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The occurrence of vaso-occlusive crisis greatly depends on the competition
between the sickling delay time and the transit time of individual sickle cells,
i.e., red blood cells from sickle cell disease (SCD) patients, while they are
traversing the circulatory system. Many drugs for treating SCD work by
inhibiting the polymerization of sickle hemoglobin (HbS), effectively delaying
the sickling process in sickle cells (SS RBCs). Most previous studies on screening
anti-sickling drugs, such as voxelotor, rely on in vitro testing of sickling
characteristics, often conducted under prolonged deoxygenation for up to
1 hour. However, since the microcirculation of RBCs typically takes less than
1 minute, the results of these studies may be less accurate and less relevant for in
vitro-in vivo correlation. In our current study, we introduce a computer vision-
enhanced microfluidic framework designed to automatically capture the
transient sickling kinetics of SS RBCs within a 1-min timeframe. Our study has
successfully detected differences in the transient sickling kinetics between
vehicle control and voxelotor-treated SS RBCs. This approach has the
potential for broader applications in screening anti-sickling therapies.
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Introduction

Sickle cell disease (SCD) is a hereditary hematologic disorder resulting from a mutation
in the β subunits of hemoglobin within red blood cells (RBCs) [1, 2]. Upon deoxygenation,
the sickle hemoglobin (HbS) within sickle cells (SS RBCs) is subject to the conformational
change from the relaxed (R) state to the tense (T) state. The exposure of β6 valine and its
binding with the complementary hydrophobic site on β-hemoglobin induces the transient
polymerization and long fiber formation of intracellular HbS, accompanied by membrane
crenation and stiffening of RBCs (Figure 1) [3, 4]. This sickling process predominantly
contributes to the complications of SCD, including obstruction in the microvasculature
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such as postcapillary venules and splenic inter-endothelial slits
(IESs) [5–7], hemolytic anemia, life-threatening organ damage
and even death [7–9].

Prior studies have evolved to the point that the competition
between transient sickling delay time and transit time of individual
RBCs passing through micro-constrictions in vivo is crucial in
determining the occurrence of vaso-occlusive crisis (VOC) in
SCD patients [10–12]. Some earlier studies have indicated that
the treatment of anti-sickling compounds, such as voxelotor, can
effectively slow down the sickling process and decrease the
proportion of sickled RBCs [13–15]. However, these studies have
a limitation in that they are conducted under conditions of
prolonged deoxygenation (>1 h), which is two orders of
magnitude longer than the duration of the systemic blood
circulation (~30s) [13, 16] and even the sluggish splenic
circulation (~1min) [7, 17]. Interpreting the results of these
studies as indicative of the impact of drug treatment on the
transient-state sickling kinetics of individual SS RBCs and its
potential to reduce the likelihood of VOC in SCD becomes
challenging due to the significant disparity in the experimental
conditions compared to the physiological context. The extended
deoxygenation periods used in these studies may not accurately
reflect the transient-state sickling kinetics occurring during the rapid
circulation of blood, making it difficult to draw direct conclusions
regarding the efficacy of drug treatment in preventing VOC in SCD
patients [13]. More recently, sickling kinetics assays under
monotonic and cyclic transient hypoxia have been successfully
developed [18–20], where the transient sickling behavior of SS
RBCs within 1–2 min can be accurately quantified. However, the
quantification of sickling kinetics in these studies was conducted
manually, which is extremely time-consuming and very inefficient.
There is a pressing and unmet need for a more efficient and effective
method to capture the transient sickling behavior of SS RBCs. This
need is especially crucial when screening anti-sickling drugs.
Developing more relevant and efficient approaches for studying
these dynamics is essential for advancing research and treatment
options for SCD.

In this paper, we introduce a novel framework that combines
computer vision with microfluidic approaches to enable rapid

assessment of the sickling kinetics in SS RBCs under transient
deoxygenation. The sickling kinetics can be quantified by the
time courses of transient shape factors of each RBC, as well as the
overall sickled fraction across a cell population as they undergo
the sickling process. We have also utilized our approach to
conduct a pilot study evaluating the effectiveness of the anti-
sickling drug, voxelotor, on SS RBCs. We envision this method
could be generally applicable to the drug testing of anti-
sickling therapies.

Methods

Sample preparation

Sickle blood samples were obtained from individuals with
homozygous sickle cell patients at the University of Pittsburgh,
following the guidelines and ethical standards established in the
Institutional Review Board (IRB) protocol PRO08110422. The
normal blood sample was drawn from a healthy subject at the
Massachusetts General Hospital under an Excess Human
Material Protocol approved by the Partners Healthcare
Institutional Review Board (IRB) with a waiver of consent.
Blood samples were then promptly transported to MIT for
experiments under an approved exempt protocol
(Massachusetts Institute of Technology IRB protocol E−1523).
Upon measurements, blood samples were washed twice with
phosphate-buffered saline (PBS, Lonza Walkersville, Inc.,
Walkersville, MD) at 2000 rpm for 2 min at room
temperature. RBC suspensions were adjusted to 20% Hct and
incubated with voxelotor (Pfizer Inc., South San Francisco, CA)
targeting 30% modification of RBC hemoglobin or dimethyl
sulfoxide (vehicle) in PBS containing 1% (w/v) bovine serum
albumin (BSA) (EMD Millipore, Billerica, MA) for 60 min in the
37 °C water bath. After treatment, RBCs were washed twice with
PBS at 2000 rpm for 2 min at room temperature, and then diluted
to 106 cells/mL in the PBS with 1% (w/v) BSA before injection
into the microfluidic device for sickling kinetics
testing (Figure 2A).

Sickling kinetics testing assay

The microfluidic devices used for the sickling kinetics testing
were fabricated following standard fabrication processes [18–20].
The microfluidic devices were composed of two microchannels,
which were aligned perpendicular to each other and separated by
an oxygen-exchange porous polydimethylsiloxane membrane
(150 μm thick) in the cross-sectional area. The transient
deoxygenation condition was achieved by switching the gas
supply in the upper channel from a high oxygen level (20%
oxygen (O2), 5% carbon dioxide (CO2) with the balance of
nitrogen (N2)) for 30 s to a low oxygen level (2% O2, 5% CO2

with the balance of N2) for 120 s (Figures 2B, C). Both the upper
gas channel and the lower cell channel are 1,500 µm wide and
150 µm deep. The gas supply pressure was regulated to be
~3.5 psi, and the time taken for oxygen to traverse the 150-
micron thick membrane was measured to be around 10s [20]. The

FIGURE 1
Deoxygenation leads to sickling and morphological changes of
sickle RBCs. The exposure of β6 valine and its binding with
complementary hydrophobic site on β-hemoglobin induces the
polymerization and fiber formation of Hb S while switching from
R conformation to T conformation.
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maximum deflection at the center of the 150-micron thick
membrane in the gas channel was estimated to be ~0.5 um
based on Roark’s formulas for stress and strain (for flat plates)
[21], suggesting that the gas pressure barely affects the structural
integrity of the microfluidic channels and RBCs. The sickling
kinetics testing was performed in a hydrostatic condition right
after the suspended RBCs sedimented to the substrate in the
microchannel. The sickling processes of SS RBCs were imaged
and recorded through a high-resolution CMOS camera (The
Imaging Source, Charlotte, NC, USA) which was mounted on
a Zeiss Axiovert 200 inverted microscope (Carl Zeiss Inc.,
Thornwood, NY) with a ×40 objective lens (Figure 2D).

Automated image analysis

The image data was extracted from the recorded microscopic videos
in the form of a series of 16-bit grayscale, 720 × 480-pixel images, and
saved as PNG files for subsequent analysis (Figures 2E, F). For the single
cell contour analysis, we computed multiple shape factors, including
Circular shape factor (CSF = 4 π ×Area_r/Perm_r2), Ellipticity shape
factor (ESF = Rb/Ra), SF1(=Rb/max_FD), SF2 (=min_FD/max_FD),
Elongation (=max_FD/min_FD), Convexity (=

�������������

Area r /Area c
√

) and
Compactness (=4 π ×Area_r/Perm_c2), where Rb and Ra are the minor
axis and major axis of the fitted ellipse of the cell, Area_r and Perm_r are
the segmented area and perimeter of the cell, max_FD and min_FD are
the maximum Feret diameter and minimum Feret diameter, and Area_c
and Perm_c are the convex area and convex perimeter, respectively [22].
Skewness and Kurtosis were computed for the intensity distribution
analysis. The image contour and intensity analysis were conducted using
a custom script in Matlab R2022a (MathWorks, Natick, MA). The

algorithms of single cell segmentation and classification using deep
convolutional neural networks (CNNs) were implemented in Jupyter
Notebook based on Python open-source libraries including Cellpose,
Numpy, Tensor Flow, and Matplotlib, etc. All runs were performed on a
PC with an NVIDIA GeForce RTX 3070 GPU. The architecture of our
CNN consists of 17 layers, including 5 convolutional layers (C1, C3, C6,
C9, andC12), 5 pooling layers (P2, P4, P7, P10 and P13), 5 dropout layers
(D5, D8, D11, D14 and D17, with probability of 0.001), a flatten layer
(F15) and a fully connected layer (FC16). All convolutional layers had
several kernels each with the size of (3, 3). The (2, 2) max-pooling layers
were implemented after the convolutional layers for downsampling the
feature maps. For the activation function, the ReLU non-linear function
was used. A softmax function with a categorical cross-entropy loss
function was applied for the final training and prediction with two
outputs (nonsickled and sickled). The performance of our classification
model was evaluated using several performance metrics including
Accuracy (� (TP + TN)/(TP + TN + FP + FN)), Precision
(� TP/(TP + FP)), Recall (� TP/(TP + FN)), F1-score
(� 2 × (Precision × Recall)/(Precision + Recall)), where TP, TN, FP,
and FN represent True Positive, True Negative, False Positive, and False
Negative, respectively.

Results

Cellular segmentation in time-lapse image
sequences during the sickling process

To analyze the dynamics of cellular behavior over time during
the sickling process, we used a Cellpose algorithm [23, 24] to
automatically segment the image sequences exported from the

FIGURE 2
Overall experimental approach for sickling kinetics testing. (A) RBC sample preparation. (B) RBCs are transferred to the microfluidic device. (C)
Transient sickling of RBCs through rapid on-chip deoxygenation. (D) Microscopic cell imaging using a ×40 objective. (E) Structure of the deep
convolutional neural network (CNN) for image-based cell classification. (F) Automated measuring of sickling kinetics of SS RBCs.
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recorded microscopic videos (Figure 3A). The segmentation model
was retrained on a small set of 50 randomly selected images based on
the pre-trained cytoplasm model in Cellpose using its interactive
annotation and model retraining platform (Figure 3B). The average
cell diameter was set to be 90 pixels, which could enable us to exclude
the small amount (<1%) of overlapping cells. The image was
automatically cropped to obtain single RBC images. During
the identification process, the cells majorly located outside
the frame of the image were discarded. In preparation for the
subsequent classification training process, the segmented
individual cell patches were further processed by annotating
or labeling the cellular images. They were categorized into two
distinct subsets: nonsickled RBCs and sickled RBCs,
respectively. (Figure 3C). The annotation process was
accomplished by a human annotator through visual
identification based on the distinct morphological and texture
differences, i.e., sickled RBCs exhibit peculiar shapes and dark
coarse texture, whereas the nonsickled RBCs present regular
shapes and light smooth texture [18]. To note, we considered
those irreversibly sickled cells (ISCs) in the initial condition of
the sickling process as “sickled” RBCs in this study.

Cellular shape factor extraction of individual
nonsickled and sickled RBCs

Following the segmentation and annotation processes, the
study proceeded with a detailed analysis of the shape factors for
each RBC within both cell types. Seven shape factors, including
the CSF, ESF, SF1, SF2, Elongation, Convexity, and Compactness,
were automatically computed through the contour analysis. See
Methods for the detailed computational formulas of the RBC
shape factors. Figure 4 shows the matrix plot of the seven shape
factors for 1,560 nonsickled cells and 1,270 sickled RBCs,
respectively. The 2 cell types have shown distinct clusters in
the scatterplots of the shape factors. In contrast to the
nonsickled RBCs, those sickled RBCs cover a broader range of

distribution, suggesting a higher heterogeneity of morphologies
in sickled RBCs. For example, the plots of the nonsickled RBCs
are superimposed at the right top corner of the CSF-ESF
scatterplot, while the plots of the sickled RBCs are much more
widely scattered and spread down to the left bottom corner. The
results indicate that the nonsickled RBCs and sickled RBCs
exhibit distinct features in morphology, which can be readily
used to classify and differentiate between these 2 cell types.

Temporal evolution of the sickling profiles of
single SS RBCs

Figure 5A shows the time-lapse microscopic images of two
representative SS RBCs (Cell #1 and Cell #2) during the sickling
and unsickling processes, respectively. It appears that significant
changes in both the shape and texture of SS RBCs were clearly
observable during both the sickling and unsickling processes. In
comparison, these two representative SS RBCs show distinct
dynamic sickling processes in response to the same
deoxygenation condition. Cell #1 underwent rapid sickling,
completing the process within less than 36 s, whereas Cell
#2 began the sickling process after 56 s. In contrast, we noticed
that the process of unsickling, or returning to a normal state,
occurred much more rapidly compared to the initial sickling
process of the same SS RBC. Notably, there was no significant
difference observed in the unsickling process between these two
RBCs. In Figure 5B, the sickling profiles of various shape factors,
including CSF, ESF, SF1, SF2, Elongation, Convexity and
Compactness and intensity distribution factors (Skewness and
Kurtosis) are displayed as a function of time, which are generated
through the automated contour and intensity analyses. All the
curves demonstrate transient shape changes, in particular in
terms of the Elongation, SF1, SF2, ESF, and Compactness, during
both the sickling and unsickling, indicating that the sickling kinetics
in single SS RBCs can be effectively tracked using the parameters
derived from automated cellular image analysis. The changes in

FIGURE 3
Cellular segmentation in time-lapse image sequences. (A) The stack of microscopic image sequences of the time course during cellular sickling. (B)
An instance of cellular segmentation using the Cellpose algorithm. Original image (top) and predicted masks (bottom). (C) Image annotation by labeling
segmented image patches into two subsets of nonsickled RBCs and sickled RBCs, respectively. (Scale bars: 5 μm).
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these parameters over time provide valuable information about the
dynamic behavior of RBCs as they transition between their normal
and sickled states, contributing to a better understanding of the
sickling process in single SS RBCs.

Automated classification of SS RBC sickling
yields through deep-learning-enabled
image analysis

To evaluate the temporal sickling profile within a population of
cells, we designed a deep CNN model for the automated
classification of individual SS RBCs into two categories,
i.e., sickled and nonsickled RBCs, in each frame of the raw
image. The details of the CNN architecture are shown in
Figure 6A and are further described in Methods. A total of
1993 nonsickled RBC images and 2011 sickled RBC images

were used for the training of the CNN model. We split the
training dataset into two parts: 80% was used for training
(training set), and the remaining 20% was allocated for
validation (validation set). All input images were normalized to
the same dimensions of 256 × 256 pixels for training. We further
augmented the training set by applying random transformations to
each image after each epoch, including a random shifting by 10% of
the total width and random flips in both horizontal and vertical
directions. We used the Adam optimizer for the model
optimization. We evaluated our model with various learning
rates and numbers of epochs, ultimately selecting the best to
reduce overfitting and training loss. As a result, the optimal
model was trained at the learning rate of 0.001 for 500 epochs.
Figure 6B shows the performance of training and validation in
terms of classification accuracy and log-loss over 500 epochs.
Figure 6C shows the corresponding confusion matrix for the
validation set. The validation Accuracy, Precision, Recall, and

FIGURE 4
Correlation matrix plot for cellular shape factors, including the CSF, ESF, SF1, SF2, Elongation, Convexity, and Compactness of single SS RBCs
annotated in two subsets of nonsickled and sickled RBCs, respectively.
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F1-score of the trained network were all evaluated to be 0.94,
respectively.

To evaluate the temporally evolving sickling kinetics of SS RBCs
across a cell population, the trained CNNmodel was applied to classify
all the RBCs frame-by-frame throughout the image sequences
(Figure 7A). The time course of sickling yields was then
automatically computed by the real-time fraction of the sickled
RBCs. As shown in Figure 7B, we utilized this classification scheme
to test the efficacy of voxelotor in a pilot study, where we could
sensitively detect the difference in the transient sickling kinetics
between the vehicle control and voxelotor-treated SS RBCs from the
same SCD patient blood sample following a successive deoxygenation
and reoxygenation processes. Our results have also shown that there is
about 20% of RBCs differentiated as “sickled” RBCs in the initial
oxygenation state, which is due to the preexistence of a small
fraction of ISCs [25, 26].

Discussion and concluding remarks

In the present study, a framework has been established that
combines computer vision and microfluidic techniques to
autonomously evaluate the transient sickling kinetics of SS RBCs,
which is crucial in determining the probability of VOC occurrence
in SCD. The incorporation of computer vision techniques allows for the
automated segmentation and recognition of sickled RBCs. The
utilization of computer vision techniques offers a substantial
enhancement in the efficiency and accuracy of data analysis when
compared to the human identification method previously employed in
our prior work [18–20]. This improvement is particularly notable in the
context of cyclic sickling evolution studies, where automation not only
speeds up the analysis process but also provides more consistent and
objective results. It reduces the potential for human error and
subjectivity, thereby advancing the quality and reliability of the

FIGURE 5
Temporal evolution of shape factors in single SS RBCs through automated image analysis. (A) The microscopic image sequences of two
representative SS RBCs (Cell #1 and Cell #2), showing the distinct differences in sickling and unsickling rate. Original image (top) and colormap (bottom).
(Scale bar: 5 μm) (B) The corresponding profiles of shape factors (left) and pixel distributions (right) of the two representative SS RBCs as a function of time.
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research. The improved assessment of the transient sickling behaviors in
single RBCs can also improve the accuracy in the mesoscale modeling
and simulations [27–29]. From the analysis of raw images, we can see SS
RBCs exhibit notable morphological changes in multiple geometric and
textural features after sickling, which could give us a priori explanation
for the CNN to identify the sickling process. This can also be clearly seen
from obvious changes in several shape factors shown in Figure 4. We
have further concatenated the shape factors (the CSF, ESF, Convexity,

and Compactness) for the data fusion with the input images in training
our CNN, and obtained the same performance as shown in Figure 6B
(Accuracy = 0.94, Precision = 0.94, Recall = 0.94, F1-score = 0.94). This
exercise suggests that the CNN shown in Figure 6 can capture various
shape changes in sickled RBCs well. Many aspects can be further
improved in our forthcoming work. One such aspect is our current
differentiation of SS RBCs into only two categories: “nonsickled" cells
and “sickled" cells. Future work could be done to exploremore details of

FIGURE 6
Classification of SS RBC sickling status through deep-learning-enabled cellular image analysis. (A) Diagram detailing the architecture of deep
convolutional neural network used for SS RBC classification. (B) Training and validation history of the accuracy (left) and loss function (right) over
500 epochs. (C) Confusion matrix for the classification of nonsickled RBCs and sickled RBCs. The intensity bar represents the scale.

FIGURE 7
Temporal evolution of SS RBC sickling yields through the deep CNN prediction. (A) Real-time classification of sickling across a cell population. The
two classes (nonsickled and sickled) in the RBCs are detected and localizedwith bounding boxes. (Scale bar: 5 μm) (B) Profiles of sickled fraction in normal
RBCs (n = 212), vehicle control SS RBCs (n = 291) and voxelotor-treated SS RBCs (n = 191) during 120s of sickling (white region) followed by 30s of
unsickling process (gray region), measured through automated image classification.
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the evolution of various shape subcategories within “sickled" as well as
“nonsickled”RBCs throughout the sickling process. Another interesting
aspect is to explore further the cell sickling process in terms of
“explainable artificial intelligence”.

Under physiological conditions, microcirculation and the
occurrence of sickling events in SS RBCs typically unfold on a
timescale of merely seconds. Prior investigations have unveiled that
the administration of anti-sickling agents, such as voxelotor, can
substantially diminish the proportion of sickled RBCs after a
prolonged period of deoxygenation [13–15]. Nonetheless, our
previous study has demonstrated that even a minor fraction of
impassable RBCs can result in severe blockages within the micro-
constrictions of small capillaries [7]. Furthermore, earlier research has
demonstrated that the morphology of sickled RBCs is markedly
influenced by the rate of deoxygenation [30, 31]. Therefore, to a
certain extent, the short-term transient sickling kinetics of individual
SS RBCs hold greater significance than the proportion of sickled cells
following a prolonged period of deoxygenation. Crucially, it is
imperative to assess the effectiveness of anti-sickling drugs on the
sickling rate of individual SS RBCs during transient deoxygenation, a
capability that our computer vision-enhanced approach uniquely offers.
We anticipate that this approach could find broad applicability for high-
throughput and rapid screening of various compounds aimed at anti-
sickling therapies.
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