
Dimensionality reduction and
machine learning based model of
software cost estimation

Wei Zhang1, Haixin Cheng2,3, Siyu Zhan2,3*, Ming Luo4,
Feng Wang1 and Zhan Huang4

1Research Institute of Natural Gas Gathering and Transmission Engineering Technology, PetroChina
Southwest Oil and Gasfield Company, Chengdu, China, 2Laboratory of Intelligent Collaborative
Computing, University of Electronic Science and Technology of China, Chengdu, China, 3Trusted Cloud
Computing and Big Data Key Laboratory of Sichuan Province, Chengdu, China, 4Capital Construction
Department, PetroChina Southwest Oil and Gasfield Company, Chengdu, China

Software Cost Estimation (SCE) is one of the research priorities and challenges in
the construction of cyber-physical-social systems (CPSSs). In CPSS, it is urge to
process environmental and social information accurately and use it to guide
social practice. Thus, in response to the problems of low prediction accuracy,
poor robustness, and poor interpretability in SCE, this paper proposes a SCE
model based on Autoencoder and Random Forest. First, preprocess the project
data, remove outliers, and build regression trees to fill in missing attributes in the
data. Second, construct a Autoencoder to reduce the dimensionality of factors
that affect software cost. Subsequently, the performance of the model was
trained and validated using the XGBoost framework on three datasets:
COCOMO81, Albrecht, and Desharnais, and compared with common cost
prediction models. The experimental results show that the MMRE, MdMRE,
and PRED (0.25) values of the proposed model on the COCOMO81 dataset
reached 0.21, 0.16, and 0.71, respectively. Compared with other models, the
proposed model achieved significant improvements in accuracy and robustness.

KEYWORDS

software cost estimation, Autoencoder, random forest, COCOMO,
dimensionality reduction

1 Introduction

In the era of big data, the new paradigm of computer-based platforms and people-
oriented approaches has gradually demonstrated its strong vitality and potential value,
triggering a new form of research on complex system modeling, analysis, control, and
management, which is known as cyber-physical-social systems (CPSSs). One of the
main issues in CPSS research is how to use data as a guide and construct accurate
models to regulate social relationships between people, which is also an important issue
in software engineering research. As a part of software engineering, Software Cost
Estimation (SCE) not only needs to collect and analyze multi-dimensional information
about software development needs, but also needs to consider the team’s collaborative
ability and personnel management costs [1–4]. The predicted results generated through
computer algorithms will provide managers with unprecedented efficient management
capabilities and improve the team’s resource allocation efficiency, building an efficient
communication bridge between engineering development and personnel management,
thus improving the quality of software development and reducing the risk of research

OPEN ACCESS

EDITED BY

Yuanyuan Huang,
Chengdu University of Information Technology,
China

REVIEWED BY

Changxin Bai,
Kettering University, United States
Dekun Hu,
Chengdu University, China

*CORRESPONDENCE

Siyu Zhan,
zhansy@uestc.edu.cn

RECEIVED 20 October 2023
ACCEPTED 26 January 2024
PUBLISHED 12 March 2024

CITATION

Zhang W, Cheng H, Zhan S, Luo M, Wang F and
Huang Z (2024), Dimensionality reduction and
machine learning based model of software
cost estimation.
Front. Phys. 12:1324719.
doi: 10.3389/fphy.2024.1324719

COPYRIGHT

© 2024 Zhang, Cheng, Zhan, Luo, Wang and
Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 12 March 2024
DOI 10.3389/fphy.2024.1324719

https://www.frontiersin.org/articles/10.3389/fphy.2024.1324719/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1324719/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1324719/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1324719&domain=pdf&date_stamp=2024-03-12
mailto:zhansy@uestc.edu.cn
mailto:zhansy@uestc.edu.cn
https://doi.org/10.3389/fphy.2024.1324719
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1324719

and development failure. Therefore, how to accurately predict the
costs of software development has been one of the most
important topics studied in software engineering in recent
years [5, 6].

However, in practical applications, due to the large number
of indicators used for project evaluation and unclear functional
requirements in the early stages of development, managers can
hardly accurately predict the cost of software development in
most cases, resulting in erroneous decisions and unnecessary
losses for the company. In addition, with the continuous
development of software development technology, object-
oriented programming has become the dominant paradigm of
software development. Object-oriented design principles such as
the single responsibility principle, low coupling, and high
cohesion also increase the difficulty of cost estimation [7].
The long development cycle of large-scale software
engineering, the significant differences between different
projects, and the limited availability of previous project data
for cost evaluation hinder the feature learning and data fitting of
the constructed model, further limiting the accuracy of
the results.

In the process of software development, many cost estimation
tasks are completed manually by managers. However, with the
expansion of software engineering, the difficulty of implementing
this method and the accuracy of the results are unsatisfactory.
Therefore, many studies have proposed more automated and
intelligent techniques to complete this task. Esteve and Aparicio
[8] used the ID3 algorithm to generate a large number of decision
trees to classify software modules with high development intensity.
In [9], the author studied the application of fuzzy ID3 decision tree.
This method is designed by combining the concepts of
ID3 algorithm and fuzzy set theory, and uses MMRE and Pred
as the criteria for measuring prediction accuracy. The above
algorithms all use weak classifiers or regressors to generate
prediction models. Although the convergence speed of the
models are fast, due to the large differences in mathematical
features between different projects, the robustness of the models
are poor, making them difficult to obtain reliable prediction results
[10, 11]. While deep learning based methods can explore the
potential correlations between various attributes better, they
require a large amount of data to train the weights of neural
networks. Considering the small size of the dataset used in SCE, the
model obtained by this method cannot converge well, resulting in
low prediction accuracy [12].

To improve the problem of low prediction accuracy and
insufficient model robustness in SCE, this paper proposes a
SCE model based on Autoencoder and Random Forest. By
using neural networks to non-linearly recombine some
attributes, various factors that affect software cost are
comprehensively reflected from different perspectives,
making the new attributes have stronger interpretability and
reduce the losses in the final prediction results due to
deviations in some attribute values. At the same time, using
the Random Forest model to achieve SCE avoids the problem of
low model accuracy caused by insufficient data sets, resulting in
a model with strong generalization and robustness, which can
achieve more reliable prediction results in practical
applications.

2 Theory and methods

2.1 Dimensionality reduction

Usually, several attributes are used to describe different
characteristics of the projects from multiple dimensions in SCE.
Richer dimensional information can more comprehensively
characterize the cost of a project and improve the accuracy of
predictions, but to some extent it also increases the difficulty of
data collection, making the prediction results vulnerable to noise
[13]. In addition, there may be strong correlations among attributes,
resulting in certain attributes affecting the result of prediction
together from a single dimension, reducing the robustness and
interpretability of the model. To solve this problem, we will use
dimensionality reduction method on the original data, reorganizing
some variables with complex relationships into a few comprehensive
factors, so that the recombined factors can reflect the cost of software
development from different perspectives, avoiding the problem of
low model accuracy caused by large estimation bias of
single attribute.

Principal Component Analysis and Factor Analysis methods
have been widely applied in the field of software engineering [14,
15]. However, as linear dimensionality reduction methods, they
often fail to achieve good dimensionality reduction effects in
scenarios where complex data and high data structure
preservation requirements are present. In recent years, with the
widespread application of artificial neural networks in the field of
data dimensionality reduction [16, 17], Autoencoder, as a nonlinear
dimensionality reduction method, can more accurately identify and
reorganize data attributes, fully explore the potential correlations
between data, and has strong anti-interference ability for noise in
data, which is suitable for dimensionality reduction of data in
software engineering [18, 19]. The Autoencoder used for
dimensionality reduction only contains the encoding part, which
consists of an input layer, several hidden layers, and an output layer.
Its structure is shown in Figure 1. In the encoder, input data is passed
through a series of hidden layers for transformation and mapping to
the output layer. Each hidden layer consists of multiple neurons,
each of which is connected to neurons in the previous layer and

FIGURE 1
Structure of the Autoencoder uesd for dimensionality reduction.

Frontiers in Physics frontiersin.org02

Zhang et al. 10.3389/fphy.2024.1324719

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

undergoes nonlinear transformation through an activation function.
The goal of the encoder is to learn an encoding function that maps
input data to a low-dimensional representation in the encoding
layer. This encoding process is usually achieved through
optimization methods such as backpropagation and gradient
descent. By adjusting the network’s weights and biases, the
encoder gradually learns a set of features that can effectively
represent the input data. The training process of Autoencoder
usually uses unsupervised learning methods, which only use the
input data itself without requiring label information. This allows
Autoencoder to be trained on unlabeled data, thereby better
adapting to the complex data distribution in software engineering.

2.2 Random forest model

At present, existing prediction models mainly include methods
based on the function point method and neural network-based
methods. The prediction results of the former are more subjective
and have lower prediction accuracy, because in the early stages of a
project, there is usually only a user requirement document, lacking
a complete software system specification document. Neural
network-based evaluation methods require a large amount of
sample data to train the neural network, but historical SCE data
is often limited, resulting in models that cannot converge to good
results. In addition, the poor interpretability of deep learning
models is not conducive to evaluating the quality and stability
of the model. To achieve the desired prediction accuracy and
convergence speed, we used a Random Forest model to implement
the task. Considering that historical data is often limited in
practical applications, we adopted the XGBoost algorithm
framework to build the model to accelerate the model’s
convergence process.

The XGBoost algorithm [20] uses second-order Taylor
expansion to calculate the loss function, adds a regularization
term to the GBDT objective function, and uses first and second-
order derivatives to approximate the objective function. This
approach simplifies the model and effectively reducing the risk of
overfitting. The objective function of XGBoost consists of two parts:
the loss function and the regularization term:

L ϕ() � ∑n
i�1
l ŷi, yi() +∑K

k�1
Ω fk()

Where i represents the i th sample in the dataset, n is the total
number of samples, and k represents the k th regression tree.
l(ŷi, yi) represents a traditional differentiable convex loss
function, which measures the difference between the true label
and the predicted label. Ω(fk) is a regularization term that helps
smooth learning weights and avoid overfitting the model. Its
calculation formula is as follows:

Ω f() � γT + 1
2
λ w‖ ‖2

γ and λ are the regularization parameters, w is the weight vector of
the leaf node. When the regularization parameter is set to zero, it
becomes a traditional gradient boosting tree.

Since all CART trees are binary trees, the difference between the
objective function and the structural score after branching in the
algorithm can be measured using the following formula:

Gain � 1
2

G2
L

HL + λ
+ G2

R

HR + λ
[− GL + GR()2

HL +HR + λ
] − γ

γ is a punishment item. GL andHL are calculated from the left child
node, GR and HR are calculated from the right child node. (GL +
GR) and (HL +HR) are calculated through intermediate nodes.

As a tree model, XGBoost simplifies the modeling process while
preserving as much original data information as possible. This
algorithm performs well in regression tasks, with higher fitting
accuracy, robustness, and generalization ability than other
traditional machine learning regression algorithms, and is widely
used in data prediction tasks. Therefore, in the practical application
of SCE, even with fewer training samples, a model with high
prediction accuracy can still be obtained from XGBoost algorithm.

3 Model building strategy based
on XGBoost

3.1 Framework of the model

Figure 2 shows the framework of the SCEmodel proposed in this
article, including data preprocessing, XGBoost-based prediction
model training, cost prediction, and prediction result analysis
stages. The specific process is as follows:

FIGURE 2
Framework of our SCE model.

Frontiers in Physics frontiersin.org03

Zhang et al. 10.3389/fphy.2024.1324719

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

1) Project data preprocessing stage. Clean the data, remove
abnormal values from the data, and fill in missing
attributes; The Autoencoder is used to reduce the
dimensionality of the cleaned data and eliminate redundant
information in the dataset. Finally, normalize the data to unify
the dimensions of different features.

2) Model training stage. Use the preprocessed data to train the
XGBoost Random Forest model. After training reaches the
maximum iteration number, the optimal prediction model
is output.

3) Software cost prediction stage. Input the data to be evaluated
into the model to generate the predicted cost value.

4) Prediction result analysis stage. Determine whether the error
of the prediction result is within an acceptable range, convert
the numerical value of the result to different levels, and use the
results in subsequent software development evaluations.

3.2 Data preprocessing

In practical applications, some data attributes used for software
cost evaluation may have missing values or significant deviations
from the true values, which can affect the accuracy of the prediction
results. To solve this problem, we use the box plot method to remove
outliers from the data to avoid the impact of extreme values on the
prediction results. Then for all missing values, we use a linear
regression tree model to fill them in. Specifically, we select an
attribute with missing values as the dependent variable and other
attributes as the independent variables to construct a regression tree
model. We use the constructed regression tree model to predict the
values of missing values, and repeat this step until all missing values
are filled.

Then, the Autoencoder is used to reduce the dimensionality of
the cleaned data. By using neural networks to transform high-
dimensional data into a new low-dimensional coordinate system,
the purpose of eliminating redundant information in the data is
achieved. If the reduced-dimensional data has too many factors, it

will make the model more susceptible to noise and reduce its
robustness. On the other hand, having too few factors will lead
to a low expression rate of the data and prevent the effective
extraction of potential information from the original data.
Therefore, we determined the optimal number of factors based
on the scree plot in factor analysis and the practical significance
of SCE, and the final reduced-dimensional data contained six
dimensions, as shown in Figure 3.

3.3 Model training

After completing data preprocessing, each data sample will
consist of six independent variables and one dependent variable,
which is the actual cost value. Predicting the cost of software is
essentially finding the mapping relationship between independent
variables and dependent variables. To enhance the accuracy and
robustness of the model, we will construct several linear regression
trees and use gbtree as a booster to construct a Random Forest
model. First, shuffle the dataset and split it into a training set and a
testing set. Then, generate the optimal model using the training
dataset. The specific algorithm is shown in Table 1. After generating
the model, the test dataset will be used to evaluate the effectiveness of
the model. By comparing the gap between the true value and the
model’s estimated value, it can be determined whether the model has
overfitting and whether the prediction error is within an
acceptable range.

3.4 Model prediction

After the training of the Random Forest model based on
XGBoost, a mapping relationship between factors that affect
software cost and the value of that is established, thus providing
the ability to assess future software engineering cost. The relevant
attributes of the new software engineering project are passed into the
model, and after data cleaning and filling, dimensionality reduction
and normalization, a column vector with 6 factors is obtained. By
inputting it into the trained Random Forest model, the predicted
cost value can be obtained.

3.5 Result postprocessing

In order to use the obtained prediction results to guide the actual
software development work, we also need to further analyze and
process the results. In practical software development, in order to
reduce the risk of project failure caused by excessive deviation in cost
estimation, it is necessary to further provide a confidence interval for
the prediction results, with a confidence level generally taken as 0.80.
If the confidence interval is too large, it indicates that the reliability
of the results obtained by using this model to predict is poor, and
other methods should be used for prediction. If the confidence
interval size is within a reasonable range, it indicates that the model’s
prediction effect is good. At this point, in order to highlight the
practical significance of the prediction effect, the specific numerical
value can be converted into five levels (very low, low, moderate, high,
very high) to represent different cost extents. Finally, the prediction

FIGURE 3
Scree plot uesd to determine the number of dimensions.

Frontiers in Physics frontiersin.org04

Zhang et al. 10.3389/fphy.2024.1324719

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

results will be handed over to the project managers to guide the
subsequent software development work.

4 Results and analysis

4.1 Dataset introduction and preprocessing

To verify the effectiveness of the model on different datasets, we
will use three different datasets to test the accuracy of the model,
namely, COCOMO81, Albrecht, and Desharnais. The

COCOMO81 dataset [21] is one of the most popular datasets for
SCE, containing data from 63 projects. Each project contains
17 attributes, 15 of which are independent variables and 2 of
which are actual cost sizes. The Albrecht dataset contains data
from 24 projects implemented by the IBM DP Services
organization. These data include the count of four types of
external input/output elements of the entire software application,
the number of Source Lines Of Code (SLOC) including annotations,
and the number of functional points per project; The Desharnais
dataset consists of data from 81 software projects at a Canadian
software company. These 81 projects are subdivided into 46 projects

TABLE 1 Model training algorithm steps based on XGBoost.

Training algorithm for SCE model based on XGBoost

Input Training dataset Φ � (X1 , y1), (X2 , y2), . . . , (Xm , ym){ }.
Initialize weights W, bias b, learning rate lr and hyperparameters such as the number of Random Forest trees
and the maximum depth of each tree

Output The Random Forest model with the best prediction accuracy

Dependency Loss function Loss

while the preset number of iterations has not been reached do
Feed the training dataset into the model and generate output values
Compare the output value with the actual value and calculate the error E;
Calculate the partial derivative of the weight W and bias b for errors respectively
Update weight W and bias b by using the following formula: W → W − lr × ∂E

∂W, b → b − lr × ∂E
∂b

end

Output model

FIGURE 4
Covariance thermogram of various attributes in the COCOMO81 dataset.

Frontiers in Physics frontiersin.org05

Zhang et al. 10.3389/fphy.2024.1324719

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

in traditional environments, 25 projects that “improve” traditional
environments, and 10 projects in micro-environments based on
their technical environments. It is one of the most classic datasets
that can be used for SCE.

The preprocessing of the three datasets includes outlier removal,
missing value filling, data dimensionality reduction, and
normalization. After analysis using the box plot method,
7 attribute values from COCOMO81, 3 attribute values from
Albrecht, and 4 attribute values from Desharnais were
eliminated. Then, linear regression tree models were built on the
three datasets to predict the removed outliers and original missing
values. Then, a correlation analysis was conducted on the datasets, as
shown in Figure 4. There was a strong data correlation between the
attributes of the three datasets, making it suitable for using
Autoencoder for data dimensionality reduction. The hidden layer
of the Autoencoder contains three fully connected layers. The first
layer contains 20 neurons, the second layer contains 30 neurons, and
the third layer contains 10 neurons. The activation function after
each layer uses ReLu, and the output layer contains 6 neurons,
meaning that the output data contains six dimensions. Finally, the
dimension-reduced data is normalized using the Sigmoid function.

4.2 Model training

To ensure that the model can fully converge, we divide the
dataset into a training set and a testing set, with the training set
accounting for 90% and the testing set accounting for 10%. For the
training set data, we use the XGBoost distributed gradient boosting
framework to train the model. In order to determine the parameters
that can generate the best Random Forest, this experiment uses the
method of adjusting hyperparameters rather than theoretical
analysis. During the hyperparameter tuning process, different
parameter value combinations are used to establish Random
Forest models. Then, the parameters that generate the best
predictive model are considered to be the most appropriate

hyperparameters for that model. The hyperparameters obtained
for each model are shown in Table 2.

4.3 Evaluation criteria in SCE

This article will use three indicators, MMRE, MdMRE, and
PRED to evaluate the model [22]. The calculation methods and their
meanings of each indicator are shown in Table 3, all of which are
based on the Magnitude of Relative Error (MRE):

MRE � act − est| |
act

Where act represents the actual software cost and est represents
the software cost predicted by the model.

4.4 Evaluation and discussion

The performance of the model trained by using the Autoencoder
and Random Forest methods on the three test sets is shown in
Table 4. As can be seen from the results, the difference between the
MMRE and MdMRE indicators for different data sets is quite small,
indicating that the prediction results are relatively stable, with no
individual prediction result showing significant deviation from the
true values. Although Albrecht’s training set only contains
21 training samples, the model still has high prediction accuracy
on this dataset, which also indicates that the random forest model
has a high convergence rate and can obtain accurate prediction
results when there is insufficient historical software evaluation data.
The performance of the model on the Desharnais dataset is lower
than the previous two models, mainly due to the presence of some
missing values in the data. The attributes after filling in the data
using regression trees still have some differences from the true
values, which reduces the accuracy of the model prediction to
some extent.

TABLE 2 Performance of the model on different datasets.

Dataset Maximum depth Tree number Learning rate

COCOMO81 8 10 0.1

Albrecht 8 6 0.1

Desharnais 7 5 0.1

TABLE 3 Model evaluation indicators and their meanings.

Evaluation Criteria Description

MMRE � 1
n∑

n

i�1
MREi

Mean MRE (Mean MRE, MMRE) is one of the most commonly used model prediction criteria

MdMRE � Median(MRE) Median MRE (Median MRE, MdMRE) is often used in conjunction with MMRE to measure the
degree of dispersion of prediction results. MdMRE is not sensitive to outliers and can more
accurately reflect the overall distribution of data

PRED x() � 1
n × ∑n

i�1

1,MREi ≤ x
0, otherwise

{ Where n denotes the total number of projects and k denotes the number of projects whose MRE is
less than or equal to x. normally, x is set to be 0.25

Frontiers in Physics frontiersin.org06

Zhang et al. 10.3389/fphy.2024.1324719

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

The prediction results on three datasets show that the SCE
method using a combination of Autoencoder and Random Forest
has strong generalization ability, and can still better fit the results in
different engineering projects. The Autoencoder can identify a small
number of independent common factors that govern the
relationships between multiple attributes, and predict the state of
the common factors by establishing a quantitative relationship
between the common factors and the original variables. This can
help discover some objective regularity between different software
engineering projects, and thus abstract a common model for
evaluating the size of software costs. At the same time, the
Random Forest composed of several regression trees can clearly
demonstrate the process of model prediction, as shown in Figure 5,
which enhances the interpretability of the model and provides a
reliable basis for subsequent management to analyze project costs.

To further compare the performance differences of different
SCEmodels, Table 5 lists the performance of the three models on the
COCOMO81 dataset. As can be seen from the table, deep learning-
based algorithms such as HACO-BA performed poorly, mainly due
to insufficient training data sets resulting in underfitting of the
model. Compared to other algorithms, the model proposed in this
article has a lower MdMRE value and a higher PRED value,

indicating that the model has good consistency in prediction
results across different project data, stable model performance,
and high prediction accuracy. The cost evaluation in practical
software engineering is mainly aimed at reducing development
risks and promoting the rational allocation of resources, so the
robustness of the prediction model is even more important.
Comprehensively evaluated by various indicators, the model
proposed in this article based on Autoencoder and Random
Forest has better performance.

In subsequent engineering analysis, factor analysis methods can
be used to draw radar charts to further analyze the factors that affect
the size of software cost, and rational allocation of resources can be
used to make up for development shortcomings, thereby
accelerating the software development process. We combine the
scree plot method and practical significance of SCE to
comprehensively determine the optimal number of factors. When
the number of factors is 6, the eigenvalue of the matrix reaches the
inflection point, and the expression rate of these factors reaches 81%.
Therefore, the number of factors after dimensionality reduction is
determined to be 6. By looking at the contribution rates of the
original attributes to each factor, we named the six factors according
to their practical significance. The radar chart of common factors

TABLE 4 Performance of the model on different datasets.

Dataset MMRE MdMRE PRED(0.25)

COCOMO81 0.21 0.16 0.71

Albrecht 0.37 0.36 0.33

Desharnais 0.38 0.37 0.22

FIGURE 5
Visualization of decision tree prediction process.

TABLE 5 Performance of different models on the COCOMO81 dataset.

Model MMRE MdMRE PRED(0.25)

HACO-BA 3.47 4.47 0.06

PSO-FLANN 0.38 0.33 0.43

Ours 0.21 0.16 0.71

Frontiers in Physics frontiersin.org07

Zhang et al. 10.3389/fphy.2024.1324719

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

after dimensionality reduction of a data sample is shown in Figure 6.
It can be seen from the figure that the development environment of
the project is relatively simple, and the R&D personnel have strong
abilities. However, the software performance requirements and data
scale are high, and the team’s collaboration ability is poor. Team
managers should strengthen team communication and
collaboration, and focus on algorithm design to reduce the spatial
and temporal complexity of software, thereby achieving a
multiplier effect.

5 Conclusion

In order to adapt to the issue of comprehensive processing of
social information and use it to improve production efficiency in
CPSS, this paper proposes a novel SCE model based on
Autoencoders and Random Forest, and evaluates its feasibility
and performance through theoretical and experimental analysis.
This article first introduces the improvement of Autoencoder and
Random Forest algorithms on model accuracy and robustness, and
analyzes the advantages of these two methods compared to
traditional methods and neural network algorithms. Then, the
overall framework and algorithm flow of the model are
introduced, which are divided into four stages: data
preprocessing, model training, cost prediction and result analysis.
Finally, the performance of the model on three datasets,
COCOMO81, Albrecht, and Desharnais, is introduced, and it is
compared with common SCE algorithms to analyze the advantages
and disadvantages of different algorithms. Compared with other
algorithms, the proposed algorithm model has better accuracy and
astringency, and can better complete the cost prediction task in
practical software engineering.

At present, there is still much room for improvement in the
evaluation models based on Autoencoder and Random Forest, such
as low accuracy on datasets with ordinal attributes and significant
influence by dataset on model accuracy. Future work should focus

more on data processing and data imbalance issues to further
improve the performance of the model.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

WZ: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Writing–original draft. HC:
Funding acquisition, Resources, Supervision, Writing–review and
editing. SZ: Data curation, Writing–review and editing. ML: Formal
Analysis, Writing–review and editing. FW: Software,
Writing–review and editing. ZH: Funding acquisition,
Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study is
supported by Sichuan Science and Technology Program (NO.
2022YFG0176), and Fundamental Research Funds for the Central
Universities (No. ZYGX2021YGLH211).

Conflict of interest

Authors WZ, ML, FW and ZH were employed by PetroChina
Southwest Oil and Gasfield Company.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphy.2024.1324719/
full#supplementary-material

FIGURE 6
Radar chart of common factors for a project.

Frontiers in Physics frontiersin.org08

Zhang et al. 10.3389/fphy.2024.1324719

https://www.frontiersin.org/articles/10.3389/fphy.2024.1324719/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2024.1324719/full#supplementary-material
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

References

1. Keung J. Software development cost estimation using analogy: a review. In:
2009 Australian Software Engineering Conference; 14-17 April 2009; Gold Cost,
Australia (2009). doi:10.1109/ASWEC.2009.32

2. Chirra SMR, Reza H. A survey on software cost estimation techniques. J Softw Eng
Appl (2019) 12(06):226–48. doi:10.4236/jsea.2019.126014

3. Saleem MA, Ahmad R, Alyas T, Idrees M, Farooq A Systematic literature review of
identifying issues in software cost estimation techniques. Int J Adv Comp Sci Appl (2019)
10(8):10. doi:10.14569/ijacsa.2019.0100844

4. Jorgensen M, Shepperd M. A systematic review of software development cost
estimation studies. IEEE Trans Softw Eng (2007) 33(1):33–53. doi:10.1109/TSE.2007.
256943

5. Latif AM, Khan KM, Duc AN. Software cost estimation and capability maturity
model in context of global software engineering. IGI Global (2022). 910–928. doi:10.
4018/978-1-6684-3702-5.ch045

6. Martinez-Fernandez S, Bogner J, Franch X, Oriol M, Siebert J, Trendowicz A, et al.
Software engineering for ai-based systems: a survey. ACM Trans Softw Eng Methodol
(2022) 31(2):1–59. doi:10.1145/3487043

7. Tomasevic N, Gvozdenovic N, Vranes S. An overview and comparison of
supervised data mining techniques for student exam performance prediction.
Comput Edu (2020) 143:103676. doi:10.1016/j.compedu.2019.103676

8. Esteve M, Aparicio J, Rabasa A, Rodriguez-Sala JJ. Efficiency analysis trees: a new
methodology for estimating production Frontiers through decision trees. Expert Syst
Appl (2020) 162:113783. doi:10.1016/j.eswa.2020.113783

9. Elyassami S, Idri A. Applying fuzzy Id3 decision tree for software effort estimation
(2011). Available at: https://arxiv.org/abs/1111.0158 (Accessed October 1, 2023).

10. Asheeri MMA, Hammad M. Machine learning models for software cost
estimation. In: 2019 International Conference on Innovation and Intelligence for
Informatics, Computing, and Technologies (3ICT); 2019 22-23 September; Bahrain
(2019). doi:10.1109/3ICT.2019.8910327

11. abdelali Z, Mustapha H, Abdelwahed N. Investigating the use of random forest in
software effort estimation. Proced Comp Sci (2019) 148:343–52. doi:10.1016/j.procs.
2019.01.042

12. Priya Varshini AG, Anitha Kumari K, Janani D, Soundariya S. Comparative analysis of
machine learning and deep learning algorithms for software effort estimation. J Phys Conf Ser
(2021) 1767(1):012019. doi:10.1088/1742-6596/1767/1/012019

13. Grattarola D, Alippi C. Graph neural networks in tensorflow and keras with
spektral [application notes]. IEEE Comput Intelligence Mag (2021) 16(1):99–106. doi:10.
1109/mci.2020.3039072

14. Prabha CL, Shivakumar N. Software defect prediction using machine learning
techniques. In: 2020 4th International Conference on Trends in Electronics and
Informatics (ICOEI)(48184); 15-17 June 2020; Tirunelveli, India (2020). doi:10.
1109/ICOEI48184.2020.9142909

15. Sharma D, Chandra P. Identification of latent variables using, factor analysis and
multiple linear regression for software fault prediction. Int J Syst Assur Eng Manag
(2019) 10(6):1453–73. doi:10.1007/s13198-019-00896-5

16. Hamada MA, Abdallah A, Kasem M, Abokhalil M. Neural network estimation
model to optimize timing and schedule of software projects. In: 2021 IEEE International
Conference on Smart Information Systems and Technologies (SIST); 2021 28-30 April
(2021). doi:10.1109/SIST50301.2021.9465887

17. Heiat A. Comparison of artificial neural network and regression models for
estimating software development effort. Inf Softw Tech (2002) 44(15):911–22. doi:10.
1016/s0950-5849(02)00128-3

18. Xie W, Liu B, Li Y, Lei J, Du Q. Autoencoder and adversarial-learning-based
semisupervised background estimation for hyperspectral anomaly detection. IEEE
Trans Geosci Remote Sensing (2020) 58(8):5416–27. doi:10.1109/tgrs.2020.
2965995

19. Yu W, Kim IIY, Mechefske C. Remaining useful life estimation using a
bidirectional recurrent neural network based autoencoder scheme. Mech Syst Signal
Process (2019) 129:764–80. doi:10.1016/j.ymssp.2019.05.005

20. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining; San Francisco, California, USA: Association for ComputingMachinery; August
13 - 17, 2016; San Francisco, California, USA (2016). p. 785–94. doi:10.1145/2939672.
2939785

21. Musilek P, Pedrycz W, Nan S, Succi G. On the sensitivity of cocomo ii
software cost estimation model. In: Proceedings Eighth IEEE Symposium on
Software Metrics; 2002; 4-7 June 2002; Ottawa, Canada (2002). doi:10.1109/
METRIC.2002.1011321

22. Sahin CB. The role of vulnerable software metrics on software maintainability
prediction. Avrupa Bilim ve Teknoloji Dergisi (2021)(23) 686–96. doi:10.31590/
ejosat.858720

Frontiers in Physics frontiersin.org09

Zhang et al. 10.3389/fphy.2024.1324719

https://doi.org/10.1109/ASWEC.2009.32
https://doi.org/10.4236/jsea.2019.126014
https://doi.org/10.14569/ijacsa.2019.0100844
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.4018/978-1-6684-3702-5.ch045
https://doi.org/10.4018/978-1-6684-3702-5.ch045
https://doi.org/10.1145/3487043
https://doi.org/10.1016/j.compedu.2019.103676
https://doi.org/10.1016/j.eswa.2020.113783
https://arxiv.org/abs/1111.0158
https://doi.org/10.1109/3ICT.2019.8910327
https://doi.org/10.1016/j.procs.2019.01.042
https://doi.org/10.1016/j.procs.2019.01.042
https://doi.org/10.1088/1742-6596/1767/1/012019
https://doi.org/10.1109/mci.2020.3039072
https://doi.org/10.1109/mci.2020.3039072
https://doi.org/10.1109/ICOEI48184.2020.9142909
https://doi.org/10.1109/ICOEI48184.2020.9142909
https://doi.org/10.1007/s13198-019-00896-5
https://doi.org/10.1109/SIST50301.2021.9465887
https://doi.org/10.1016/s0950-5849(02)00128-3
https://doi.org/10.1016/s0950-5849(02)00128-3
https://doi.org/10.1109/tgrs.2020.2965995
https://doi.org/10.1109/tgrs.2020.2965995
https://doi.org/10.1016/j.ymssp.2019.05.005
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/METRIC.2002.1011321
https://doi.org/10.1109/METRIC.2002.1011321
https://doi.org/10.31590/ejosat.858720
https://doi.org/10.31590/ejosat.858720
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1324719

	Dimensionality reduction and machine learning based model of software cost estimation
	1 Introduction
	2 Theory and methods
	2.1 Dimensionality reduction
	2.2 Random forest model

	3 Model building strategy based on XGBoost
	3.1 Framework of the model
	3.2 Data preprocessing
	3.3 Model training
	3.4 Model prediction
	3.5 Result postprocessing

	4 Results and analysis
	4.1 Dataset introduction and preprocessing
	4.2 Model training
	4.3 Evaluation criteria in SCE
	4.4 Evaluation and discussion

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

