
Noise-induced synchronization
and regularity in
feed-forward-loop motifs

Gurpreet Jagdev1,2, Na Yu1,2* and You Liang1

1Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada, 2Institute of
Biomedical Engineering, Science and Technology (iBEST), Unity Health Toronto, and Toronto
Metropolitan University, Toronto, ON, Canada

This study explores the impacts of multiple factors (noise, intra-motif coupling,
and critical bifurcation parameter) on noise-induced motif synchrony and output
regularity in three-node feed-forward-loops (FFLs), distinguishing between
coherent FFLs with purely excitatory connections and incoherent FFLs formed
by transitioning the intermediate layer to inhibitory connections. Our model
utilizes the normal form of Hopf bifurcation (HB), which captures the generic
structure of excitability observed in real systems. We find that the addition of
noise can optimize motif synchrony and output regularity at the intermediate
noise intensities. Our results also suggest that transitioning the excitatory
coupling between the intermediate and output layers of the FFL to inhibitory
coupling—i.e., moving from the coherent to the incoherent FFL—enhances
output regularity but diminishes motif synchrony. This shift towards inhibitory
connectivity highlights a trade-off between motif synchrony and output
regularity and suggests that the structure of the intermediate layer plays a
pivotal role in determining the motif’s overall dynamics. Surprisingly, we also
discover that both motifs achieve their best output regularity at a moderate level
of intra-motif coupling, challenging the common assumption that stronger
coupling, especially of the excitatory type, results in improved regularity. Our
study provides valuable insights into functional differences in network motifs and
offers a direct perspective relevant to the field of complex systems as we consider
a normal-form model that pertains to a vast number of individual models
experiencing HB.
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1 Introduction

Network motifs, a fundamental concept in network analysis, refer to recurring
interaction patterns observed across diverse systems [1, 2]. Multiple systematic research
studies have provided robust evidence for the widespread prevalence of these motifs within
real biological networks, with a particular emphasis on complex networks [3–5]. As these
motifs often retain their specific dynamical functions when embedded within complex
network structures, they are often considered to be the basic building blocks or elementary
computational units of larger, more complex networks [4, 6].

Among the common three-node network motifs, feed-forward-loops (FFLs) are notably
more prevalent than othermotif patterns [4, 5]. In this paper, we focus on two prevalent FFL
motifs: the coherent FFL, characterized by purely excitatory connections, and the
incoherent FFL, formed by two excitatory connections, and one inhibitory connection,
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as illustrated in Figure 1. We shall refer to them as type-1 (T1) and
type-2 (T2), respectively. These two FFL motifs have been identified
in a multitude of biological networks, including gene expression
networks in bacteria and yeast [3, 7, 8], human and mouse genomes
[9, 10], the cat cortex [11], and the nervous system of the
roundworm [3]. Moreover, these motifs can be considered as
having three primary layers: an input layer (node 1), an
intermediate layer (node 2), and an output layer (node 3). These
motifs incorporate two parallel signalling pathways between the
input and output layers: a direct pathway from the input layer to the
output layer, and an indirect pathway from input to output via the
intermediate layer. Notably, such parallel information transmission
structures have been observed in the auditory cortex [12], the
electrosensory system [13], and more generally, regions
responsible for transmitting signals from sensory neurons to
effectors [3, 14].

Phase synchrony, commonly observed in network dynamics,
denotes the synchronized timing of oscillatory activity across
network components. It has diverse applications, for examples, it
mirrors neural coordination and cognitive functions in neuroscience
[15, 16], it unveils collective behaviours and synchronization
transitions in physics [17, 18], and it assists in optimizing
communication systems for effective signal transmission in
engineering [19, 20]. Within network motifs, synchrony
illustrates how particular connectivity patterns influence
coordination and coherence, aiding in revealing the mechanisms
driving collective network behaviours, information processing, and
functional dynamics in various biological and engineered systems.
Noise, intrinsic to many natural and engineered systems, introduces
fluctuations that can either enhance or disrupt synchrony among
network elements [21, 22]. Understanding how noise influences
synchrony within network motifs is crucial for discovering the
robustness and adaptability of network structures to
environmental perturbations, thus offering valuable insights into
the resilience and functionality of complex networks. Several
investigations have explored the dynamics of FFLs under
conditions involving symmetric noise (where each node
experiences independent noise sources with identical intensities)
and equal coupling (e.g., equivalent coupling strength) [23–25].

However, prior studies have not addressed the behaviours of FFL
motifs under more realistic configurations, such as unequal coupling
and asymmetric noise. Hence, this paper explores their dynamics
considering two forms of heterogeneity: independent noise sources
with varying intensities and distinct coupling strengths.

To capture the excitability characteristic of real systems, we
employ the widely recognized framework of the Hopf bifurcation
(HB). This framework describes the system’s transition from a stable
equilibrium state to persistent oscillations, a phenomenon
frequently observed in real complex systems. Specifically, we
utilize the standard λ − ω system, a canonical model of the Hopf
bifurcation, to simulate the dynamics of individual nodes within the
FFL motifs. We focus on the excitable regime, where the
deterministic system maintains a stable equilibrium, but the
introduction of noise can induce oscillations. Our study
demonstrates that the addition of noise can optimize network
motif synchrony and oscillation regularity of the output node at
an intermediate intensity level. Furthermore, we reveal substantial
differences in how each motif type responds to noise-induced
excitation, shedding light on the functional distinctions between
these network motifs.

This paper is structured as follows: Section 2 presents the
mathematical model and methods. In Section 3.1, we explore the
noise-induced dynamics of two FFL motifs. Section 3.2 investigates
the effects of noise on motif synchronization; while Section 3.3
delves into the influence of noise on output regularity. Section 3.4 is
dedicated to the study of the combined effects of noise and intra-
motif coupling on motif synchrony and output regularity. In Section
3.5, we examine how the control parameter of HB impacts motif
synchronization and output regularity. Finally, the paper concludes
with a discussion in Section 4.

2 Materials and methods

2.1 Model

We consider a system comprised of three coupled nodes
arranged in FFL patterns (see Figure 1), where the dynamics of

FIGURE 1
Coherent and incoherent feed-forward-loop motifs: (A) motif type 1 (T1); and (B) motif type 2 (T2). di,j represents the coupling strength within the
motif, specifically indicating the strength of the connection from node i to node j. “E” denotes excitatory coupling (di,j > 0) and “I” denotes inhibitory
coupling (di,j < 0).
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each node are described by the canonical model for the normal form
of an HB, the λ − ω system, with additive noise and diffusive
coupling terms. The i-th node is modeled by the system of stochastic
differential equations (SDEs).

dxi � [λ ri( )xi − ω ri( )yi +∑
j≠i

dj,i xj − xi( )]dt + δidηi t( ), (1)

dyi � [ω ri( )xi + λ ri( )yi +∑
j≠i

dj,i yj − yi( )]dt, (2)

where i, j = 1, 2, 3.
The amplitude and phase of the i-th node can be determined by

the equations ri �
������
x2
i + y2

i

√
and ϕi = arctan(yi/xi), respectively. The

function λ(ri) � λ0 + αr2i + ρr4i governs the modulation of the
amplitude of the i-th node. λ0 acts as the critical bifurcation
parameter, commonly known as the control parameter, while α

and γ govern the behaviours of the nodes within the excitable
regime. Specifically, under conditions where α < 0 and ρ < 0,
each node operates within a framework of supercritical HB when
λ0 = 0. The function ω(ri) � ω0 + ω1r2i controls the modulation of
the frequency of the i-th node, with ω1 governing how the frequency
evolves in relation to the amplitude ri. Notably, whenω1 = 0, changes
in amplitude do not directly impact the phase. As a continuation of
our previous work on the noise-induced dynamics in single
oscillators (i.e., one-node motif) [26] and two-node motifs [27],
we maintain the same parameter values: α = −0.2, ρ = −0.2, ω0 = 2,
and ω1 = 0. The term δidηi(t) represents an intrinsic white noise
applied to xi, where ηi(t), i = 1, 2, 3 are three independent Wiener
processes with zero mean and unit variance, i.e., η1(t) ≠ η2(t) ≠ η3(t),
and δi is a scaling parameter which represents the noise intensity.

The expressions ∑j≠idj,i(xj − xi) and ∑j≠idj,i(yj − yi) represent the
contributions of diffusive coupling to each node. dj,i represents a
scalar parameter indicating the strength of a signal transmitted from
node j to node i. Importantly, dj,i ≠ di,j due to the directional nature
of the motif graph. To construct the feed-forward-loop (FFL) motifs
depicted in Figure 1, we set dj,1 = 0 and d3,i = 0 for all i and j. This
configuration ensures that node 1 remains isolated from external
input within the FFL, while node 3 does not convey its output to
other nodes within the same FFL. Moreover, in motif T1, all three
connections are excitatory, that is, d1,2 > 0, d1,3 > 0, and d2,3 > 0, and
in motif T2, there are two excitatory connections (d1,2 > 0 and d1,3 >
0), complemented by a single inhibitory connection (d2,3 < 0).

2.2 Methods

All computational tasks, including simulation, numerical
analysis, and figure generation, are conducted using MATLAB.
The numerical solutions to the SDEs are computed using the
Euler-Maruyama method and a time step of dt = 0.01. We
initiate the simulations with arbitrary, small random initial
conditions xi(0), yi(0), i = 1, 2, 3, each drawn from the
distribution N(0, 0.0082). To address the challenges posed by the
high-frequency fluctuations inherent in noise-induced dynamics, we
implement a low-pass filter during the numerical analysis. This filter
takes the form of a Gaussian-weighted moving average, spanning a
window of 100 data points. Finally, the computation of coherence
measures σ, γ, and CV, as defined in Eqs 4–6, involves averaging

these values across a total of N = 200 simulations. The MATLAB
source code can be found at https://github.com/TMUcode/
FFL-synchrony.

3 Results

3.1 Noise-induced dynamics

We explore the dynamics of the network motifs within the
excitable regime, λ0 < 0, and in close proximity to a supercritical HB
at λ0 = 0 (e.g., λ0 = −0.3 as illustrated in Figure 2). The deterministic
systems (δi = 0 for i = 1, 2, 3) associated with motifs T1 and
T2 converge towards a stable fixed point located at the origin (0,0),
as shown in Figures 2A, D, respectively. We observe that all three
nodes in motif T1 achieve in-phase oscillations in spite of their
differing initial values (Figure 2A). Conversely, in the case of
deterministic motif T2, nodes 1 and 2 exhibit in-phase
oscillations, whereas node 3 displays anti-phase oscillations with
nodes 1 and 2 (Figure 2D) due to the inhibitory connection. In both
motifs, nodes 1 and 2 demonstrate identical behaviors since their
differences lie solely in their connection types to output node (node
3). However, the introduction of independent noise prompts them
to display distinct dynamics.

The introduction of the independent intrinsic noise stimulus,
δidηi(t) for i = 1, 2, 3, gives rise to sustained limit-cycle
oscillations in all nodes within the T1 and T2 motifs, as
observed in Figures 2B, E, where δi = 0.01 for i = 1, 2, 3. This
type of oscillation is commonly referred to as “noise-induced
oscillation.” Upon examining the noise-induced oscillations of
the input nodes (i.e., node 1) in both the T1 and T2 motifs (blue
dashed lines in Figures 2B, E), we note similarities in their periods
and time-varying amplitudes. Similar observations arise when
comparing nodes 2 in motifs T1 and T2 (dotted black lines in
Figures 2B, E). However, a notable distinction emerges as we shift
our focus to the output nodes (nodes 3) within the T1 and
T2 motifs. The output node of the T2 motif (red curve in
Figure 2E) displays more regular and stable oscillations,
characterized by more prominent peaks and fewer small
amplitude fluctuations, as compared to the output node in the
T1 motif (red curve in Figure 2B).

To determine whether similar trends hold for various other
noise intensities, we compute the time-averaged amplitude of xi as

Ai � 1
T − t0

∫T

t0

|xi t( )| dt, i � 1, 2, 3, (3)

where T and t0 denote the final and initial time points, respectively.
We compute this metric over varying noise intensities and average
over N = 200 trials. Our findings are depicted in Figure 2C for motif
T1 and Figure 2F for motif T2. For simplicity, we assume equal noise
intensity here, i.e., δ = δ1 = δ2 = δ3, although they are distinct in
subsequent analyses. The dashed blue lines represent A1, the dotted
black lines represent A2, and the solid red lines represent A3. We
observe thatA1 andA2 overlap for both T1 and T2motifs, suggesting
a strong resemblance in the behaviours of nodes 1 and 2 across
various noise intensities. However, a noticeable discrepancy arises in
the case of A3 between motifs T1 and T2: A3 in motif T2 surpasses its
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counterpart in motif T1. For instance, when δ1, δ2, δ3 = 0.1, we
observe that A3 is approximately 0.12 for motif T1, while for motif
T2, it reaches around 0.19 (as indicated by the dashed grey lines in
Figures 2C, F). Moreover, the evaluation of the threeAi values within
each motif reveals that in motif T1, A3 is less than or equal to A1 and
A2, while in motif T2, A3 is greater than or equal to A1 and A2. These
observations suggest that the inhibitory connection between the
intermediate node and output node in motif T2 enhances the
amplitude of noise-induced oscillations.

3.2 The effects of noise on motif
synchronization

Here we keep the independent noise applied to the intermediate
node and output node fixed at a relatively weak level (δ2 = δ3 = 0.01)
and vary the noise intensity applied to the input node (e.g., δ1 ∈ [10–3,
101/2]). To investigate the influence of noise on the motif synchrony
from different viewpoints, we adopt two measures to assess motif
synchronization. The first measure quantifies the degree of motif
synchronization among all nodes within each FFL motif using the
root mean square deviation [28, 29]:

σ � 1
T − t0

∫T

t0

σt dt, (4)

where σt is defined as

σt �

����������������������������
1
M

∑M
i�1

xi t( )
Ai

( )2

− 1
M

∑M
i�1

xi t( )
Ai

⎛⎝ ⎞⎠2
√√

, (5)

and M represents the total number of nodes; here M = 3. It is
important to note that σt is computed using the amplitude-
normalized time series, xi(t)/Ai, instead of using the raw xi(t)
data. This normalization ensures that σ serves as a metric for
temporal synchronization, or phase synchronization, rather than
a measure of complete synchronization, which involves both
amplitude and phase alignment [30]. σ quantifies the extent of
variability among three nodes, so smaller values of σ indicate higher
levels of synchrony.

Figure 3A illustrates how motif synchrony changes with
variations in noise intensity. It presents the relationship between
the root mean square deviation, σ, and the driving noise intensity, δ1,
for both the T1 motif (blue curve) and the T2 motif (black curve).
Both motifs display a resonant response to variations in δ1, a
phenomenon characteristic of coherence resonance. Coherence
resonance or autonomous stochastic coherence describes the
phenomenon where a nonlinear system achieves optimal
coherence or synchronization in the presence of an optimal level
of noise and this system remains inactive in the absence of noise [31,
32]. When δ1 remains relatively low (e.g., δ1 < 0.12 in Figure 3A), σ
decreases for both motifs, indicating an increase in motif synchrony.
At an intermediate noise intensity (e.g., δ1 ≈ 0.12 in Figure 3A), σ

FIGURE 2
(A,D): Example timeseries of xi without noise (setting noise intensities to zero, δi = 0, i = 1, 2, 3) for motifs T1 and T2, respectively. In the absence of
noise, all three nodes evolve into the stable solutions with xi = 0. (B,E): Example noise-induced oscillations of xi (δi = 0.1, i = 1, 2, 3) for motifs T1 and T2,
respectively. Each node receives independent noise stimuli, therefore distinct oscillations are induced in each node. (C,F): The average amplitude, Ai (see
Eq. 3) vs. noise intensity, δ, formotifs T1 and T2, respectively. Here we consider a simple casewith equal noise intensities for all nodes (δ1 = δ2 = δ3 = δ),
but they differ in other figures. In panels A, B, D and E, dashed blue, dotted black, and solid red lines represent x1, x2, and x3, respectively. In panels C and F,
dashed blue, dotted black, and solid red lines represent A1, A2, and A3, respectively, while the grey dashed lines indicate the values of A3 when δ=0.1. Other
parameters are: α = −0.2; ρ = −0.2; ω0 = 2; ω1 = 0; λ0 = −0.3; d1,3 = d2,3 = d1,2 = 0.01 for T1; and d1,3 = −d2,3 = d1,2 = 0.01 for T2.
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reaches its minimum, indicating that motif synchronization reaches
an optimal state. As the noise intensity continues to rise, σ begins to
increase, signifying a decline in motif synchrony. This suggests that
under the influence of relatively strong noise intensity, the noise
itself has taken precedence in determining network dynamics, with
the impact of motif structure on motif synchrony
significantly reduced.

While the synchrony generated by each motif exhibits a
resonance pattern and they share similarities within the strong
noise intensity range of δ1, they exhibit notable differences in the
weak and intermediate intensity ranges (e.g. δ1 ≤ 0.1 in Figure 3A).
In this regime, motif T1 consistently maintains σ values lesser than
those of motif T2, indicating that T1 tends to exhibit greater motif
synchrony. Additionally, the two motifs have differences concerning
the optimal driving noise intensity denoted as δ1*, and the absolute
minimum value it induces, represented as σ*. Motif T1 demonstrates
a lower σ* at a smaller δ1* in comparison to motif T2. As
demonstrated by the solid squares in Figure 3A, δ1* � 0.07 and
σ* = 0.215 for motif T1, and δ1* � 0.12 and σ* = 0.218 for motif T2.
This indicates that the T1 motif can achieve a relatively greater
degree of motif synchrony with a smaller driving noise intensity.

The second measure of motif synchrony focuses on evaluating
the motif synchronization between the input and output nodes of
the FFLmotifs, specifically node 1 and node 3. To quantify this motif
synchronization, we utilize the mean phase coherence [30, 33],
denoted as γ.

γ �

����������������������������������������
1

T − t0
∫T

t0

sinΔϕ dt( )2

+ 1
T − t0

∫T

t0

cosΔϕ dt( )2

√√
, (6)

where Δϕ = |ϕ1 − ϕ3|, representing phase difference between node
1 and node 3. γ ranges from 0 to 1, with higher values representing a

greater degree of phase synchronization between the input and
output nodes. Moreover, γ = 1 corresponds to perfect
synchronization, while γ = 0 indicates complete asynchrony.

The relationship between γ and the driving noise intensity, δ1 is
demonstrated in Figure 3B. Similar to σ in Figure 3A, γ in Figure 3B
is computed over the range of 10–3 ≤ δ1 ≤ 101/2, with δ2 and δ3 held
constant at 0.01. The results in Figure 3B agree with the findings
from Figure 3A for both motifs. First, γ exhibits a resonance pattern:
as δ1 increases, γ initially ascends, reaches its peak, and then
descends, indicating that phase synchronization between input
and output nodes attains a maximum at an optimal noise
intensity. Second, in comparison with the T2 motif, the T1 motif
achieves a higher maximal γ value at a slightly lower optimal noise
intensity. As illustrated in Figure 3B, the T1 motif reaches its
maximum at δ1* � 0.12 with γ* = 0.728, while the T2 motif
attains its maximum at δ1* � 0.188 with γ* = 0.713. Thirdly,
when δ1 exceeds 0.13, the γ values for both motifs become nearly
identical, indicating that in the presence of relatively high noise
intensity, the primary driver shaping noise-induced motif
synchrony is the noise itself, rather than the motif structure.

3.3 The effects of noise on output regularity

In addition to our examination of the influence of noise on
motif synchronization, we also investigate how it impacts the
regularity of noise-induced oscillation of the output node
(i.e., node 3) in both the T1 and T2 motifs. Here regularity
refers to the extent to which the dynamics of the output node
display perfect periodicity. It is measured by the coefficient of
variation (CV) of the periods of x3 as shown in Figure 4A inset. CV
is defined as the ratio of the standard deviation of the periods to the
mean of the periods [34–36],

FIGURE 3
(A) Root mean square deviation, σ, vs. noise intensity, δ1. (B) Mean phase coherence, γ, vs. noise intensity, δ1. Two measures, σ and γ, are defined in
Eqs 4 and 6, respectively. In both panels, blue and black lines represent the T1 motif and the T2 motif, respectively. The blue squares label the lowest σ in
panel (A) or the highest γ in panel (B) for motif T1; the black squares label the lowest σ in panel (A) or the highest γ in panel (B) for motif T2. Motif T1 has
d2,3 = 0.1, and motif T2 has d2,3 = −0.1. Other parameters are same for both motifs, including d1,3 = d1,2 = 0.1; α = −0.2; ρ = −0.2; ω0 = 2; ω1 = 0; δ2 =
δ3 = 0.01; and λ0 = −0.1.
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CV �
�������������������������
1

K−1∑K−1
k�1 Tk( )2 − 1

K−1∑K−1
k�1 Tk( )2√

1
K−1∑K−1

k�1 Tk( ) , (7)

where Tk is the k-th period, where K − 1 denotes the total number of
periods (signifying that there are K − 1 periods between K total peaks).
To determine a period, we first detect spike events by identifying peaks
in the time series of x3, as depicted in the inset of Figure 4A.
Subsequently, we compute the time difference between consecutive
spike occurrences. Additionally, since the coefficient CV serves as a
measure of central variability, it’s important to note that higher values of
CV correspond to a less regular firing pattern and, therefore, reduced
regularity, while lower values indicate a higher degree of regularity.

The results of our analysis are presented in Figure 4A, illustrating how
CV varies with changes in the driving noise intensity, δ1, for both the
T1 motif (shown as the blue curve) and the T2 motif (represented by the
black curve). In bothmotifs, we observe a resonant pattern: as δ1 increases,
CV firstly experiences a decline, reaching a minimum point before rising
again. This suggests that the optimization of noise-induced oscillations in
the output node can be achieved at an intermediate δ1 value.

We observe, however, that motif T1 consistently exhibits higher
CV values compared to motif T2 over 0.001 ≤ δ1 < 0.16 (Figure 4A).
This observation suggests that motif T2 exhibits greater output
regularity than T1. This observation aligns with our earlier findings
in the timeseries and time-averaged amplitude of the output node in
Figure 2, where motif T2 demonstrates a higher level of oscillation
regularity in its output node relative to motif T1. As δ1 approaches
the optimal point at δ1* � 0.162, the gap between these two curves
gradually diminishes. Interestingly, both motifs share the identical
optimal noise intensity and corresponding minima in CV, denoted
CV*. For example, in Figure 4A, we identify δ1* � 0.162 and CV* =
0.116 for both motifs T1 and T2. Moreover, as δ1 continues to
increase, the blue and black curves in Figure 4A converge and
increase with the increment of δ1, suggesting that the oscillation
regularity induced by relatively strong noise is motif-independent.

The density functions (DFs) of the oscillation periods of the
output node within each motif can offer additional insights into the

connection between oscillation control and the intensity of the
driving noise. We specifically investigated three distinct values of
δ1 (0.0023, 0.16, and 1.35) to represent scenarios of weak, optimal,
and strong noise intensities. Significantly, the DFs associated with
δ1 = 0.16 (represented by the purple curves in Figure 4B for motif
T1 and Figure 4C for motif T2) exhibit the most prominent features
(the highest peaks and the narrowest half-widths) in comparison to
the other DFs. This observation implies that, at the optimal noise
intensity, the oscillation periods are most tightly clustered around a
central value, indicating the highest regularity in the noise-induced
oscillations. This observation aligns with the minimum CV at point
b in Figure 4A. At a low noise intensity (δ1 = 0.0023), the DF of motif
T2 (orange curve in Figure 4B) exhibits a higher peak and a narrower
half-width compared to motif T1’s DF (orange curve in Figure 4C).
This observation implies that within the low-intensity range of δ1,
the output of motif T2 displays superior oscillation regularity,
corroborating our earlier findings in Figure 2. Under strong noise
conditions (δ1 = 1.35), the DFs of both motifs (green curves in
Figures 4B, C) closely resemble each other, indicating that motif
structure has minimal influence on oscillations induced by
strong noise.

In summary, we observe a trend in which the oscillation
regularity of the output in both motifs T1 and T2 is steadily
enhanced as noise intensity increases from low levels to a specific
optimal point. Prior to reaching this optimum, motif
T2 outperforms motif T1, as evidenced by a lower CV. However,
beyond this optimal point, the oscillation regularity of both T1 and
T2 motifs converges, and with further increases in the intensity of
noise, output regularity consistently diminishes.

3.4 The combined effects of noise and intra-
motif coupling

In Section 3.2; Section 3.3, we examined the impact of the
driving noise intensity, δ1, on motif synchrony and output regularity

FIGURE 4
(A) Coefficient of variation (CV) vs. noise intensity, δ1, for motifs T1 (blue curve) and T2 (black curve). (CV) is defined in Eq. 6. Points a, b, and c
represent noise intensities of δ1 = 0.0023 (weak noise), 0.16 (intermediate noise), and 1.35 (strong noise). Panel A inset illustrates period (Tk) calculation.
(B,C): density functions of periods (T) for motifs T1 and T2, respectively, with three values of δ1. Orange, purple and green lines correspond to these three
noise intensities labelled as points a, b and c in Panel A. Other parameters are: α = −0.2; ρ = −0.2; ω0 = 2; ω1 = 0; δ2 = δ3 = 0.01; and λ0 = −0.1; with
d1,3 = d2,3 = d1,2 = 0.1 for motif T1; and d1,3 = −d2,3 = d1,2 = 0.1 for motif T2.
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while keeping the intra-motif coupling strengths (d1,3, d2,3, and d1,2)
constant. Here we investigate the combined influence of intra-motif
coupling and noise on motif synchronization and output regularity.
For simplicity, we assume that within each motif, the three coupling
strengths are identical, represented as d. That is, d1,3 = d2,3 = d1,2 = d
in motif T1, and d1,3 = −d2,3 = d1,2 = d in motif T2. The root mean
square deviation, σ, in Eq. 4 and the coefficient of variation of
periods, CV, in Eq. 7 are used to evaluate motif synchrony and
output regularity, respectively. Our findings are demonstrated in
Figure 5, which presents contour maps illustrating how σ and CV
change as functions of δ1 and d for both the T1 motif (Figures 5A, B)
and the T2 motif (Figures 5C, D). The color bars in these panels
serve as a visual reference for the σ and CV values, with colder colors
indicating greater motif synchrony and higher output regularity,
respectively.

In general, the comparison of noise-induced synchrony of both
motifs in Figures 5A, C reveal that motif synchrony is enhanced as
the coupling strength (d) increases, and the optimized synchrony is
achieved at the intermediate noise intensity. However, an obvious
difference emerges for the combination of weak noise (δ1 < 0.04) and

intermediate to strong coupling strength (d > 0.01), as demonstrated
in the lower-right sections of Figures 5A, C. In this range, motif
T1 shows a stronger tendency toward synchronization, while motif
T2 displays a higher degree of asynchrony due to the inhibitory
connection between its intermediate and output nodes.

The oscillation regularity of the output node in both motifs, as
shown in Figures 5B, D, demonstrates that the optimal output
regularity is achieved at intermediate coupling strengths with a
slightly strong noise intensity. Specifically, under the current model
parameters, the minimum CV is situated at approximately d ≈ 0.05
and δ1 ≈ 0.2. However, a significant deviation in output regularity
can be observed in the lower-right corners of Figures 5B, D,
corresponding to δ1 < 0.02 and d > 0.02. In this specific region,
motif T1 exhibits very low output regularity, whereas motif
T2 shows relatively better regularity.

It’s important to emphasize that the region of major difference
in motif synchrony aligns with this area as well. Therefore, the
primary differentiation between motif T1 and T2 emerges in
scenarios of low noise intensity but strong coupling, with motif
T1 yielding high synchrony but low output regularity, and motif

FIGURE 5
Contourmaps of σ andCV vs. noise intensity δ1 vs. intra-motif coupling strength d. (A) σ vs. δ1 vs. d formotif T1. (B)CV vs. δ1 vs. d formotif T1. (C) σ vs. δ1
vs. d for motif T2. (D) CV vs. δ1 vs. d for motif T2. For (A,B): d = d1,3 = d2,3 = d1,2. For (C,D): d = d1,3 = −d2,3 = d1,2. Other parameters are: α = −0.2; ρ = −0.2;
ω0 = 2; ω1 = 0; δ2 = δ3 = 0.01; and λ0 = −0.1.
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T2 generating low synchrony but relatively high output regularity.
Furthermore, it’s worth mentioning that these differences become
less prominent when the intra-motif coupling is extremely weak (the
left half of each panel in Figure 5) or when there is excessive intrinsic
noise and intra-motif coupling (the upper-right region of each panel
in Figure 5).

The comprehensive analysis in Figure 5 reveals that the optimal
levels of motif synchrony (σ*) and output regularity (CV*) rely on
the coupling strength (d). To further explore this dependence, we
calculate σ* and CV*, along with their corresponding δ1* values, as
functions of d and display them in Figure 6. Both motifs exhibit a
negative correlation between σ* and d (Figure 6A) and an anti-
correlation between the associated δ1* and d (Figure 6C), indicating
that, as the coupling strength increases, the level of optimized motif
synchrony increases and the required noise intensity to achieve this
synchronization decreases. Moreover, CV* derived from both motifs
exhibits nearly indistinguishable non-monotonic curves, displaying
a declining-then-increasing pattern as d increases (Figure 6B). Both
motifs achieve identical optimal output regularity, CV* = 0.108, at

d = 0.05. The optimal noise intensity, δ1*, associated with CV* has a
negative correlation with d (Figure 6D). These findings indicate that
intermediate coupling, rather than strong coupling, optimizes
output regularity, and the noise intensity required to maximize
regularity decreases as the coupling strength increases, contradicting
the anticipated notion that stronger coupling would enhance output
regularity.

3.5 The influence of the control parameter
of Hopf bifurcation

In our investigation of the noise-induced dynamics of FFL
motifs in the previous sections, we have maintained a constant
value for the control parameter of HB in the excitable regime,
specifically λ0 = −0.1. However, as λ0 approaches the critical HB
point (λ0 = 0), there is a gradual increase in the amplitude of noise-
induced oscillations [37, 38]. Therefore, we study the impact of
varying λ0 on both motif synchronization and output regularity in

FIGURE 6
The optimal values of σ andCV (denoted as σ* andCV*, respectively) along with their corresponding optimal noise intensities (δ1*) are plotted against
the equal coupling strength (d). (A,C): σ* and corresponding δ1* vs. d, respectively. (B,D): CV* and corresponding δ1* vs. d, respectively. Blue and black
curves correspond tomotifs T1 and T2, respectively. Other parameters are: α = −0.2; ρ = −0.2; ω0 = 2; ω1 = 0; δ2 = δ3 = 0.01; λ0 = −0.1; d = d1,3 = d2,3 = d1,2
for the T1 motif; and d = d1,3 = −d2,3 = d1,2 for the T2 motif.
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this section, recognizing its vital role in predicting and regulating
system behavior.

In this analysis, we keep the coupling strength fixed at 0.1 and
compute the average values of σ and CV over a noise intensity range
of 0.001 ≤ δ1 ≤ 0.5, denoted as 〈σ〉 and 〈CV〉, respectively. This
averaging calculation is performed for each λ0 ranging from −1 to
−0.001 for both motifs. For each λ0 value, we also calculate the
optimal driving noise intensity, δ1*, required to minimize σ or CV,
respectively. The results are illustrated in Figure 7, with the blue
curves denoting motif T1 and the black curves
representing motif T2.

Surprisingly, we find that 〈σ〉 appears constant (Figure 7A),
with 〈σ〉 ≈ 0.308 for motif T1 and about 0.372 for motif T2.

Meanwhile, δ1* required to minimize σ is also constant for each
motif (δ1* ≈ 0.07 for motif T1 motif and approximately 0.12 for
motif T2) as shown in Figure 7C. This suggests that motif
synchronization and its corresponding optimal noise intensity
remains unaffected by the proximity of λ0 to the critical HB
point. Furthermore, Figure 7A shows that 〈σ〉 is consistently
lower for motif T1 compared to motif T2. Figure 7C displays
the same trend in δ1*, with δ1* consistently being lower in motif
T1 than in motif T2. This agrees with our earlier findings in Figures
6A, C. These results imply that, on average, within the excitable
range of −1 ≤ λ0 ≤ −0.08, motif T1 requires a relatively lower
optimal noise intensity to attain a relatively higher level of
synchrony than motif T2.

FIGURE 7
(A) Average motif synchronization, 〈σ〉, and (B) average output regularity, 〈CV〉, vs. λ0. 〈σ〉 and 〈CV〉 represent the averages of σ and CV over a noise
intensity range of 0.001 ≤ δ1 ≤ 0.5, respectively. (C,D): δ1* vs. λ0. δ1* denotes the noise intensities required to optimizemotif synchronization in panel (A) and
output regularity in panel (B), respectively. Blue and black curves represent the T1 and T2 motifs, respectively. Other parameters are: α = −0.2, ρ = −0.2,
ω0 = 2, ω1 = 0, δ2 = δ3 = 0.01, d1,3 = d2,3 = d1,2 = 0.1 for motif T1, and d1,3 = −d2,3 = d1,2 = 0.1 for motif T2.
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On the other hand, Figures 7B, D demonstrate a robust inverse
relationships between 〈CV〉 and λ0 and between δ1* and λ0,
respectively, for both motifs. We observe a near-linear reduction
in 〈CV〉 as λ0 approaches the HB point (λ0 = 0) for both motifs,
although motif T2 exhibits slightly lower values than motif T1
(Figure 7B). However, the corresponding δ1* are roughly
equivalent for both motifs (Figure 7D). This suggests that, on
average, within the excitable range, the noise-induced oscillations
produced by motif T2’s output node demonstrate a higher level of
regularity compared to motif T1. This observation aligns with our
findings from the timeseries depicted in Figures 2B, E, as well as the
behavior of CV illustrated in Figure 4A.

4 Discussion

In summary, this study demonstrates that both coherent and
incoherent FFL motifs exhibit resonance patterns in terms of
network motif synchrony and output regularity, that is, motif
synchrony and output regularity reach their optimal levels at the
intermediate noise intensities. This aligns with previous studies in
analogous networks, which have reported on the existence of
coherence resonance and other phenomena related to “stochastic
facilitation” [39], such as in [40–43].

We have uncovered distinct functional characteristics within the
two FFL motifs. The coherent motif (motif T1), characterized by
purely excitatory connections, displays a higher level of noise-
induced synchronization and requires lower noise intensities to
achieve maximum synchrony. In contrast, the incoherent motif
(motif T2), distinguished by an inhibitory connection from the
intermediate layer to the output layer, excels in output regularity.
This implies that changing the excitatory coupling between the
intermediate and output nodes (or layers) of the FFL to inhibitory
coupling, essentially transitioning from a coherent to an incoherent
FFL, promotes output regularity but reduces motif synchrony. This
shift towards inhibitory connectivity reveals a trade-off between
motif synchrony and output regularity, suggesting that the
intermediate node (or layer) plays a critical role in shaping the
motif’s overall dynamics.

Our study unveils two novel observations. Firstly, we find that
the optimal output regularity for both motifs occurs at an
intermediate level of intra-motif coupling (Figures 5B, D),
challenging the common expectation that stronger coupling,
especially excitatory coupling, leads to improved regularity.
Secondly, as the system approaches the HB point, both motifs
exhibit increasingly superior output regularity (Figure 7B), while
their motif synchrony and associated optimal noise intensity remain
relatively unchanged (Figures 7A, C). These novel findings provide
valuable contributions to the study of network motifs.

Our findings indicate that intra-motif coupling exhibits a
positive correlation with noise-induced motif synchronization
(Figure 6A), but demonstrates a negative correlation with the
optimal noise intensity required to maximize synchronization
(Figure 6C). These results are in accordance with prior research,
underscoring the pivotal role of network connections in shaping
network synchrony (e.g., [26, 27, 40, 41, 44]). Considering that FFL
motifs play a crucial role in transmitting information from sensory
components to effectors in the realm of neuroscience [3, 14], this

discovery suggests that motif T2 might serve as a more efficient
motif for processing or transmitting information in a noisy
environment, which is a pertinent consideration in studies of
computational neuroscience. This paper focuses on two common
three-node motifs (T1 and T2), highlighting their responses to noise.
However, further investigation is needed to develop a
comprehensive theory describing the noise-induced dynamics of
various three-node motifs. Understanding these dynamics is
challenging due to phenomena such as synchrony breaking HB
[45, 46], which can occur even without noise. Our future research
aims to address these complexities and provide deeper insights into
the dynamics of three-node motifs.
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