

√
pΓ p( )Γ 3p( )) − 3 a21 + a22( )22p+1pΓ p( )Γ 3p( )Γ

p + 1
2

( )tanh a1f + a2g( ) + 3
�
3

√
a34

ppΓ p( )Γ 3p( )Γ p + 1
2

( )))
Now for β(f, g, ϵ) the zeroth, first and second order

approximation is

β0 f, g, ϵ( ) � 1
3

2
�
3

√( )a2 tanh a1f + a2g( ) + a0

β1 f, g, ϵ( ) � 2a2a3ϵpsech2 a1f + a2g( )�
3

√
pΓ p( )

β2 f, g, ϵ( ) � 1
3

�
3

√
pΓ p( ) 2a2ϵp 2

�
3

√
a21 + a22( )tanh a1f + a2g( )((

− 3a3)sech2 a1f + a2g( )) + 1

9p2Γ p( )2Γ 3p( )Γ p + 1
2

( )
a22

1−2pϵpsech2 a1f + a2g( ) 2a23ϵp tanh a1f + a2g( )((
a214

p+1ϵpΓ 2p( )Γ p + 1
2

( ) sech2 a1f + a2g( )(
+ a224

p+1ϵpΓ 2p( )Γ p + 1
2

( ) sech2 a1f + a2g( )
− 3

���
3π

√
pΓ p( )Γ 3p( )) − 3 a21 + a22( )22p+1pΓ p( )Γ 3p( )Γ

p + 1
2

( ) tanh a1f + a2g( ) + 3
�
3

√
a34

ppΓ p( )Γ 3p( )Γ p + 1
2

( )))
Similarly the same procedure for γ(f, g, ϵ) we will get
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γ0 f, g, ϵ( ) � 2
3

a21 + a22( )sech2 a1f + a2g( )
γ1 f, g, ϵ( ) � −4 a21 + a22( )a3ϵp tanh a1f + a2g( )sech2 a1f + a2g( )

3Γ p + 1( )
γ2 f, g, ϵ( ) � − 1

9pΓ p( ) 2 a21 + a22( )ϵpsech4 a1f + a2g( )(
−3a3 sinh 2a1f + 2a2g( ) + 2

�
3

√
a21 + a22( )((

cosh 2a1f + 2a2g( ) − 2a21) − 4
�
3

√
a22))

+ 1

3pΓ p( )Γ p + 1
2

( )
��
π

3

√
a21 + a22( )2a323−2pϵ2p(

cosh 2a1f + 2a2g( ) − 5( ) tanh a1f + a2g( )sech4
a1f + a2g( )) − 1

Γ p( )( ) 1
3

�
3

√
p

4a21 a21 + a22( )(( ϵpsech4

a1f + a2g( )) + 4a22 a21 + a22( )ϵpsech4 a1f + a2g( )
3

�
3

√
p

− 4a0a2 a21 + a22( )a3ϵ2pΓ p( )sech4 a1f + a2g( )
3Γ 2p + 1( )

− 1

9
���
3π

√
p2Γ 3p( ) a21 a21 + a22( )a2322p+3ϵ3pΓ p + 1

2
( )(

sech6 a1f + a2g( )) − 1

9
���
3π

√
p2Γ 3p( )

a22 a21 + a22( )( a232
2p+3e3pΓ p + 1

2
( )sech6 a1f + a2g( ))

+ 4 a21 + a22( )a3 a0a2 + a3( )e2pΓ p( )sech4 a1f + a2g( )
3Γ 2p + 1( ) −

4a0a2 a21 + a22( )ϵp tanh a1f + a2g( )sech2 a1f + a2g( )
3p

− 1
3

�
3

√
Γ 2p + 1( ) 32a21 a21 + a22( )a3ϵ2pΓ p( )(

tanh a1f + a2g( )sech4 a1f + a2g( )) − 1
3

�
3

√
Γ 2p + 1( )

32a22 a21 + a22( )a3ϵ2pΓ p( )tanh a1f + a2g( )( sech4 a1f + a2g( ))
+ 4 a21 + a22( ) a0a2 + a3( )ϵp tanh a1f + a2g( )sech2 a1f + a2g( )

3p

− 1
3

�
3

√
p

8a21 a21 + a22( )ϵp tanh2 a1f + a2g( )sech2(
a1f + a2g( )) − 1

3
�
3

√
p

8a22 a21 + a22( )ϵp tanh2( a1f + a2g( )
sech2 a1f + a2g( )) + 1

3Γ 2p + 1( ) 8a0a2 a21 + a22( )a3ϵ2pΓ(
p( )tanh2 a1f + a2g( )sech2 a1f + a2g( )) + 1

9
���
3π

√
p2Γ 3p( )

a21 a21 + a22( )a2322p+5ϵ3pΓ p + 1
2

( )tanh2( a1f + a2g( )
sech4 a1f + a2g( )) + 1

9
���
3π

√
p2Γ 3p( ) a22 a21 + a22( )(

a232
2p+5ϵ3pΓ p + 1

2
( )tanh2 a1f + a2g( )sech4 a1f + a2g( ))

− 1
3Γ 2p + 1( ) 8 a21 + a22( )a3 a0a2 + a3( )ϵ2pΓ p( )tanh2(

a1f + a2g( )sech2 a1f + a2g( )) + 1
3

�
3

√
Γ 2p + 1( )

16a21 a21 + a22( )a3ϵ2pΓ p( )tanh3 a1f + a2g( )sech2 a1f + a2g( )( )
+ 16a22 a21 + a22( )a3ϵ2pΓ p( )tanh3 a1f + a2g( )sech2 a1f + a2g( )

3
�
3

√
Γ 2p + 1( ) )

According to Nim procedure we will get solution of the system is

α f, g, ϵ( ) � α0 f, g, ϵ( ) + α1 f, g, ϵ( ) + α2 f, g, ϵ( )
β f, g, ϵ( ) � β0 f, g, ϵ( ) + β1 f, g, ϵ( ) + β2 f, g, ϵ( )
γ f, g, ϵ( ) � γ0 f, g, ϵ( ) + γ1 f, g, ϵ( ) + γ2 f, g, ϵ( )

Solution for α(f, g, ϵ)

α f, g, ϵ( ) � 1
3

2
�
3

√( )a1 tanh a1f + a2g( ) − a0a2 + a3
a1

+ 2a1a3e
psech2 a1f + a2g( )�

3
√

pΓ p( ) + 1
3

�
3

√
pΓ p( )

2a1e
p 2

�
3

√
a21 + a22( )tanh a1f + a2g( ) − 3a3( )sech2(

a1f + a2g( )) + 1

9p2Γ p( )2Γ 3p( )Γ p + 1
2

( )
a12

1−2pϵpsech2 a1f + a2g( ) 2a23e
p tanh a1f + a2g( )((

a214
p+1epΓ 2p( )Γ p + 1

2
( )sech2 a1f + a2g( )(

+ a2
24p+1ϵpΓ 2p( )Γ p + 1

2
( )sech2 a1f + a2g( )

− 3
���
3π

√
pΓ p( )Γ 3p( )) − 3 a21 + a22( )22p+1 pΓ p( )Γ 3p( )Γ

p + 1
2

( )tanh a1f + a2g( ) + 3
�
3

√
a34

ppΓ p( )Γ 3p( )Γ
p + 1

2
( )))

Solution for β(f, g, ϵ)

β f, g, ϵ( ) � 1
3

2
�
3

√( )a2 tanh a1f + a2g( ) + a0

+ 2a2a3ϵpsech2 a1f + a2g( )�
3

√
pΓ p( ) + 1

3
�
3

√
pΓ p( )

2a2ϵp 2
�
3

√
a21 + a22( )tanh a1f + a2g( ) − 3a3( )sech2(

a1f + a2g( )) + 1

9p2Γ p( )2Γ 3p( )Γ p + 1
2

( )
a22

1−2pϵpsech2 a1f + a2g( ) 2a23e
p tanh a1f + a2g( )((

a214
p+1ϵpΓ 2p( )Γ p + 1

2
( )sech2 a1f + a2g( )(

+ a224
p+1ϵpΓ 2p( )Γ p + 1

2
( )sech2 a1f + a2g( )

− 3
���
3π

√
pΓ p( )Γ 3p( )) − 3 a21 + a22( )22p+1pΓ p( )Γ 3p( )Γ

p + 1
2

( )tanh a1f + a2g( ) + 3
�
3

√
a34

ppΓ p( )Γ 3p( )Γ
p + 1

2
( )))

Similarly solution for γ(f, g, ϵ)
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γ f, g, ϵ( ) � 2
3

a21 + a22( )sech2 a1f + a2g( )
− 4 a21 + a22( )a3ϵp tanh a1f + a2g( )sech2 a1f + a2g( )

3Γ p + 1( )
− 1
9pΓ p( ) 2 a21 + a22( )ϵpsech4 a1f + a2g( )(

−3a3 sinh 2a1f + 2a2g( ) + 2
�
3

√
a21 + a22( )((

cosh 2a1f + 2a2g( ) − 2a21) − 4
�
3

√
a22)) + 1

3pΓ p( )Γ p + 1
2

( )��
π

3

√
a21 + a22( )2a323−2pϵ2p( cosh 2a1f + 2a2g( ) − 5( )

tanh a1f + a2g( )sech4 a1f + a2g( )) − 1
Γ p( )( )

1
3

�
3

√
p

4a21 a21 + a22( )(( ϵpsech4 a1f + a2g( ))
+ 4a22 a21 + a22( )ϵpsech4 a1f + a2g( )

3
�
3

√
p

− 4a0a2 a21 + a22( )a3ϵ2pΓ p( )sech4 a1f + a2g( )
3Γ 2p + 1( )

− 1

9
���
3π

√
p2Γ 3p( ) a21 a21 + a22( )a2322p+3ϵ3pΓ p + 1

2
( )(

sech6 a1f + a2g( )) − 1

9
���
3π

√
p2Γ 3p( ) a22 a21 + a22( )(

a232
2p+3ϵ3pΓ p + 1

2
( )sech6 a1f + a2g( ))

+ 4 a21 + a22( )a3 a0a2 + a3( )ϵ2pΓ p( )sech4 a1f + a2g( )
3Γ 2p + 1( )

− 4a0a2 a21 + a22( )ϵp tanh a1f + a2g( )sech2 a1f + a2g( )
3p

− 1
3

�
3

√
Γ 2p + 1( ) 32a21 a21 + a22( )a3ϵ2pΓ p( )(

tanh a1f + a2g( )sech4 a1f + a2g( ))
− 1
3

�
3

√
Γ 2p + 1( ) 32a22 a21 + a22( )a3ϵ2pΓ p( )(

tanh a1f + a2g( )sech4 a1f + a2g( ))
+ 4 a21 + a22( ) a0a2 + a3( )ϵp tanh a1f + a2g( )sech2 a1f + a2g( )

3p

− 1
3

�
3

√
p

8a21 a21 + a22( )ϵp tanh2 a1f + a2g( )sech2 a1f + a2g( )( )
− 1
3

�
3

√
p

8a22 a21 + a22( )ep tanh2( a1f + a2g( )sech2 a1f + a2g( ))
+ 1
3Γ 2p + 1( ) 8a0a2 a21 + a22( )a3ϵ2pΓ p( )( tanh2 a1f + a2g( )

sech2 a1f + a2g( )) + 1

9
���
3π

√
p2Γ 3p( )

a21 a21 + a22( )a2322p+5ϵ3pΓ p + 1
2

( )tanh2( a1f + a2g( )
sech4 a1f + a2g( )) + 1

9
���
3π

√
p2Γ 3p( )

a22 a21 + a22( )a2322p+5ϵ3pΓ p + 1
2

( )tanh2( a1f + a2g( )
sech4 a1f + a2g( )) − 1

3Γ 2p + 1( ) 8 a21 + a22( )a3 a0a2 + a3( )(
ϵ2pΓ p( )tanh2 a1f + a2g( )sech2 a1f + a2g( )) + 1

3
�
3

√
Γ 2p + 1( )

16a21 a21 + a22( )a3ϵ2pΓ p( )tanh3 a1f + a2g( )sech2 a1f + a2g( )( )
+ 16a22 a21 + a22( )a3ϵ2pΓ p( )tanh3 a1f + a2g( )sech2 a1f + a2g( )

3
�
3

√
Γ 2p + 1( ) )

5 Results and discussions

The graphical analysis presented in this section offers a
comparative study between the approximate and exact
solutions derived through the proposed method, shedding
light on the method’s accuracy and practical utility. Figures
1–4 showcase three-dimensional plots depicting the
approximate solutions α(f, g, h, ϵ) across different values of
fractional orders (p). Notably, an observable trend emerges as
the fractional orders (p) increase, corresponding to an increment
in the plotted graphs, implying a relationship between the
solutions and the variation in fractional orders. Furthermore,
Figures 5–12 present three-dimensional plots of the approximate
solutions β(f, g, h, ϵ) and γ(f, g, h, ϵ) concerning varied fractional
orders (p) at a fixed value of ϵ = 0.02. These visual representations
offer insights into the influence of fractional orders on the
solutions, revealing potential patterns or dependencies within
the system at constant values of other parameters.

Figures 13–15 provide a comparison between the 3D plots of α(f,
g, h, ϵ), β(f, g, h, ϵ), and γ(f, g, h, ϵ), respectively, illustrating the
discrepancies and agreements between the approximate solutions and
the exact solution across different fractional orders (p). Similarly,
Figures 16–18 focus on the comparison of two-dimensional plots for
α(f, g, h, ϵ), β(f, g, h, ϵ), and γ(f, g, h, ϵ), utilizing the New Iterative
Method (NIM). These comparisons aim to highlight the closeness or
divergence between the approximate solutions obtained through the
proposed method and the exact solutions, offering a comprehensive
understanding of the method’s efficacy in capturing the intricate
dynamics of the system under varied fractional orders.

The tables provided in this discussion serve to compare the numerical
solutions derived from the New Iterative Method (NIM) with the exact
solution of the fractional-order nonlinear Wu-Zhang equation,
demonstrating the method’s efficacy in solving nonlinear partial
differential equations plagued by scaling issues. Tables 1–3 exhibit the
obtained solutions and compare them to the exact solutions while
evaluating their absolute error for a fractional integer order (p = 1).
These tables offer a quantitative assessment of the accuracy and closeness
of the NIM-derived solutions to the exact solutions, providing insights
into the method’s performance under specific fractional orders.

On the other hand, Tables 4–6 provide a comparative analysis of

α(f, g, h, ϵ), β(f, g, h, ϵ), and γ(f, g, h, ϵ), respectively, for varying
fractional orders (p = 0.4, 0.6, 0.8, 1.0) at a fixed value of ϵ = 0.2.

These tables facilitate a comprehensive examination of the solutions

obtained through the NIM method across different fractional orders,

enabling researchers to discern any patterns or variations in the

solutions concerning changes in the fractional parameters. By

comparing the solutions across various fractional orders, the tables

offer insights into how the method performs under different degrees

of fractional derivatives, aiding in understanding the behavior and

dependency of the solutions on fractional order variations.
Additionally, the visualization of the solutions in 3D and 2D plots

for various fractional order values complements the tables, allowing
for a comprehensive assessment of themethod’s performance through
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both numerical data and graphical representations. In Table 7,
comparison of the present solution (NIM) with the HPM solution
for the Wu-Zhang equation. Together, these tables and plots serve as
invaluable tools in evaluating the NIM’s efficiency in handling
fractional-order nonlinear equations, providing a detailed
understanding of the method’s accuracy and performance under
different fractional orders and parameter settings.

6 Conclusion

In conclusion, we have successfully applied the New Iterative
Method to solve the fractional Wu-Zhang Equation within the
Caputo Derivative framework. The method has demonstrated its
efficacy in providing approximate solutions to this complex
fractional differential equation. Through our numerical analysis
and the presentation of pertinent tables and figures, we have
showcased the accuracy and reliability of the method in
addressing the Wu-Zhang Equation. This research highlights the
significance of the New Iterative Method as a valuable tool for
solving fractional-order differential equations, contributing to the
broader field of mathematics and its applications. It opens up
opportunities for further exploration and application in various
scientific and engineering disciplines.
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