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Since the model parameters of the shaking table exist in a non-linear form, this
leads to distortion of the reproduced waveforms and can even lead to bias in the
ground vibration test results. Therefore, the selection of the controller is particularly
critical. Multi-variable (MVC) controllers are often used in shaking table control, to
improve the control effect of MVC controllers. In this paper, a multi-parametric
(BP-MVC) controller based on BP neural network is proposed. The BP neural
network is applied to the multi-parameter (MVC) controller to identify the shaking
tablemodel, adjust the parameters in real-time, accelerate the convergence speed,
and reduce the system error. The simulation results show that the correlation
coefficient (CC) of the BP-MVC controller is greater than 0.985, and the root-
mean-square error (RMSE) and mean absolute error (MAE) are less than 0.04 and
0.25, respectively, in a nonlinear, time-varying hydraulic system. This suggests that
the BP-MVC controller has a better control performance and parameter adaptivity,
which can provide a reference for the subsequent ground vibration tests.
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1 Introduction

The reproduction of seismic waves is of great importance for the study of structural
seismicity [1]. In shaking table tests, the input signal reflected on the table surface often
deviates significantly from the initial input signal, and comparing the structural response to
the input signal at this point often leads to larger test deviations [2]. Even if the sensors are
arranged on the table, there are many problems with the cost of the sensors, the way they are
arranged, and their accuracy and real-time performance [3]. At present, the three-
parameter control algorithm is the basic algorithm of the most seismically simulated.
However, the shaking table system has complex nonlinearity [4], and the three-parameter
base control algorithm has some limitations, which leads to the distortion degree of seismic
simulation shaking table waveform. These instructions show that the control effect is not
satisfactory and cannot meet the needs of experimental use. Several experts in the field have
conducted extensive research and made enhancements to the three-parameter control
algorithm of the shaking table. Their rigorous investigations have resulted in significant
improvements to the algorithm, thereby making it more efficient and effective in practice.
The control algorithm of a vibrating table with three parameters has been researched by
Luan Q et al. [5] In the feedback gains, the control of velocity parameter increases the overall
frequency range used in the system, the control of the displacement parameter helps to
regulate the frequency response property of the system, and the acceleration parameter
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control helps to lower the resonant frequency of the oil column in
the system. A control technique based on velocity-positive feedback
that enhances system performance and lessens acceleration
waveform distortion was proposed by Cui W et al. [6] To
enhance the control effectiveness of the shaking table system, Li
X et al. [7] devised acceleration control based on three-parameter
power. However, the waveform tracking accuracy of the shaking
table needs to be improved under the control of theoretical
parameters. Domestic and foreign stakeholders introduce
intelligent control algorithms to optimize the parameter setting
to improve the shaking table’s waveform reproduction accuracy.
Ji J et al. [8] presented an expert-experience-based algorithm to self-
tune shaking table parameters, which enhanced the system’s
frequency domain performance and improved shaking table
waveform reproduction accuracy. Based on three-parameter
control, Gao C et al. [9] proposed to use a particle swarm
optimization algorithm to adjust shaking table parameters,
effectively improving the waveform reproduction accuracy of the
shaking table. Yu S et al. [10] used BP neural network to optimize the
shaking table control instructions, effectively improving the shaking
table’s amplitude and displacement deviation. Mu H et al. [11]
adopted the algorithm combining coupling control and BP-PID
controller to improve the synchronization and robustness of dual
hydraulic cylinders. Zhang F et al. [12] adopted a high-precision
online iterative control algorithm to effectively improve the tracking
accuracy of shaking table waveform. The performance and utility of
a deep learning controller built on an LSTM (Long Short Term
Memory) Network were proven by Ji J et al. [13] Liu H et al. [14]
used BP neural network to optimize and adjust the PID control
parameters online, which has a simple structure, faster response, and
stronger anti-interference. Xie L et al. [15] proposed a BP neural
network to identify relevant parameters of fractional PIλDμ

controller, improving the system’s overall control accuracy. BP
neural network has a strong ability for nonlinear mapping, self-
learning, self-organization, and self-adaptation.

Based on the above analysis, this paper introduces BP neural
network based on multi-parameter control of the shaking table to
optimize the multi-parameter parameters, designs a multi-
parameter control model of the shaking table based on the BP
neural network, and demonstrates the feasibility and research value
of the algorithm from theoretical analysis and experimental
simulation.

2 Multi—parameter control of shaking
table for seismic simulation

The shaking table used for electro-hydraulic servo seismic
simulation consists of four main components: the table and
supporting guide system, actuator system, control system, and
hydraulic source system [16]. The three-parameter control
algorithm mainly consists of feedforward control and feedback
control, and its schematic diagram is shown in Figure 1. By
introducing the displacement feedback gain Adf , the velocity
feedback gain Avf and the acceleration feedback gain Aaf , the
three-parameter feedback control improves the frequency
response characteristics of the system on the premise of
maintaining the stability of the system and realizes the purpose
of broadening the service bandwidth of the shaking table system [7].
By adjusting the poles of the servo control system to remove the ones
near the virtual axis of the closed-loop transfer function, the three-
parameter feedforward control can enhance the operating
bandwidth of the system.

The three-continuity equation of the hydraulic system of the
shaking table for earthquake simulation is shown in Eq. 1.

Ms2x � AppL

QL � Apsx + V

4β
spL + CcpL

QL � KqE +KcpL

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

FIGURE 1
Schematic diagram of three-variable control.
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Where M is the total mass of the table; x is the spool
displacement of the spool valve; Ap is the effective working area
of the piston; pL is the load pressure; V is the total volume of
hydraulic cylinder; β is the bulk elastic modulus of oil; Cc is the total
leakage coefficient of hydraulic cylinder; Kq is the flow rate gain of
the servo valve; E is the control error signal; Kc is the flow pressure
coefficient near the static operating point of the spool valve.

Eq. 2 depicts the transfer function that corresponds to the
shaking table system’s open-loop transfer function diagram,
obtained from Eq. 1.

x

E
� kq
Aps

1
s2

n20
+ 2D0s

n0
+ 1

(2)

where,

n20 �
4βA2

p

MV

2D0

n0
� M Kc + Cc( )

A2
p

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

Where n0 is the resonant frequency of the oil column of the
shaking table hydraulic system; D0 is the damping ratio of the
shaking table hydraulic system.

Introducing acceleration, velocity, and displacement feedback
into the shaking table’s open-loop system generates the block
diagram of the system transfer function, as depicted in Figure 2.

Equation 4 represents the closed-loop transfer function of the
shaking table’s three-parameter system transfer function diagram.

x

u
� 1

Kd0A′
dGa

1

1
k′vGqGa

s3

n20
+ 2D0s

n0
+ s( ) + Ka0A′

a

Kd0A
′
d

s2 + Kv0A′
v

Kd0A
′
d

s + 1
(4)

Where u is the driving signal; Kd0, Kv0, Ka0 are the feedback
normalized sensitivity coefficients; Ad′, Av′, Aa′ are the feedback
gains; Ga is the transfer function considering the influence of sensor.
Gq is the transfer function considering the influence of the servo
valve. where,

Ga � 1

s2

n2a
+ 2Das

na
+ 1

Gq � 1

s2

n2q
+ 2Dqs

nq
+ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Where, na, nq is the intrinsic frequency of the second-order
system; Da, Dq is the intrinsic damping ratio of the second-
order system.

Similarly, when Jerk, acceleration, velocity, and displacement
feedback are introduced into the shaking table open-loop system, the
transfer function block diagram can be obtained as shown in
Figure 3. LI Xiaojun et al. [7] In order to expand the effective
frequency bandwidth and reduce the resonance frequency of the
oil column to achieve the purpose of enhancing the frequency
response characteristics of the shaking table. Figure 1 depicts the
schematic structure of the multi-variate controller (MVC). In the
figure, on the basis of the three-parameter controller (TVC), the

FIGURE 2
Diagram of the three-parameter closed-loop control system transfer function.

FIGURE 3
Diagram of multi-variable control system transfer function.
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red part represents the feed-forward and feedback links with the
introduction of Jerk (acceleration derivative). In the parameter
gain selection, manual adjustment of parameters is chosen, which
leads to a long time consuming to rectify the parameters.

Extending Figure 2, a block diagram of the transfer function of
the multi-variate controller (MVC) can be obtained, as shown in.

The system’s corresponding transfer function diagram under the
shaking table’s multi-variate control is shown in Eq. 6.

x

u
� 1

Kd0A′
dGa

1

1
k′vGqGa

s3

n20
+ 2D0s

n0
+ s( ) + Kj0A′

j

Kj0A′
d

s3 + Ka0A′
a

Kd0A
′
d

s2 + Kv0A′
v

Kd0A
′
d

s + 1( )
(6)

Where Kj0 is the jerk feedback normalized sensitivity; A′
j is the

jerk feedback gain.
The three-variable controller (TVC) and the multi-variable

controller (MVC) are analyzed in the frequency domain to
obtain Figure 4.

In Figure 4, the effective frequency bandwidth of the system is
between 2.85 Hz and 8.39 Hz when the theoretical parameters are
used for the three-variable controller (TVC); the peak of the oil
column resonance peak is 19.46 dB at a frequency of 40.25 Hz.
While the effective bandwidth of the system is in the range of
1.84 Hz–9.66 Hz when the theoretical parameter control is used in
the multi-parameter controller; the peak value of the oil column
resonance peak is 11.93 dB when the frequency is 44.00 Hz. It is
obvious that, using the theoretical parameters at the same time, the
multi-variable controller (MVC) has a better ability to expand the
frequency bandwidth than the three-variable controller (TVC),
which delays the position where the oil column resonance
appears and reduces the peak of the oil column resonance peak.

The study presented in Figure 4 demonstrates that when subjected
to theoretical parameter values controlled by several parameters, the

resonant frequency of the oil column in the system drops.
Additionally, the adequate service bandwidth of the system grows
while the resonant peak diminishes. Nevertheless, the resonant peak
remains, rendering it inadequate to fulfill the project’s application
prerequisites. The present study uses Matlab/Simulink to simulate the
shaking table system. The analysis focuses on the implementation of
multi-parameter control techniques.

3 Simulation analysis of shaking table
under multi-parameter control

The seismic simulation shaking table at Xinyang Normal
University was selected as the subject of investigation. The input
signals are selected as sine signals, EI-Centro waves, Kobe waves and
artificial waves, taking EI-Centro waves as an example. To construct
the simulation model of the seismic simulation shaking table,
Matlab/Simulink was employed. Subsequently, a thorough analysis
was conducted on the simulation results. Table 1 displays the pertinent
performance metrics associated with the shaking table. The Matlab/
Simulink model of the shaking table is constructed using three-
parameter and multi-parameter theoretical parameters for control
purposes. Subsequently, separate simulation analyses are conducted.

The reference signal is set as a displacement sinusoidal signal
with amplitude of 0.01 m and frequency of 1 Hz, and the
simulation results are shown in Figure 5. The correlation
coefficient (CC), root mean square error (RMSE) and mean
absolute error (MAE) [17–19] of the tracked signals are
summarized in Supplementary Table S1. The results in Figure 5
show that the waveforms of acceleration, velocity, and
displacement tracking signals under MVC control are more
similar with smaller root mean square error (RMSE) and mean
absolute error (MAE) compared to those under TVC control.

FIGURE 4
Frequency response characteristic curve of the system under TVC control and MVC control.
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Taking the EI-Centro wave as an example, the shaking table
model is built on MatLab/Simulink under the control of TVC
theoretical parameters and analyzed by time domain simulation.
The simulation results are presented in Figure 6, which depicts the
time domain, and Figure 7, which illustrates the frequency domain.

According to the analysis in Figure 6, under the control of the
three-parameter theoretical parameter values of the shaking table,
the system input and output waveform reproduction accurateness is
low, with the calculated CC of 0.6879, the RMSE of 0.464, and the
MAE of 0.2971. The results in Figure 7 show that within 0~5 Hz, the
acceleration Fourier amplitude spectrum does not match with the
expected value and the amplitude error is large; within 5–10 Hz, the

acceleration Fourier amplitude spectrum basically matches with the
expected value.

Likewise, the shaking table model is analyzed by time-domain
simulation under the control of MVC theoretical parameters using
the EI-Centro wave as an example. The simulation results in the time
domain are presented in Figure 8, while the simulation results in the
frequency domain are displayed in Figure 9.

According to the analysis of Figure 8, under the control of MVC
theoretical parameters, the CC of the shape of the shaker
acceleration response wave is 0.7011, the RMSE is 0.3869, and
the MAE is 0.2789. The results in Figure 9 show that the
acceleration Fourier amplitude spectrum still does not match the

TABLE 1 The parameters of the shaking table.

Name Technical parameters Name Technical parameters

table size 3 m × 3 m Effective working area of piston 0.0161 m2

Surface dead weight 4000 kg Bulk elastic modulus of oil 6.900×10−8 N/m2

Maximum load 10 T Spool valve flow gain 0.012461

maximum displacement ±125 mm Servo valve flow pressure coefficient 2.500 × 10−11

maximum speed 0.7 m/s Damping ratio of servo valve 0.7

maximum acceleration 15 m/s2 Sensor damping ratio 0.7

frequency domain 0.1~50 Hz Servo valve frequency 150 Hz

Full volume equivalent cylinder 4.776 × 10−3 m3 Sensor frequency 200 HZ

FIGURE 5
Time domain simulation results for sinusoidal signals.
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expected value within 0~5 Hz, but the amplitude is reduced. The
analysis may be caused by reducing the resonance frequency of the
system oil column, which is consistent with the results of Figure 4.

The shaking table response characteristics under TVC control
and MAC control are summarized in Supplementary Table S2 using
three seismic waves as input signals. Compared to the theoretical
parametric control of the shaker TVC, the results were not
satisfactory, although a small increase in CC and a decrease in
RMSE and MAE were achieved with the theoretical parametric
control of the MVC.

In order to more visually show the difference between the input
signals and the response of the table, three seismic wave signals were
used as input signals and compared to the data collected by the
accelerometers on the table. It is important to note that this test uses
a three-parameter controller (TVC), which provides a side-by-side
view of the control of the shaking table. Figure 10 reflects the real
relationship between the initial input signals and the table response.
Table 1 summarizes the evaluation metrics for the initial signal and
table response, including correlation coefficient (CC), root mean
square error (RMSE), and mean absolute error (MAE).

FIGURE 6
Time domain results of the three-variable control (TVC) system simulation.

FIGURE 7
Frequency-domain results of three-variable control (TVC) system simulation.
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In shaking table tests, the larger the peak acceleration input
signal, the larger the correlation coefficient (CC) of the table
response, but the same leads to an increase in the root-mean-
square error (RMSE) and mean absolute error (MAE). The
increase in RMSE and MAE is within acceptable limits with
respect to the choice of TVC or MVC controller. In the case of
the EI Centro wave, for example, the mean value of the correlation
coefficient (CC) of the true values of the table response is 0.6155,
which is similar to the modeled values in Supplementary Table S2,
with a relative error of 11.8%; the root-mean-square error (RMSE)

and the mean absolute error (MAE) vary considerably, with an
order-of-magnitude difference of 1 between the true values and the
modeled values.

In summary, the MVC controller performs better than the
TVC controller. In order to improve the system frequency
response characteristics and waveform reproduction accuracy
of the shaking table. For this purpose, a BP neural network is
used in the following to form a new controller BP-MVC
controller in combination with a multi-variable
controller (MVC).

FIGURE 8
Frequency-domain results of multi-variable control (MVC) system simulation.

FIGURE 9
Frequency-domain results of multi-variable control (MVC) system simulation.
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4 Multi—parameter identification of
shaking table based on BP network

4.1 Construction of BP neural network

BP (Back Propagation) neural network is a one-way multi-
layer feedforward neural network using an error back
propagation training procedure, often consisting of the input,
hidden, and output layers [20]. The fundamental learning
principle employed by the BP algorithm is the method of
gradient descent, which aims to maximize the decrease of the
gradient. The backpropagation process involves iteratively
adjusting the weights and thresholds of a neural network to
reduce the sum of squared errors between the network’s
predicted output and the desired output.

The input layer of the neural network consisted of eight
parameters associated with the shaking table. The nodes in the
hidden layer were determined based on Eq. 7 [21]. The
researchers discovered that the most effective configuration for
the hidden layer consisted of five nodes [22]. They then utilized
the measured values of the identified signals as the output layer to
develop a neural network model with a network structure of
3–5–8 Figure 11 illustrates a schematic of the flow of the BP
neural network.

i �
����
j + k

√
+ a (7)

Let j represent the cardinality of nodes in the input layer, k
denote the cardinality of nodes in the output layer, and a symbolize a
constant ranging from 0 to 10.

FIGURE 10
Initial Input Signal vs. Test Bench Response.

FIGURE 11
Schematic diagram of BP neural network system structure [20].
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Equation 8 depicts the input-output formula of the input layer in
the backpropagation neural network.

O 1( )
j � x j( ), j � 1, 2...M (8)

Where Oj
(1) is the input of the jth node of the input layer, j is the

node number of the input layer, and M is the number of input
variables, which depends on the complexity of the vibration table
control system. In this paper, M = 3.

The input and output of the hidden layer of the neural network
are shown in Eq. 9.

net 2( )
i k( ) � ∑M

j�1
w 2( )

ij O 1( )
j

O 2( )
i k( ) � f net 2( )

i k( )( ), i � 1, 2, ..., Q

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (9)

Where neti
(2) is the input of the ith node of the hidden layer; i is

the number of the neuron node of the hidden layer; wij
(2) is the

connection weight between the neuron j of the input layer and the
neuron i of the hidden layer; Oi

(2) is the output of the ith node of the
neuron of the hidden layer; f (·) is the activation function of the
hidden layer. The activation function of hidden layer neurons is the
Sigmoid function, as shown in Eq. 10.

f x( ) � ex − e−x

ex + e−x
(10)

The input and output of the network output layer are shown in
Eq. 11.

net 3( )
k k( ) � ∑Q

i�1
w 3( )

ij O 2( )
i k( )

O 3( )
i k( ) � g net 3( )

i k( )[ ]
O 3( )

1 k( ) � y

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(11)

Where netk
(3) is the input of the kth node of the output layer, k is

the number of nodes of the output layer,Ok
(3) is the output of the kth

node of the neuron of the output layer, and g (·) is the activation
function of the output layer.

The output layer corresponds to the signal generated by the
system identification model of the shaking table in response to input
stimuli. The activation function employed in the output layer is
linear, specifically referred to as Purelin, as depicted in Eq. 12.

g x( ) � x (12)

Take the performance index and error functions as shown in
Eq. 13.

J k( ) � 1
2
rin k( ) − yout k( )( )2

Error k( ) � rin k( ) − yout k( )

⎧⎪⎨⎪⎩ (13)

Where rin (k) is the reference input at the current moment; yout
(k) is the output of the current system time.

Calculate the control quantity u (k), as shown in Eq. 14.

u k( ) � Aa · w11 + Av · w12 + Ad · w13 + Aj · w14 + Aaf · w15
+ Avf · w16 + Adf · w17 + Ajf · w18

(14)

Adjust the weight coefficient of the network according to the
method of the fastest gradient descent. In order to achieve
progressive convergence, it is necessary to make adjustments in
the opposite direction of the gradient change of the J (k) function.
The formula for correcting the weight coefficient of each neuron in
the output layer is presented in Eq. 15.

Δωki � −η ∂J k( )
∂ωki

� ηδ 3( )
k k( )O 2( )

i k( )

δ 3( )
k k( ) � − ∂J k( )

∂net 3( )
k k( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(15)

Where η is the learning rate, η > 0; Δw is the weight adjustment,
and δk is the local gradient.

Equation 16 provides the adjusted formula for the weight
coefficient of each neuron in the hidden layer, as derived from
the gradient approach.

Δωij � −η ∂J k( )
∂ωij

� ηδ 3( )
i k( )O 2( )

j k( )

δ 2( )
i k( ) � − ∂J k( )

∂net 2( )
j k( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(16)

The weight correction formula for the hidden and output layers
is depicted in Eq. 17.

w k( ) � w k − 1( ) + Δw k( ) (17)

4.2 Multi—parameter identification of
shaking table based on BP network

Figure 12 illustrates the structural model of the multi-parameter
parameter identification system for seismic simulation shaking
tables, which is based on the BP neural network.

The algorithmic process for seismic simulation using a shaking
table and a BP neural network is outlined as follows [23–25]:

(1) Initialize, determine the network topology structure of the BP
neural network, give all the weighted coefficients and
thresholds, and select the learning rate.

(2) The input and output of neurons in each neural network layer
are determined. The eight input parameters areAa,Av,Ad,Aj,
Aaf , Avf , Adf , and Ajf .

FIGURE 12
Schematic diagram of system structure.
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(3) The input and output of neurons at each layer of the
fundamental neural network are calculated. The output is a
parameter, that is, the output signal of the shaking table
identification system.

(4) Online learning of neural network, online weight adjustment,
and finally achieving Aa, Av, Ad, Aj; Parameter optimization
of Aaf , Avf , Adf , and Ajf .

(5) Set k = k + 1 and return to step (3) until the shaking table
system model error is minimal and meets the requirements.

4.3 Experimental simulation analysis

Frequency domain analysis of the stabilized system leads to
Figure 13. In the figure, using the BP-MVC controller, the effective
frequency bandwidth of the system ranges from 0.014 Hz to
63.20 Hz, with no obvious oil column resonance peaks.

The Matlab/Simulink model is developed to implement multi-
parameter control of a seismic simulation shaking table using a BP
neural network. With the same signal input and the parameters
adjusted by BP neural network, the model output response is
as follows:

The output signals (acceleration, velocity and displacement)
are plotted versus the real situation for sinusoidal signals in
Figure 14. CC, RMSE and MAE are summarized in
Supplementary Table S4. It can be seen that the tracking
response curves match the real values after the BP neural
network identification, both for the acceleration tracking
signal and the velocity and displacement tracking signals.
Compared with the MVC control, the BP-MVC control makes
the CC obtain a substantial improvement. Especially, the CC of

the displacement signal is improved from 0.8947 to 0.9981. In
addition, the RMSE and MAE are also decreased significantly. In
particular, when tracking the displacement signal, the RMSE
drops to 0.0006. When the input is a sinusoidal signal, the
sources of error for the MVC control are the amplitude and
phase differences.

According to the analysis in Figure 15, the waveform
recurrence accuracy of the shaking table system is significantly
improved by the multi-parameter control based on BP network
adjustment. The CC is 0.9960, the RMSE is 0.0380, and the MAE
is 0.2448 when the EI-Centro wave is used as the input signal; the
results in Figure 16 show that the spectral amplitude overlap is
significantly improved.

Supplementary Table S5 summarizes the response
characteristics of the shaker under BP-MVC control using three
seismic waves as input signals. It can be seen that the BP-MVC
control achieves the tracking of the shaker signal by increasing the
CC and decreasing the RMSE and MAE based on the MVC control.
The MVC control has different effects on the tracking of the three
seismic waves, in which the CC of the artificial wave is as low as
0.4928, while the CC of each seismic wave under the BP-MVC
control is above 0.996.

Figure 17 plots the variation of the initial multiparametric
theoretical values when the input signal is an EI Centro wave. It
can be seen that with 8 initial inputs, the parameters stabilize
within about 25 s after learning by the BP neural network.
Compared with the three-parameter theoretical parameter
control (TVC) or multi-parameter theoretical parameter
control (MVC), the BP neural network control can achieve
convergence quickly, and the control error of the parameters
is controlled within 10−5 ~ 10−8.

FIGURE 13
Frequency response characteristic curve of the system under BP-MVC control.

Frontiers in Physics frontiersin.org10

Gao et al. 10.3389/fphy.2024.1309029

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1309029


FIGURE 14
Time domain simulation results for sinusoidal signals.

FIGURE 15
Time domain simulation diagram of the system with optimized parameters.
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5 Conclusion and discussion

This study focuses on the intelligent control of a seismic simulation
shaking table. Specifically, it explores the implementation of acceleration
control using a three-parameter control approach. The aim is to develop
a seismic simulation shaking table incorporating multi-parameter

control techniques. Through theoretical research and simulation
analysis, the BP-MVC controller expands the frequency bandwidth of
the system, reduces the resonance peak of the oil column on the basis of
MVC, and improves the system frequency response characteristics of the
shaking table. This study presents a multi-parameter control model for
seismic simulation shaking table using the BP neural network under the

FIGURE 16
Simulation diagram of system frequency domain with optimized parameters.

FIGURE 17
Schematic diagram of multi-parameter change under BP neural network learning.
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framework of multi-parameter control. The model is meant to identify
significant parameters online and provide a set of optimization
parameters. The objective is to enhance the correlation of shaking
table waveform. The results from the shaking table system
simulation, utilizing optimized parameters, demonstrate that the
suggested algorithm substantially improves waveform reproduction
accuracy. This improvement aligns with the engineering requirements
and serves as evidence for the efficacy of the proposed algorithm. This
study focuses on implementing a single degree of freedom (DOF)
seismic simulation shaker. The findings of this research can
potentially be used for more complex systems such as the tri-axial
and six degrees of freedom seismic simulation shaking table.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

CG: Conceptualization, Funding acquisition, Writing–original
draft. CL: Writing–original draft. MQ: Data curation, Visualization,
Writing–review and editing. YY: Data curation, Visualization,
Writing–review and editing. ZY: Visualization, Writing–review
and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work

was supported by the Henan Provincial Department of Science and
Technology (No. 212300410234) and Xinyang Normal University
Nos. 2022KYJJ088 and 2022KYJJ090.

Acknowledgments

The author thanks the teachers and classmates of the team for
collecting the experimental data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphy.2024.1309029/
full#supplementary-material

References

1. Gao C, Yuan X. Development of the shaking table and array system Technology in
China. Adv Civil Eng (2019) 2019:1–10. doi:10.1155/2019/8167684

2. Zhao J, Dong J, Sun X, Xu J, Zhao L, LiW. Development and teaching application of
electro-hydraulic servo shaking table. Exp Tech Manag (2021) 38:172–6. doi:10.16791/j.
cnki.sjg.2021.10.032

3. Ceresa P, Brezzi F, Calvi GM, Pinho R. Analytical modelling of a large-scale dynamic
testing facility. Earthquake Eng Struct Dyn (2012) 41:255–77. doi:10.1002/eqe.1128

4. Tagawa Y, Kajiwara K. Controller development for the E-Defense shaking table.
Proc Inst Mech Eng J Syst Control Eng (2007) 221:171–81. doi:10.1243/
09596518JSCE331

5. Luan Q, Chen Z, Xu J, He H. Three-variable control technique for a seismic
analog shaking table. J vibration Shock (2014) 33:54–60. doi:10.13465/j.cnki.jvs.
2014.08.010

6. Cui W, Wang S, Ren W. An improved three-parameter control of earthquake
shaking table. Chin Hydraulics Pneumatics (2012) 144–6. doi:10.3969/j.issn.1000-4858.
2012.11.048

7. Li X, Li F, Ji J, Wang J. A new control Technology of shaking table based on the jerk.
Adv Eng Sci (2018) 50:64–72. doi:10.15961/j.jsuese.201800370

8. Ji J, Sun L, Zhan P, Li N, Zhang S. Control parameters auto-tuning methods of
shaking table based on expert experiences. Tech Earthquake Disaster Prev (2014) 9:
882–90. doi:10.11899/zzfy20140416

9. Gao C,Wang J, Zhang Y, Yuan X. The influence on the control performance caused
by load characteristic in the shaking table. J Xinyang Normal University (Natural Sci
Edition) (2022) 35:145–50. doi:10.3969/j.issn.1003-0972.2022.01.025

10. Yu S, Liu X, Wang J, Liu D, Jin Y. Application of BP neural networks in electro-
hydraulic shaking table control system. Chin Hydraulics Pneumatics (2008) 53–5.
doi:10.3969/j.issn.1008-0813.2022.09.003

11. Mu H, Luo Y, Du W, Deng H. Simulation research on synchronous control of
double hydraulic cylinder based on BP-PID. Hydraulics Pneumatics & Seals (2022) 42:
14–31.

12. Zhang F, Zhou H, Zhang B, Song W, Wang T. Real-Time Iterative Control
Method Research of Shaking Table. Eng Mech (2022) 1–13. doi:10.6052/j.issn.1000-
4750.2022.03.0265

13. Ji J, Hu Z, Yang S. Closed-loop control method of seismic simulation shaking table
based on LSTM. Earthquake Eng Eng Dyn (2022) 42:63–9. doi:10.13197/j.eeed.2022.0507

14. Liu H, Wang hu, Wang Y. PID control of marine pressure simulator based on BP
neural network. Instrumentation and Equipments (2019) 07:155–63. doi:10.12677/IaE.
2019.73022

15. Xie L, Qin L. Fractional order PIλDμ control based on neural network
optimization algorithm. J Nanjing Univ Sci Tech (2021) 45:515–20. doi:10.14177/j.
cnki.32-1397n.2021.45.04.017

16. Yao J, Dietz M, Xiao R, Yu H,Wang T, Yue D. An overview of control schemes for
hydraulic shaking tables. J Vibration Control (2016) 22:2807–23. doi:10.1177/
1077546314549589

17. Wang L, Zhao Y, Liu J. A Kriging-based decoupled non-probability reliability-
based design optimization scheme for piezoelectric PID control systems. Mech Syst
Signal Process (2023) 203:110714. doi:10.1016/j.ymssp.2023.110714

18. Liu Y, Wang L. Multiobjective-clustering-based optimal heterogeneous sensor
placement method for thermo-mechanical load identification. Int J Mech Sci (2023) 253:
108369. doi:10.1016/j.ijmecsci.2023.108369

19. Liu Y, Wang L. A robust-based configuration design method of piezoelectric
materials for mechanical load identification considering structural vibration
suppression. Comp Methods Appl Mech Eng (2023) 410:115998. doi:10.1016/j.cma.
2023.115998

Frontiers in Physics frontiersin.org13

Gao et al. 10.3389/fphy.2024.1309029

https://www.frontiersin.org/articles/10.3389/fphy.2024.1309029/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2024.1309029/full#supplementary-material
https://doi.org/10.1155/2019/8167684
https://doi.org/10.16791/j.cnki.sjg.2021.10.032
https://doi.org/10.16791/j.cnki.sjg.2021.10.032
https://doi.org/10.1002/eqe.1128
https://doi.org/10.1243/09596518JSCE331
https://doi.org/10.1243/09596518JSCE331
https://doi.org/10.13465/j.cnki.jvs.2014.08.010
https://doi.org/10.13465/j.cnki.jvs.2014.08.010
https://doi.org/10.3969/j.issn.1000-4858.2012.11.048
https://doi.org/10.3969/j.issn.1000-4858.2012.11.048
https://doi.org/10.15961/j.jsuese.201800370
https://doi.org/10.11899/zzfy20140416
https://doi.org/10.3969/j.issn.1003-0972.2022.01.025
https://doi.org/10.3969/j.issn.1008-0813.2022.09.003
https://doi.org/10.6052/j.issn.1000-4750.2022.03.0265
https://doi.org/10.6052/j.issn.1000-4750.2022.03.0265
https://doi.org/10.13197/j.eeed.2022.0507
https://doi.org/10.12677/IaE.2019.73022
https://doi.org/10.12677/IaE.2019.73022
https://doi.org/10.14177/j.cnki.32-1397n.2021.45.04.017
https://doi.org/10.14177/j.cnki.32-1397n.2021.45.04.017
https://doi.org/10.1177/1077546314549589
https://doi.org/10.1177/1077546314549589
https://doi.org/10.1016/j.ymssp.2023.110714
https://doi.org/10.1016/j.ijmecsci.2023.108369
https://doi.org/10.1016/j.cma.2023.115998
https://doi.org/10.1016/j.cma.2023.115998
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1309029


20. YousefiH, HirvonenM, Handroos H, Soleymani A. Application of neural network
in suppressing mechanical vibration of a permanent magnet linear motor. Control Eng
Pract (2008) 16:787–97. doi:10.1016/j.conengprac.2007.08.003

21. Zhang G, Liu C,Men T. Research on data mining Technology based on association
rules algorithm. In: 2019 IEEE 8th Joint International Information Technology and
Artificial Intelligence Conference (ITAIC); May 24-26, 2019; Chongqing China (2019).
p. 526–30. doi:10.1109/ITAIC.2019.8785788

22. Yao J, Wang T, Wan Z, Chen S, Niu Q, Zhang L. Identification of acceleration
harmonics for a hydraulic shaking table by using hopfield neural network. Scientia
Iranica (2017) 0:0. doi:10.24200/sci.2017.4318

23. Chunhua Ga. O, Jieqiong W, Yanping Y, Mengyuan QIN. Parameter
optimization of shaking table based on later random and nonlinear dynamic
particle swarm optimization. xysfxyxb (2023) 36:137–43. doi:10.3969/j.issn.1003-
0972.2023.01.023

24. Wenqiang MA, Jiuting W. Macro-and meso-failure characteristics and energy
evolution of granite under uniaxial compression. Geotechnical Geol Eng (2023) 36:
314–20. doi:10.3969/j.issn.1003-0972.2023.02.025

25. Chao FU, Qifang Ya. N, Zhichao LI, Chaoyang DU. Bending deformation of a
simple-supported viscoelastic timoshenko beam with switching cracks. Adv Civil Eng
(2023) 36:144–9. doi:10.3969/j.issn.1003-0972.2023.01.024

Frontiers in Physics frontiersin.org14

Gao et al. 10.3389/fphy.2024.1309029

https://doi.org/10.1016/j.conengprac.2007.08.003
https://doi.org/10.1109/ITAIC.2019.8785788
https://doi.org/10.24200/sci.2017.4318
https://doi.org/10.3969/j.issn.1003-0972.2023.01.023
https://doi.org/10.3969/j.issn.1003-0972.2023.01.023
https://doi.org/10.3969/j.issn.1003-0972.2023.02.025
https://doi.org/10.3969/j.issn.1003-0972.2023.01.024
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1309029

	Multi-parameter identification of earthquake simulation shaking table based on BP neural network
	1 Introduction
	2 Multi—parameter control of shaking table for seismic simulation
	3 Simulation analysis of shaking table under multi-parameter control
	4 Multi—parameter identification of shaking table based on BP network
	4.1 Construction of BP neural network
	4.2 Multi—parameter identification of shaking table based on BP network
	4.3 Experimental simulation analysis

	5 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


