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Recent experimental tests of Bell inequalities confirm that entangled quantum
systems cannot be described by local classical theories but still do not answer the
question whether or not quantum systems could, in principle, be modeled by
linear hidden variable theories. In this paper, we study the quantum trajectories of
a single qubit that experiences a sequence of repeated generalized
measurements. It is shown that this system, which constitutes a hidden
quantum Markov model, is more likely to produce complex time correlations
than any classical hidden Markov model with two output symbols. From this, we
conclude that quantum physics cannot be replaced by linear hidden variable
theories. Indeed, it has already been recognized that not only entanglement but
also non-classical time correlations of quantum systems with quantum feedback
are a valuable resource for quantum technology applications.
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1 Introduction

Entanglement, as defined by Erwin Schrödinger [1], is considered by many the “essence
of quantum physics” [2] and the origin of “spooky action at a distance” [3] and therefore
receives a lot of attention, especially in recent research into quantum information
processing. Many quantum technology applications, from quantum cryptography to
quantum metrology and quantum computing, require entanglement as a resource. It is,
therefore, not surprising that entanglement is also often at the center of a debate which tries
to draw a clear line between quantum and classical physics. For example, already in 1935,
Einstein, Podolsky, and Rosen asked the question whether or not the dynamics of quantum
systems could be described by classical hidden variable theories [4]. They were hoping that
quantum physics was simply a way of dealing with a lack of knowledge rather than
indicating the need for an alternative, non-deterministic approach to physics.

In 1964, Bell constructed an inequality that could be violated by entangled quantum
systems but not by performingmeasurements on two individual classical particles with local
hidden properties [5]. Suddenly, the question of physics being either quantum or classical
was no longer just a matter of interpretation. It was now possible to verify and quantitatively
measure the strangeness of quantum systems. Over the years, several tests of Bell
inequalities [6] have been performed [7–10], and a strong case has been made for the
reality of quantum physics and the existence of entanglement. Eventually, in 2015,

OPEN ACCESS

EDITED BY

Craig Martens,
University of California, Irvine, United States

REVIEWED BY

Marika Taylor,
University of Southampton, United Kingdom
Laszlo Gyongyosi,
Budapest University of Technology and
Economics, Hungary

*CORRESPONDENCE

Almut Beige,
a.beige@leeds.ac.uk

RECEIVED 20 October 2023
ACCEPTED 29 January 2024
PUBLISHED 29 February 2024

CITATION

Al Rasbi K, Clark LA and Beige A (2024),
Quantum physics cannot be captured by
classical linear hidden variable theories even in
the absence of entanglement.
Front. Phys. 12:1325239.
doi: 10.3389/fphy.2024.1325239

COPYRIGHT

© 2024 Al Rasbi, Clark and Beige. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 29 February 2024
DOI 10.3389/fphy.2024.1325239

https://www.frontiersin.org/articles/10.3389/fphy.2024.1325239/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1325239/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1325239/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1325239/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1325239&domain=pdf&date_stamp=2024-02-29
mailto:a.beige@leeds.ac.uk
mailto:a.beige@leeds.ac.uk
https://doi.org/10.3389/fphy.2024.1325239
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1325239


additional loopholes of previous Bell tests were closed [11–13], and
quantum physics became widely accepted not only as a highly
efficient but also as a necessary approach. Although it is still
possible to describe quantum systems by linear hidden variable
theories, it was concluded that such classical theories would have to
be at least non-local [14].

However, entanglement is not the only strange property of
quantum systems. Another characteristic that they do not share
with classical systems is that a measurement results in a so-called
collapse of their internal state [15]. A quantum jump occurs, and the
quantum state immediately after a measurement is, in general, not
the same as it was before [16]. For example, weak light arriving at a
detector either causes a click or no click since photons can only be
detected in integer numbers [17]. In case of a click, the presence of a
photon becomes reality, even when the photon number expectation
value of the incoming light was well below one before the detection.
Energy is preserved but only when averaged over many trajectories.
Without quantum jumps, repeating a measurement might not yield
the same outcome as a previous measurement, which would mean
that its outcome was meaningless. This is in contrast to classical
physics where a measurement reveals information but does not
cause a physical system to change.

In 1975, Dehmelt pointed out that driving a single three-level
atom with appropriate laser fields can lead to macroscopic quantum
jumps [18]. These are a random sequence of long periods of constant
fluorescence interrupted by long periods of no fluorescence. The
light and dark periods of a blinking atom occur on macroscopic time
scales and are a manifestation of very persistent time correlations.
Subsequently, the existence of macroscopic quantum jumps has
been experimentally verified by several groups [19–21], and
theoretical models were developed to accurately predict the
statistical properties of their trajectories [22–25]. Since there are
a large variety of classical stochastic processes, it is hard to argue that
the time correlations in these quantum experiments were non-
classical. Hence, quantum jump experiments were mainly used to
illustrate the stochastic nature of quantum physics [26].

Only much later, attempts were made to capture the non-
classicality of time correlations, for example, through the
introduction of temporal Bell inequalities [27–33], which could
only be violated by quantum but not by classical stochastic
processes. For example, [29] coined the term “entanglement in
time.” To verify the non-classicality of their measurement
correlations, authors looked for examples of causality violations
since classical systems are always causal [34, 35]. For example,
quantum switches with applications in quantum communication
require a single quantum system to simultaneously experience two
or more quantum channels such that the order of cause and effect
becomes obscured [36]. Indeed, it has already been shown that
quantum switches and other systems which can violate causality
provide interesting additional resources for quantum technology
applications, like quantum computing and quantum
communication [37–41].

The purpose of this paper is to emphasize that temporal
quantum correlations can occur even when a quantum system as
simple as a single qubit experiences only a single quantum channel.
As we shall see below, sequential generalized measurements can
generate non-classical time correlations, even in the absence of
causality violations and entanglement. From this, we conclude

that stochastic quantum processes cannot be captured by classical
linear hidden variable theories, thereby imposing a much tighter
boundary on what behavior can be considered quantum. In good
agreement with [42–49], we find that quantum physics can reduce
the complexity and memory needed, for example, when simulating
certain stochastic processes.

As in [49], we consider, in the following, a single qubit which
experiences the same generalized measurement many times. Its
measurement outcomes “A” and “B” are recorded, and we then
study the stochastic properties of the generated random sequence.
As we shall see below, such a system can be classified as a hidden
quantum Markov model (HQMM) with one memory qubit.
HQMMs [50–54] are quantum versions of stochastic generators
which became known as Markov models (MMs) [55] and as hidden
Markov models (HMMs) [56–60]. A clear advantage here is the
ability of quantum systems to maintain correlations over longer
periods of time than classical systems, thus enabling them to exhibit
more exotic behavior. Because of this, HQMMs already found
applications in quantum machine learning [61, 62] and in
simulating open quantum systems [63, 64]. For example,
HQMMs based on single-mode coherent states can lead to a
violation of the standard quantum limit and a quantum
advantage in quantum metrology applications even in the
absence of entanglement [65–67]. Moreover, generalized
measurements have interesting applications in quantum
communication [68, 69].

In the following, we study the stochastic properties of the output
sequences of a relatively large class of HQMMs with a single
memory qubit and compare them with the stochastic properties
of the output sequences of MMs and HMMs with two output
symbols “A” and “B”. Despite looking only at a subset of all
possible HQMMs, we find that HQMMs can generate stochastic
processes with stronger time correlations than all possible MMs and
HMMs with two output symbols, even when we allow for HMMs
with hidden memories of any size. More concretely, we find that
increasing the memory of an HMMdoes not increase its complexity.
In MMs and HMMs, the presence of temporal correlations in
consecutive outputs cannot be sustained very long, and previous
output symbols in general seem to be much more quickly forgotten
than in the case of HQMMs.

This paper contains five sections. In Section 2, we define MMs,
HMMs, and HQMMs and introduce the notation which is used
throughout the paper. Afterward, in Section 3, we parametrize all
three machines and derive analytical expressions for output
probabilities of certain stochastic sequences. Due to the ergodicity
of the considered stochastic generators, we assume that they possess a
stationary state and only consider word probabilities for the case when
the machine transitioned into its stationary state. After introducing all
the necessary theoretical characterization of the three models, we
present a numerical comparison of their complexity in Section 4.
Finally, we summarize our findings in Section 5.

2 Hidden quantum Markov models and
their classical counterparts

Markov models, which are also known as Markov chains, are
memoryless generators of stochastic processes. One way of
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simulating more complex stochastic processes is to replace these
machines by HMMs. Alternatively, more complex stochastic
sequences can be generated using HQMMs which take advantage
of quantum physics. In this subsection, we have a closer look at the
definitions of all three machines. For simplicity, we restrict ourselves
to machines with only two possible outputs, A and B.

2.1 Markov models

Discrete-time MMs evolve on a coarse-grained time-scale, and
each time step Δt of their dynamics is dominated by a random
transition from a state i to another state j. At the end of each time
step, a measurement is performed, and an output symbol is
generated that indicates the current state of the machine [55].
The dynamics of discrete-time MMs and their measurement
outputs depend solely on the previous state i but not on the
history of the machine, which is known as its Markov property.
Discrete MMs are, therefore, fully characterized by 3-tuples

(S, T , p(0)), where S describes the available state space, T
specifies transition probabilities, and the vector p(0) contains all
the probabilities to find the machine in a certain initial state. Here,
we only consider stochastic machines with two possible internal
states 1 and 2. As illustrated in Figure 1A, preparing the machine in
1 or in 2 generates the output A or B, respectively. Suppose S(n) = i is
the state of an individual machine after n time steps. Then,

S n + 1( ) � j (1)
with the transition probability tj|i. The current state S (n + 1) does
not contain any information about the previous or the initial state of
the machine.

If measurement outcomes are ignored or if ensemble averages
for a large number of MMs are considered, the states S(n) of
individual MMs remain unknown. In this case, we describe the
state of the machine by a two-dimensional vector p(n) of the form

p n( ) � p1 n( )
p2 n( )( ).

Here, pi(n) is the probability of finding the machine after n time
steps in state i and p1(n) + p2(n) = 1. Ignoring output symbols, the
dynamics of the state vector p(n) can be described by a single
transition matrix T ∈ T which is defined such that

p n + 1( ) � T p n( ).
The operator T contains all the probabilities tj|i that govern the
dynamics of the MM. For example, for the two-state Markov chain
in Figure 1A, we have

T � t1|1 t1|2
t2|1 t2|2

( ). (2)

As is seen in Section 4, the relative simplicity of MMs has the
drawback of resulting in only relatively weak correlations in their
output sequences.

2.2 Hidden Markov models

Different from MMs, HMMs are stochastic generators whose
output symbols do not reveal their state. The internal state
remains hidden. Nevertheless, HMMs obey the Markov
property as well, and output symbols and transitions depend
only on their previous state. Hence, HMMs are characterized by
4-tuples (S, T ,O, p(0)). Again, S denotes the relevant state
space, and p (0) contains the initial state probabilities.
However, T now contains probabilities for transitioning from
a certain state i into a certain state j while creating a certain
output symbol. Moreover, O specifies the possible measurement
outcomes, i.e., output symbols. It should be noted that there are
two types of HMMs which are called Moore and Mealy [52]. In
the first case, the generated stochastic output depends only on the
current state of the machine. In the latter case, it depends on the
current state and on the observed output symbol, as illustrated in
Figure 1B. In this paper, we focus on Mealy HMMs, which
contain Moore HMMs as a subset. The reason for looking at
these is that we are interested in comparing quantummachines to
the most general possible classical stochastic generators.

FIGURE 1
(A) Schematic view of a Markov model with two states 1 and 2.
Here, tj|i denotes the probability of the machine to undergo transition
from state i to state j. During each transition, an output symbol is
created. All red arrows are accompanied by the generation of “A”,
while the blue arrows correspond to transitions which generate “B”. In
this way, the obtained output symbol is a clear indication of the state of
the machine. The state of the machine is, therefore, not hidden. (B)
Schematic view of a Markov model with two states 1 and 2. Here, tj|i
denotes the probability of the machine to undergo transition from
state i to state j. During each transition, an output symbol is created. All
red arrows are accompanied by the generation of “A”, while the blue
arrow correspond to transitions which generate “B”. In this way, the
obtained output symbol is a clear indication of the state of the
machine. The state of the machine is, therefore, not hidden.
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Here, we are especially interested in machines with only two
possible outputs, namely, A and B. In the case of HMMs, this does
not restrict the number of internal states. In the following, we
denote the hidden states of the HMM by i, with i varying from
1 and N. Suppose t(m)

j|i is the probability for a HMM prepared in
state i to transition to j while generating output m. In this case,
S(n) = i and S (n + 1) = j, as shown in Eq. 1. The probability tj|i
which now equals the sum of the probabilities of generating an A
and a B in this case,

tj|i � t A( )
j|i + t B( )

j|i . (3)

Since an external observer has access to the outputs of the
machine but not to its hidden states, we now have two transition
matrices Tm with m = A, B such that

Tm �
t m( )
1|1 t m( )

1|2 . . . t m( )
1|N

t m( )
2|1 t m( )

2|2 . . . t m( )
2|N

..

. ..
. ..

.

t m( )
N|1 t m( )

N|2 . . . t m( )
N|N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Using this notation, the state vector p (n + 1) with coordinates pi
(n + 1) which represent the probability of the machine being in state
i after n + 1 steps equals

p n + 1( ) � Tm p n( )/Prn m( ),
if the state of the machine equaled p(n) after n steps, and output m
was obtained in step n + 1. Here, Prn(m) denotes the probability of
obtaining the output m in step n. Different from MMs, the state
vectors p(n) are now real vectors of dimension N.

For example, we can now calculate the probability of an HMM
being in a certain state i after n steps when all measurement outputs
are ignored. As in the previous subsection, in this case, the dynamics
of the state vectors of the HMM can be described by a transition
matrix T,

T � TA + TB, (4)
which is the sum of the two sub-transition matrices TA and TB.
Using this notation,

p n + 1( ) � T p n( )
in analogy to Eq. 1. The matrix element of the total transition matrix
T is tj|i in Eq. 3. If η = (1,1, . . . ,1)T is a row vector with all N
coordinates equal to 1, then the probability Prn+1(m) of getting
output m after n + 1 steps equals

Prn+1 m( ) � ηTm p n( ). (5)
We now have all the information needed to simulate all possible

individual trajectories of a given HMM with N internal states.

2.3 Hidden quantum Markov models

To obtain quantum versions of HMMs, all we need to do is to
replace their hidden states i by quantum states |i〉. However, being
quantum, the allowed internal states of an HQMM are not discrete
but continuous. In general, the hidden quantum memory is in a
linear superposition of a finite number of discrete quantum states.

More concretely, the state |ψ(n)〉 of an HQMM after n steps can
always be written as follows:

|ψ n( )〉 � ∑N
i�1

ci n( ) |i〉,

where ci(n) denotes complex coefficients with

∑N
i�1

|ci n( )|2 � 1.

As before, the output symbol and the transition of an HQMM
depend only on its current internal state, and transitions between
subsequent states |ψ(n)〉 are again specified by linear stochastic
process transition matrices [51]. More concretely, given that the
output symbol m is measured, the state of the HQMM changes
such that

|ψ n + 1( )〉 � Km|ψ n( )〉
‖Km|ψ n( )〉‖. (6)

The probability to obtain this outcome for the given initial state
|ψ(n)〉 now equals

Prn+1 m( ) � ‖Km |ψ n( )〉‖2,
which is different from the probability Prn+1(m) in Eq. 5. The
operator Km in the above equations is a so-called Kraus operator,
which obeys certain constraints [15]. For example, here, we are
especially interested in HQMMs with two output symbols, A and B.
In this case, probabilities for the two possible measurement
outcomes must add up to one. This applies when

K†
AKA +K†

BKB � I, (7)
where I denotes the identity operator. In this case, the HQMM uses
only a single qubit as its internal memory. This means the hidden
state of the machine belongs to a two-dimensional state
space (N = 2).

Again, if the measurement outputs of the machine are ignored,
we cannot know the states |ψ(n)〉 of individual HQMMs even when
their initial state |ψ(0)〉 is known. In this case, the probability vectors
p(n) of HMMs need to be replaced by density matrices ρ(n). These
describe the quantum state of the memory averaged over a large
ensemble of individual machines and allow us to predict the
dynamics of expectation values, like the probability of finding the
HQMM at a certain time step in a certain internal state. Instead of
Eq. 6, the dynamics of the HQMM is now given by the
following equation:

ρ n + 1( ) � K ρ n( )( ), (8)
with the superoperator K defined such that

K ρ n( )( ) � ∑
m�A,B

Kmρ n( )K†
m. (9)

In other words, the Kraus operators KA and KB replace the
transition matrices TA and TB of HMMs, which we introduced in the
previous subsection. For example, the probability Prn+1(m) of
generating an output m in step n + 1 now equals

Prn+1 m( ) � Tr Kmρ n( )K†
m( ),
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where the trace, Tr, denotes the sum of all the diagonal
matrix elements.

3 Parametrization, stationary states,
and different observable properties

In this section, we parametrize the machines that we introduced
in the previous section and highlight the constraints that must be
satisfied by each model. In addition, we determine stationary state
distributions whenever possible and calculate the probabilities for
certain output sequences. For simplicity, we assume, in the
following, that all three machines are ergodic due to their finite
size and therefore possess a stationary state. The calculated “word
probabilities” (probability of a specific output sequence), therefore,
apply to the outputs of large ensembles of machines, which all have
already reached their stationary states. They also apply to all the
words generated by a single machine when averaged over an
infinitely long trajectory of output symbols, like the ones
illustrated in Figure 2.

3.1 Markov Models

From probability theory, we know that the matrix elements of
the transition matrix T in Eq. 2 are all between zero and one. In
addition, they must obey the condition

t1|i + t2|i � 1

for i = 1, 2 to ensure that the machine always transitions into one of
its two available states 1 and 2. Since T has four matrix elements and
there are two constraints, we can parametrize one-bit MMs using
only two independent parameters p and q. More concretely, we write
T in the following as

T � p 1 − q
1 − p q

( ) (10)

with parameters p, q ∈ [0, 1]. Here, t1|1 = p, t2|2 = q, t2|1 = 1 − p, and
t1|2 = 1 − q. In the next section, we will choose p and q randomly to
sample a large set of all possible random machines and study the
properties of their output sequences.

The possible output sequences of each machine depend
somewhat on their respective initial state p (0). However, if the
machine is ergodic and its outputs are ignored for a certain initial
minimum amount of time, it soon assumes a stationary state pss �
(p1, p2)T with

T pss � pss. (11)

Using Eq. 10 and taking into account that p1 and p2 must add up
to one, one can show that

p1 � 1 − q

2 − p − q
, p2 � 1 − p

2 − p − q
. (12)

These probabilities tell us how likely it is to find a certain machine
which is characterized by p and q either in 1 or in 2. Hence, they also
equal the probabilities to obtain the outputs A and B at any time n, if
the previous outputs of the machine are unknown and cannot be
taken into account.

Suppose the machine has initially been prepared in its stationary
state pss. Then, the probability P (i1i2 . . . im) of obtaining the output
sequence i1i2 . . . im of length m simply equals

P i1i2 . . . im( ) � tim |im−1 . . . ti3 |i2ti2 |i1 pi1 (13)
with pi1 given in Eq. 12. For example, the probability of creating a
word of length m + 2 which starts and ends with the output symbol
A and otherwise only contains B’s equals

Pm AB . . .BA( ) � 1 − p( ) 1 − q( )2
2 − p − q

qm−1. (14)

Alternatively, we could ask, for example, the following question:
what is the probability of a word of lengthm + 2 to start and end with
the output symbol A? This probability equals

Pm A* . . . *A( ) � 1 − q

2 − p − q
1, 0( )Tm−1 1

0
( ). (15)

Probabilities like the above ones are a measure for the
complexity of the machine. For example, the probability Pm
(A*. . .*A) can tell us how long correlations persist in the output

FIGURE 2
Comparison of the mechanisms which lead to the generation of
output symbols in the cases of MCs, HMMs, and HQMMs. (A) AMarkov
chain has two states A and B, and the transition between states over
time is governed by the transition probability matrix. The gray
arrows show all possible routes of evolving the Markov chain with
time, while the red arrow shows a single trajectory. (B)Hidden Markov
model evolution over time. Here, the Markov chain has two states A
and B, and the transition between states over time is governed by the
transition probability matrix. The diagram shows one possible route of
evolving the Markov chain with time. (C) Hidden quantum Markov
model evolution over time. Here, the hidden quantum Markov model
has two states A and B, and the transition between states over time is
governed by the transition probability matrix. The diagram shows all
possible routes of evolving the hidden quantum Markov model
with time.
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sequences of a machine. For large m, the probability Pm (A*. . .*A)
tends to p1 and any knowledge about having been prepared in
1 exactly m + 1 steps earlier is lost.

3.2 Hidden Markov models

As we have seen in Section 2.3, the description of HMMs with
two outputs and N internal states requires two transition matrices
Tm with N2 matrix elements t(m)

j|i . To identify the number of
independent parameters that is needed to numerically simulate
all possible HMMs, we first notice that the matrix elements t(m)

j|i
and tj|i’s in Eq. 3 are all between zero and one. To, moreover,
preserve normality of the probability distribution, we require that

∑N
j�1

tj|i � 1 (16)

with the matrix element tj|i defined in Eq. 3. Hence, the transition
matrix T in Eq. 4 is an N × Nmatrix. Given the N constraints in Eq.
16, we, therefore, have N2 − N = N(N − 1) free parameters for the
matrix T. Once T is fixed, the sub-transition matrix TA can assume
N2-positive free parameters, but these are bounded from above by
the matrix elements of T. Once we know TA, we also know TB.
Hence, in total, the characterization of a Mealy HMM requires
N(N − 1) + N2 = (2N − 1)N independent parameters.

HMMs are non-deterministic (non-unifilar) since the same
transition path can result in different stochastic outputs that
increase their complexity [53]. For example, the stationary state
is again the distribution vector pss which is an eigenvector of the
transition matrix T such that Tpss = pss, as stated in Eq. 11. For
HMMs, pss � (p1, p2, . . . , pN)T is an N-dimensional column
vector. In case of ergodicity, the state vector pss can be found,
for example, numerically by applying T repeatedly to an initial
state until the state of the machine remains the same. However,
there is no guarantee that an HMM with N internal states has only
a single stationary state. For example, an HMM could consist of
two independent HMMs with N1 and N2 = N − N1 internal states.
In our analysis of HMMs in Section 4, we only consider the
stationary state pss, which is calculated in a numerical
simulation of the machine.

Since the transitions of an HMM are governed by two sub-
transitions matrices, namely, TA and TB, the probability P (i1i2 . . .
im) for generating the output sequence i1i2 . . . im now reads

P i1i2 . . . im( ) � ηTim . . .Ti2Ti1 pss. (17)
More concretely, the probability Pm (AB . . . BA) in Eq. 14 becomes

Pm AB . . .BA( ) � ηTAT
m
B TA pss. (18)

If we ignore the m output symbols between the first and the last
A, this probability changes into

Pm A* . . . *A( ) � ηTAT
mTA pss. (19)

All three probabilities differ significantly from the probabilities
given in Eqs 13–15. As is seen in the next section, HMMs are
more likely to produce correlated output sequences than MMs
because of their hidden memory.

3.3 Hidden quantum Markov models

Next, let us have a closer observation at how to parametrize
HQMMs. Their generalized measurements can be realized by
allowing the qubit, which encodes the hidden state of the
machine, to interact with an auxiliary quantum system, i.e., an
environment, followed by projective measurements on a coarse-
grained time scale Δt. In every time step, some hidden information
can leak into the environment. Markovianity requires that the
ancilla, i.e., the environment, is reset to the same initial state
after each measurement. Otherwise, the dynamics of the HQMM
would not depend only on the current state of its memory qubit.
Figure 2C illustrates the stochastic dynamics of the qubit and the
random measurement outcomes that might be produced in a single
run of such a machine.

3.3.1 Parametrization of Kraus operators
As in [51, 52], we model HQMMs in the following using the

language of open quantum systems and introduce Kraus operators
KA and KB, which we associate with the output symbols A and B of
the machine. To parametrize these Kraus operators, we write them
in the following as

Km � k m( )
00 k m( )

01

k m( )
10 k m( )

11

( ). (20)

The eight complex matrix elements of KA and KB can be
represented by 16 real parameters. However, as pointed out in
Eq. 7, KA and KB must obey a matrix equation which implies that

∑
m�A,B

|k m( )
00 |2 + |k m( )

10 |2 � 1,

∑
m�A,B

|k m( )
01 |2 + |k m( )

11 |2 � 1,

∑
m�A,B

k m( )
00 k m( )*

01 + k m( )
10 k m( )*

11 � 0.

(21)

These three equations impose four (real) constraints on the
abovementioned 16 real parameters, thereby reducing the total
number of free (real) parameters needed to fully characterize
HQMMs with one memory qubit to 12. This means a one-qubit
HQMM has more free parameters than an HMM with one or two
internal states but less free parameters than an HMM with more
than two internal states. Nevertheless, as is seen in the following
section, it is a more powerful stochastic generator.

3.3.2 Stationary states
If a track record of all measurement outcomes is kept, an

HQMM that has initially been prepared in a pure state |ψ(0)〉
can always be described by a pure state |ψ(n)〉. However, as
mentioned already in the previous section, if this is not the case
and measurement outcomes are ignored, the HQMM must be
described by a density matrix ρ(n) instead. How this density
matrix evolves from one time step to the next is shown in Eq. 8.
Its stationary state is, therefore, the density matrix ρss with

K ρss( ) � ρss (22)
with the superoperator K defined in Eq. 9. Since the HQMM is a
two-level system, its stationary state density matrix ρss can be written
as follows:
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ρss � ρ00 ρ01
ρ10 ρ11

( ), (23)

with two real matrix elements, ρ00 and ρ11, and two complex matrix
elements, ρ01 and ρ10, and with

ρ00 + ρ01 � 1,
ρ01 � ρ10* .

(24)

In principle, using Eqs 20–24, the stationary state density matrix
ρss of HQMMs could be calculated analytically, but the resulting
equations do not provide much insight since they still contain 12 free
parameters. In the following section, we, therefore, solve the above
equations only numerically.

3.3.3 Word probabilities
As before, we now have a closer look at word probabilities. For

example, the probability P (i1i2 . . . im) in Eqs 13–17 now equals

P i1i2 . . . im( ) � Tr Kim . . .Ki2Ki1 ρss K
†
i1
K†

i2
. . .K†

im
( ),

with the Kraus operators Km given in Eq. 20. Moreover, the
probabilities Pm (AB . . . BA) and Pm (A*. . .*A) are now given by
the following equations:

Pm AB . . .BA( ) � Tr KAK
m
BKA ρss K

†
AK

m †
B K†

A( ),
Pm A* . . . *A( ) � Tr KA Km KAρssK

†
A( )K†

A( ),
which have many similarities with Eqs 18, 19.

4 A comparison of the complexity of
MMs, HMMs, and HQMMs

In this final section, we use the parametrization of MMs, HMMs,
and HQMMs with two output symbols, which we introduced in the
previous section, to study and compare the word probabilities and
the time correlations that these machines can produce. As we shall
see below, there is not much difference between the complexity of
MMs and HMMs. Moreover, we find that increasing the number of
internal states of HMMs does not significantly change the
correlation range of their output symbols. The possible
correlations between output symbols seem to disappear relatively
quickly, after only a few time steps. For simplicity, we only consider a
subset of all possible HQMMs with only 3 instead of 12 free
parameters. Nevertheless, we find that the HQMMs are the most
complex of all three machines.

4.1 Simulating HMMs with more than two
internal states

First, let us have a closer look at the effect of increasing the
number of internal states N of HMMs on their measurement
correlations while keeping the number of outcomes equal to two.
More concretely, we study the output sequences of HMMs with 2, 3,
and 4 internal states. The simulation was carried out as follows: first,
we determine a random transition matrix T and random sub-
transition matrices TA and TB so that the elements of each
matrix fulfill the constraints imposed by the model. Then, we

determine the corresponding stationary state and evaluate the
probabilities P(B) and P(BAAAB). These probabilities are
calculated for 105 randomly generated machines and used as the
coordinates for the blue dots shown in Figure 3.

As shown in Figure 3, the differences between the three plots are
almost negligible. The reason for this might be that we consider
machines with only two output symbols. Having only two internal
states seems to be sufficient to generate all the correlations that the
corresponding HMMs can produce. Expanding the HMMs to
include more than two internal states does not improve the
performance of the model. If anything, the space that the blue
dots occupy in Figures 3B, C seems to be slightly less than the space
they occupy in Figure 3A, due to the increasingly large space needed
to sample. Increasing the number of internal states seems to make
the generation of an “optimal” machine less likely while
concentrating the points to a central region. Such sampling
problems, while interesting in themselves, do not pose any
further interest in the study we consider here. Instead, we satisfy
ourselves knowing that the internal state space is not important
within the hidden machines (at least with a single output bit). We,
therefore, know that increasing hidden resources is not an
alternative to generating quantum dynamics, and as such, any
increase in complexity is given solely by this new quantum behavior.

4.2 An interesting subset of HQMMs

As is seen in Section 3.3, a complete parametrization of 1-qubit
HQMMs requires 12 real parameters. However, to conclude that
HQMMs are more complex than HMMs, we only need to identify
one stochastic process that can be modeled using an HQMM but
cannot be modeled classically. Keeping this in mind, we consider, in
the following, HQMMs with Kraus operators KA and KB, which can
be written as follows:

KA � cosφ −a sinφ
sinφ a cosφ

( ),
KB � 0

�����
1 − a2

√
sin ϑ

0
�����
1 − a2

√
cos ϑ

( ). (25)

Here a, φ, and ϑ are real parameters with

a ∈ 0, 1( ), φ ∈ 0, 2π( ), ϑ ∈ 0, 2π( ).
It is relatively straightforward to check that the above operators

are indeed valid Kraus operators. Instead of 12, we now only have to
deal with three free parameters. The stationary states of the above
HQMMs can be calculated using Eqs 20 and 21 by proceeding as
described in the previous sections.

To show that the above-described generalized measurement is of
physical relevance, let us have a closer look at how it could be
realized experimentally. As an example, we assume that the memory
qubit is a single atom with ground state |1〉 and an excited state |2〉.
Suppose the initial state of the atom equals

|ψ 0( )〉 � c1 |1〉 + c2 |2〉
and Γ is the spontaneous decay rate of its excited state. Under the
condition of no photon emission, the unnormalized state of the
atom equals [17]
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|ψ Δt( )〉 � c1 |1〉 + e−Γ Δt/2 c2 |2〉
after some time Δt since not seeing a photon reveals information
about the state of the atom and decreases the probability that the
atom is in its excited state. Suppose, we rotate the state of the atom at
time Δt by applying the unitary operator

UA � cosφ −sinφ
sinφ cosφ

( ).
This can be done, for example, using a short strong laser pulse. It

is relatively straightforward to check that the overall effect is the
implementation of the Kraus operator KA if the parameter a in
Eq. 25 equals exp (−Γ Δt/2). This applies since

KA |ψ 0( )〉 � UA |ψ Δt( )〉
in this case. In other words, not seeing a photon in a time interval
(0, Δt) followed by the application of UA is a way of realizing KA.

However, if the atom emits a photon within the time interval
(0, Δt), its unnormalized state equals [17]

|ψ Δt( )〉 � �������
1 − e−Γ Δt

√
c1 |1〉

at Δt. This state is normalized such that ‖|ψ(Δt)〉‖2 equals the
probability of seeing a photon in (0, Δt). Now suppose, the
photon emission is followed by the application of the
unitary operator

UB � cos ϑ sin ϑ
−sin ϑ cos ϑ

( ).
Then, seeing a photon changes the state of the atom, up to a

normalization factor into KB |ψ(0)〉, since

KB |ψ 0( )〉 � UB |ψ Δt( )〉.
This means seeing a photon now constitutes a B measurement.

One can easily check that the output states and probabilities for
measuring the outcomes A and B, respectively, are as one would
expect for a generalized measurement with Kraus operators KA and
KB. In the next subsection, we have a closer look at the output

sequences that can be obtained by applying the above-described
generalized measurement repeatedly to a memory qubit.

4.3 A comparison of the performance of
the machines

This final subsection outlines a comparative analysis of the
stochastic properties of the output sequences of the above-
introduced MMs, HMMs, and HQMMs with output symbols A
and B. In each case, we generate a large number of randommachines
and determine their stationary-state word probabilities P(BAAAB)
and P(B) as previously described, for example, in Section 4.1. For
each machine, we then place a single dot in the corresponding figure.
The selected sequence for the simulation is “BAAAB” with
P(BAAAB) representing the probability of observing the event B
subsequent to three consecutive occurrences of AAA, given that the
initial outcome is B. In other words, this sequence provides insights
into the correlation between two B outcomes separated by multiple
observations of A. Figure 4 illustrates that the HQMMs are much
more likely to generate word sequences “BAAAB” for a given
probability P(B). This means they exhibit a superior performance
due to their ability to occupy a larger state space than their classical
counterparts, thereby maintaining some information about the
history of the machines despite having the Markov property. In
summary, despite utilizing only a single qubit as a memory,
HQMMs have the capacity to exhibit temporal correlations
which cannot be reproduced by linear hidden variable models.

To show that the above behavior is not an outlier but a general
feature of HQMMs, we now also have a look at a different word and
a different statistical measure. Figure 5 shows a comparison of the
performance of MMs, HMMs, and HQMMs with two output
symbols with respect to generating the word “BABBAB.” The
coordinates of the dots are now given by P(B) and P(BABBAB)/
(P(A)2P(B)3). For completely uncorrelated output sequences, this
quantity is unity everywhere. Differences from unity, therefore,
indicate correlated data. In Figure 5, we clearly see that the
difference between the MMs and HMMs is relatively small,

FIGURE 3
Blue dots show the probability P(BAAAB) as a function of P(B) for 105 randomly generated stochastic generators which satisfy the parametrization
and conditions imposed on HMMs. The three figures show HMMs with (A) two, (B) three, and (C) four internal states. For each randomly generated
machine, we only calculated the probability P(BAAAB) as a function of P(B) of observing the sequence “BAAAB” and “B” once the respective machine
reached a stationary state.
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although HMMs are more likely to exceed unity than MMs.
However, the distribution of the red dots shows that HQMMs
are capable of producing relatively strong time correlations that
the classical machines are incapable of. This further demonstrates
the enhanced complexity of HQMMs and clearly shows that their
stochastic dynamics cannot be captured by classical linear hidden
variable theories.

5 Conclusion

This paper compares classical Markov chain-based models,
specifically MMs and HMMs with their quantum counterpart, so-
called HQMMs. We reviewed the definitions of the three models
with a specific emphasis on their parametrization. When increasing
the internal states of HMMswith two outputs A and B, we observed that

this does not improve the achievable temporal correlations among
output sequences. Our simulations show that HMMs with two
output symbols do not benefit from having more than two internal
states.We then examined the probability of observing two specific output
sequences, “BAAAB” and “BABBAB,” for a large number of randomly
generated machines. Our simulations of the corresponding word
probabilities clearly show that HQMMs can exhibit superior
performance. For example, the probabilities P(BAAAB) of certain
HQMMs are larger than the maximum probability P(BAAAB) that
can be realizedwith linear classical models. Thismeans quantum physics
cannot be captured by classical linear hidden variable theories even in the
absence of entanglement. Our work emphasizes the quantumness of
temporal correlations in the output sequences produced by generalized
measurements and recommends them as an additional resource (which
is different from entanglement and usually much easier to produce) for
quantum technology applications.

FIGURE 4
Probability P(BAAAB) of observing the sequence “BAAAB” as a function of P(B) for (A) a Markov chain (green), (B) a hidden Markov model with two
internal states (blue), and (C) a hidden quantumMarkovmodel (red). Each point corresponds to a randomly generated machine. As onemight expect, the
comparison of the figures shows in general higher correlations between the measurement outcomes for HQMM than for their classical counterparts,
HMMs and MMs, since the red dots cover a much bigger area. For each figure, 105 randomly generated machines were taken into account.

FIGURE 5
Probability P(BABBAB) of observing the sequence “BABBAB” divided by the product of the stationary state probability of each letter of the word,
i.e., by P(A)2P(B)3, as a function of P(B) for (A) a Markov chain (green), (B) a hidden Markov model with two internal states (blue), and (C) a hidden quantum
Markov model (red). Again, a large number of output trajectories have been created. Similar to Figure 4, we again see an increase in complexity when
considering a quantum machine, as demonstrated by the larger area covered in dots. The data here have been generated using the same
methodology as Figure 4.
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